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Abstract. The geomagnetic activity of theDst index is an-
alyzed using wavelet transforms and it is shown that theDst
index possesses properties associated with self-affine frac-
tals. For example, the power spectral density obeys a power-
law dependence on frequency, and therefore theDst index
can be viewed as a self-affine fractal dynamic process. In
fact, the behaviour of theDst index, with a Hurst exponent
H≈0.5 (power-law exponentβ≈2) at high frequency, is sim-
ilar to that of Brownian motion. Therefore, the dynamical
invariants of theDst index may be described by a potential
Brownian motion model. Characterization of the geomag-
netic activity has been studied by analysing the geomagnetic
field using a wavelet covariance technique. The wavelet co-
variance exponent provides a direct effective measure of the
strength of persistence of theDst index. One of the advan-
tages of wavelet analysis is that many inherent problems en-
countered in Fourier transform methods, such as windowing
and detrending, are not necessary.

1 Introduction

The magnetosphere can be considered as a complex input-
output system. For such a system, the solar wind plays the
role of the input and the geomagnetic indexes can be con-
sidered as outputs. Properties of the output data sets can be
used to analyse and to understand properties of the dynami-
cal system itself. In the present paper, properties of theDst
index are studied to aid the understanding of properties of the
complex magnetospheric dynamical system.

Several approaches have been proposed to analyze theDst
and other geomagnetic indices, see for example the review
by Klimas et al. (1996). As time series, these indices have
been extensively studied by calculating the auto-correlation,
power spectrum, phase-space density and dynamical invari-
ant properties relating to chaotic behaviour, see for example
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Baker et al. (1990), Vassiliadis (1990), Shan et al. (1991),
Roberts et al. (1991), Takalo et al. (1993, 1995), Chen et
al. (1994), V̈orös et al. (1994), Takalo and Timonen (1994a,
1994b), Hongre et al. (1997) and Zotov (2000). TheDst
index, which is used to measure the disturbance of the ge-
omagnetic field in the magnetic storm, can also be consid-
ered as the output of the magnetospheric system with the so-
lar wind as the input. Some simple, effective input-output
continuous-time models have been proposed to describe the
input-output relationship of the magnetosphere dynamics in-
cluding Burton’s linear model (Burton et al., 1975), the me-
chanical analogue model by Baker et al. (1990) and Klimas
et al. (1997, 1998, 1999), directly driven model by Goertz et
al. 1993), the Faraday loop model by Klimas et al., (1996),
and the recently proposed model by O’Brien and McPher-
ron (2000). Existing input-output observational data-based
modelling approaches which haven been applied to these in-
dices include the ARMA model (McPherron, 1999; Vassil-
iadis et al., 2000), neural networks (Hernandez et al., 1993;
Takalo and Timonen, 1997; Wu and Lundsted, 1997), and the
NARMAX model (Boaghe et al., 2001).

In this study the fractal invariants of theDst index are an-
alyzed using wavelet transforms. It is shown that theDst
index possesses properties of self-affine fractals (Vörös et
al., 1994), for example, the power spectral density obeys a
power-law dependence on frequency, and therefore theDst
index can be viewed as a self-affine fractal dynamic pro-
cess. Studies of the dynamical invariants of the fractals
alone do not reveal the underlying physics. However, the
fractal structure of theDst index does add to the informa-
tion needed to find the physical mechanism responsible for
this phenomenon. The fractal dimension estimated from
the power exponent also provides information regarding the
choice of an appropriate embedding dimension for the dy-
namic modelling and forecasting (see, e.g., Hongre et al.,
1999) of this index. One of the objectives of this work is
to provide an effective alternative approach for the estima-
tion of some dynamical invariants of theDst index based on
the auto-covariance of the wavelet transform.
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Figure 1.   The Dst index for the years from 1981 to 2000 with a sampling period of 1 hour. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. TheDst index for the years from 1981 to 2000 with a sampling period of 1 h.

2 TheDst index as a self-affine dynamic process

The term fractal, introduced by Mandelbrot (1983), involves
three related concepts: geometric, temporal (dynamic) and
statistical fractals. Generally, the concept of a fractal is de-
fined in terms of self-similarity. A great number of natural
phenomena in physics, geometry, ecology, physiology and
topography have been shown to exhibit self-similarity (Fleis-
chmann et al., 1990; Takayasu, 1990; Harrison, 1995).

2.1 Self-affine fractals

A self-affine set is statistically invariant under an affine trans-
formation. A 2-dimensional surface described by a function
f (x, y) is a self-affine fractal, if there exists a numberH
such that

f (x, y) = λ−Hf (λx, λHy) , (1)

whereλ is positive numbers,H is called the Hurst exponent
or Hausdorff exponent or self-affine exponent with a value
between 0 and 1, that is, 0≤H≤1. The Eq. (1) indicates that
f (λx, λHy) is statistically similar tof (x, y) with a simi-
larity exponentH . In one-dimension, a self-affine fractal
(Mandelbrot, 1983; Turcotte, 1997; Malamud and Turcotte,
1999a, 1999b) is defined asf (x)=λ−Hf (λx). In this case,
x and f (x) are often interpreted as the time and the cor-
responding trajectory (position), respectively. It has been
proved (Voss, 1988) that the Hurst exponent,H , and the
self-affine fractal dimension, or the box-counting dimension,

D, are related by the equationH=2−D. Therefore 1≤D≤2
corresponds to 0≤H≤1 for a self-affine fractal. IfH=1, the
self-affine fractal becomes self-similar, which is by defini-
tion isotropic. A stochastic process or a surface withH>1/2
is said to be persistent, and that withH<1/2 is said to be
antipersistent.

Following Malamud and Turcotte (1999a, 1999b) and Tur-
cotte (1997), the basic property of a self-affine time series is
that the power spectral density of the time series has a power-
law dependence on frequency.

3 Spectral analysis for theDst index

The physical features of a dynamic system can be easily de-
tected and revealed using frequency domain analysis, which
is often implemented by means of Fourier transforms of the
covariance functions. One feature of a self-affine time se-
ries is that the power spectral density of the time series has a
power-law dependence on frequency

P(ω) ∝ |ω|
−β . (2)

Note that for a relationship between the power-law exponent
β, the Hurst exponentH , and the fractal dimensionD is
given (Voss, 1988) byβ=2H+1=5−2D. For a self-affine
process (Malamud and Turcotte, 1999a), 0≤H≤1, 1≤D≤2
and 1<β<3. For a Brownian motion (Malamud and Tur-
cotte, 1999b),H=0.5,D=1.5 andβ=2.
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Figure 2.   The power spectra of the Dst index for the years from 1981 to 2000 with a sampling 
period of 1 hour for each year index. The slope of the spectral lines is approximately 2. 

 

 

 

 

 

 

 

 

 

Fig. 2. The power spectra of theDst index for the years from 1981
to 2000 with a sampling period of 1 h for each year index. The slope
of the spectral lines is approximately 2.

The main point of this section is to show that the power
spectral density of theDst index obeys a power-law depen-
dence on frequency. As an example, theDst index for the
years from 1981 to 2000 were considered (see Fig. 1) and the
power spectra for theDst index of each year were calculated
separately and are shown in Fig. 2, where the sampling pe-
riod for each yearly index is 1 h and the frequency has been
normalised. The average of the 20 power spectral density
functions is plotted in Fig. 3 (the solid line). TheDst index
over the 20 years can also be considered as a single signal
s(t)consisting of 175 320 points. The power spectrum of this
signal was estimated and is also shown in Fig. 3, where again
the frequency has been normalised. Figures 2 and 3 clearly
show that the power spectra of theDst index obey a power-
law in the sense thatP(f )∝ |f |

−β , whereβ≈2(H≈0.5).
This suggests that theDst index can be considered as a self-
affine time series and the process of theDst index is strongly
persistent. From the results of Vörös et al. (1994) and Hon-
gre et al. (1999), which demonstrated the chaotic behaviour
of the geomagnetic field dynamics, the broadband spectra of
theDst index also indicates that a potential chaotic behaviour
may exist in the dynamic process.

A closer inspection of Figs. 2 and 3 also reveals another
fact that the power spectrum of theDst index exhibits some
periodicities. In fact, Takalo et al. (1995) showed that there
are peaks in the power spectrum at frequencies of about
1/(6T ), 1/(8T ), 1/(12T ), 1/(24T ), 1/(648T ), whereT =1 h.
The first 4 peak frequencies are visible in the power spec-
trum shown in Figs. 2 and 3, but the fifth frequency, which
was detected by Takalo et al. (1995) via the structure function
(SF), is not visible from the power spectrum. While the peak
frequencies 1/(24T ) and 1/(648T ) can be explained as the
results of the diurnal variation and the solar rotation (Takalo
et al., 1993), it is difficult to deduce the significant of other
peaks from the power spectrum (Takalo et al., 1995).
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Figure 3.   The average of the power spectral density functions of theDst index for the years from 
1981 to 2000 (the solid line) and the overall power spectral density function of the Dst index of 20 
years (the dashed line). The average slope of the spectral line is approximately 2. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The average of the power spectral density functions of the
Dst index for the years from 1981 to 2000 (the solid line) and the
overall power spectral density function of theDst index of 20 years
(the dashed line). The average slope of the spectral line is approxi-
mately 2.

4 Analysis of theDst index using wavelet transforms
and wavelet decompositions

Just as Fourier series can be used to superimpose sines and
cosines to represent other functions, wavelets are functions
that possess certain properties that can be used to repre-
sent complex signals. However, wavelets differ greatly from
Fourier series. Unlike the Fourier basis functions, wavelet
basis functions have the property of localisation both in time
and frequency. Due to this inherent property, wavelet approx-
imation provides the foundation for representing arbitrary
signals economically, using just a small number of wavelets.
In wavelet analysis, the scale that is used to analyse the data
plays a special role.

The wavelet analysis procedure consists of adopting a
wavelet prototype function, called the analysing wavelet or
mother wavelet or simply wavelet. Temporal analysis is
performed with a contracted, high-frequency version of the
same function. Because the signal to be analysed can be rep-
resented in terms of a wavelet expansion, data operations can
be performed using only the corresponding wavelet coeffi-
cients.

Wavelets have an excellent approximation capability, that
is why wavelet theory has so many applications in many
diverse fields, namely signal and image processing, speech
analysis, fault detection, fractals, system identification and
so on. The wavelet transform also possesses a property of
self-similarity. This makes wavelets particularly useful for
dealing with nonperiodic and nonstationary multiscaled time
series (Holschneider, 1988, 1995), including self-similarity
and self-affine signals and fractional Brownian motions (see,
e.g., Wornell, 1996; Kumar and Foufoula-Georgiou, 1997;
Simonsen, 1998, Malanmud and Turcotte, 1999b).
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Figure 4.   The Dst index for the period from July 1 to September 30, 2000 with a sampling interval   
of 1 hour. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. TheDst index for the period from 1 July to 30 September 2000 with a sampling interval of 1 h.

 16 

 

 

 

 

 

 

 

 

 

Figure 5.  The continuous wavelet transform of the Dst index from July 1 to September 30, 2000, 
consisting of 2208 data points with a sampling interval of 1 hour. The 2nd order Daubechies 
wavelet (Daub2) was used and the range for the scale parameter a is 0.5≤ a ≤ 16.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The continuous wavelet transform of theDst index from 1 July to 30 September 2000, consisting of 2208 data points with a sampling
interval of 1 h. The 2nd order Daubechies wavelet (Daub2) was used and the range for the scale parameter a is 0.5≤a≤16.
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Figure 6.  The phase picture of the wavelet transform of the Dst index from July 1 to September 30, 
2000, 2000, consisting of 2208 data points with a sampling interval of 1 hour.  The 2nd order 
Daubechies wavelet (Daub2) was used and the range for the scale parameter a is 1≤ a ≤ 128.  

 

 

 

 

 

 

 

 

 

 

Fig. 6. The phase picture of the wavelet transform of theDst index from 1 July to 30 September 2000, consisting of 2208 data points with a
sampling interval of 1 h. The 2nd order Daubechies wavelet (Daub2) was used and the range for the scale parameter a is 1≤a≤128.

4.1 Wavelet transforms

Letf be a function defined inL2(R). The continuous wavelet
transform (CWT) with respect to the mother waveletψ is
defined as (Chui, 1992; Daubechies, 1992).

W
ψ
f (b, a) =

1
√
a

∫
+∞

−∞

f (t)ψ

(
t − b

a

)
dt , (3)

with the dilation (scale) parametera∈R+ and the shift (trans-
lation) parameterb∈R. The over-bar above the functionψ(·)
indicates complex conjugate. The Eq. (3) states that the
transformWψ

f (b, a) is the correlation off (t) with a shifted
(by b) and scaled (bya) version ofψ(·). The transform
(3) can also be viewed as the output of a filter matched to
ψ((t−b)/a), with the impulse response|a|−1/2ψ((t−b)/a),
at timeb givenf as the input.

It is easy to verify that the continuous wavelet transform
(3) possesses the following basic self-similarity property: let
f∈L2(R) and satisfyf (λt)=λHf (t) for a similarity param-
eterH>0 and any real numberλ>0, then

W
ψ
f (b, a) = λ−(H+

1
2 )W

ψ
f (λb, λa) . (4)

Figure 4 shows theDst index from 1 July to 30 September
2000, consisting of 2208 data points with a sampling interval

of 1 h. Figure 5 is a 3-D plot showing the wavelet transform
(3) of theDst index from 1 July to 30 September 2000 where
the second order Daubechies wavelet (Daub2) was adopted.
It can be seen from the Fig. 5 that the wavelet amplitude∣∣∣Wψ

f (b, a)

∣∣∣ becomes stronger when the frequency becomes

lower (which corresponds to a large scale factora). This is
an important feature of a self-affine process (Malamud and
Turcotte, 1999b)(The image of the wavelet coefficients for
the scale level 1≤a≤128 is shown in Fig. 6.

4.2 Wavelet decompositions

Under some assumptions and considerations, an orthogonal
wavelet system can be constructed using a multiresolution
analysis (MRA)(Mallat, 1989; Chui, 1992). Assume that the
waveletψ and associated scaling functionφ constitute an
orthogonal wavelet system, then any functionf∈L2(R) can
be expressed as a multiresolution wavelet decomposition

f (x) =

∑
k

aj0,kφj0,k(x)+

∑
j≥j0

∑
k

dj,kψj,k(x) , (5)

whereψj,k(x)=2j/2ψ(2jx−k) andφj,k(x)=2j/2φ(2jx−k),
j, k∈Z, and the wavelet approximation coefficientaj0,k and
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Figure 7.  The wavelet approximations at scale j2 computed with Daub2 for the Dst index of the 
year 2000, consisting of 8784 data points with a sampling interval of 1 hour. 

 

 

 

 

Fig. 7. The wavelet approximations at scale 2j computed with Daub2 for theDst index of the year 2000, consisting of 8784 data points with
a sampling interval of 1 h.

the wavelet detail coefficientdj,k can be calculated in theory
by the inner products:

aj0,k =< f, φj0,k >=

∫
f (x)φj0,k(x)dx (6)

dj,k =< f,ψj,k >=

∫
f (x)ψj,k(x)dx (7)

andj0 is an arbitrary integer representing the lowest resolu-
tion or scaling level.

TheDst index of the year 2000 consisting of 8784 data
points with a sampling interval of 1 h was decomposed into
the multiresolution wavelet decomposition (5), where the
second order Daubechies wavelet (Daub2) was used. The
wavelet approximation coefficientsaj,k and the detail coef-
ficients dj,k are shown in Figs. 7 and 8. Again, it can be

clearly seen from Figs. 7 and 8 that the amplitudes of the
wavelet coefficients become stronger when the frequency be-
comes lower (which corresponds to a large minusj ). This is
an important property of a self-affine process (Malamud and
Turcotte, 1999a, 1999b).

4.3 Wavelet transform covariance

Following Flandrin (1989), the covariance of the wavelet
transform (3) of a signalx(t) at a given scalea can be de-
fined as

Rψx (t, s; a) = E

[
Wψ
x (t, a)W

ψ
x (s, a)

]
. (8)
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Figure 8.  The wavelet details at scale j2 computed with Daub2 for the Dst index of the year 2000, 
consisting of 8784 data points with a sampling interval of 1 hour. 

 

 

 

 

 

Fig. 8. The wavelet details at scale 2j computed with Daub2 for theDst index of the year 2000, consisting of 8784 data points with a
sampling interval of 1 h.

It can be shown by means of the convolution theory and Par-
seval’s identity that

Rψx (t, s; a) =
a

2π

∫
∞

−∞

Px(ω)

∣∣∣ψ̂(aω)∣∣∣2e−i(t−s)ωdω (9)

wherePx(ω) is the power spectrum of the signalx(t). If
x(t) is a self-affine signal obeying the power-law (2) with a
power exponentβ, then the auto-covariance of the wavelet
transform also obeys a power-law in the sense that

Rψx (a) = E

[
Wψ
x (t, a)W

ψ
x (t, a)

]
=

a

2π

∞∫
−∞

∣∣∣ψ̂(aω)∣∣∣2
|ω|

β
dω

=
aβ

2π

∞∫
−∞

∣∣∣ψ̂(ω)∣∣∣2
|ω|

β
dω = Caβ , (10)

whereC=
1

2π

∫
−

∞
∞

∣∣∣ψ̂(ω)∣∣∣2
|ω|β

dω. Eq. (10) suggests that for a

self-affine signalx(t), the covariance of the wavelet trans-
form of signalx(t) also obeys the power-law with respect to
the wavelet scale parametera and the exponent associated to
the wavelet transform covariance isβ, which is the same as
that of power-law exponent. Therefore, the new introduced
formulas (10) can be used to estimate the power-law expo-
nent of theDst index. The property of the wavelet transform
covariance of Brownian motion has been studied in detail by
Holschneider (1995) and Malamud and Turcotte (1999a, b).

Figure 9 shows the auto-covariance of the wavelet trans-
form of theDst index for the years from 1981 to 2000. The
slope of the auto-covariance function with respect to the scale
factor log10a is about 2, which is identical with the power ex-
ponent estimated from the power spectral density where the
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Figure 9.   The auto-variance of the wavelet transform of the Dst index for the years from 1981 to 
2000, the sampling period for the Dst index of each year is 1 hour.  The slope of the auto-
covariance is approximately ≈β 2. The 4th-order Daubechies wavelet (Daub4) was used and the 
range for the scale parameter a is 1≤ a ≤ 32. 

Fig. 9. The auto-variance of the wavelet transform of theDst index for the years from 1981 to 2000, the sampling period for theDst index
of each year is 1 h. The slope of the auto-covariance is approximatelyβ≈2. The 4th-order Daubechies wavelet (Daub4) was used and the
range for the scale parameter a is 1≤a≤32.

value of the slope is approximately−2. This indicates that
the auto-covariance function of the wavelet transform of the
Dst index obeys a power-law in the sense thatR

ψ
Dst
(a)∝ |a|β

with β≈2. Note that the possible periodicities that appeared
in the power spectrum of theDst index have been filtered
out by the wavelet transform and do not occur in the auto-
covariance function.

The fractal feature of theDst index with a power-
law exponentβ≈2 (Hurst exponentH≈0.5, the fractal
dimensionD≈1.5) suggests that the dynamics of the time se-
ries is similar to that of a Brownian motion (see, e.g., Peltier
and Levy-Vehel, 1995). This implies that a Brownian motion
model might be adopted to describe some aspects of the dy-
namics of theDst index. On the other hand, the fractal prop-
erty possessed by the time series also indicates that theDst
index, as the output of a complex system with the solar wind
and other parameters as the inputs, may be sufficiently de-
scribed using a discrete-time input-output model with a low
embedding dimension (d=2D+1≈4). This provides useful
information for modelling theDst index based only on given
observational data sets.

5 Conclusions and discussions

The broadband and power-law dependence of the spectrum
of theDst index, identified in this study and in previous work
of other authors, clearly show that theDst index possesses
properties associated with self-affine fractals. This suggests
that the dynamical invariants of theDst index might be de-
scribed by a possible Brownian motion model.

The wavelet transform behaves like a microscope and de-
composes a signal into amplitudes depending on dilations
(scale) and translation (position). Multi-resolution decompo-
sition enables a signal to be “observed” at higher and higher
resolutions at different locations. These features of wavelet
transforms along with the property of self-similarity, make
wavelets particularly useful for dealing with nonperiodic and
nonstationary multiscaled time series, including signals as-
sociated with self-affine and self-similar fractals. The power
exponent of theDst index obtained from the wavelet trans-
form covariance is the same as that estimated from the tra-
ditional power spectral density. This means that, both the
wavelet covariance method and the Fourier transform based
power spectral approach give almost the same results for a
long data set. However, numerous experiments show that
for a short-time signal the wavelet covariance outperforms
the Fourier transform based approach. Understanding the
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mechanisms of the self-affine fractal of theDst index is help-
ful for building either an analogue model or an observational
data-driven input-output model for analysis and forecasting
of the geomagnetic activity. Wavelet-based input-output non-
linear models can also be estimated and used to predict the
Dst index.

As discussed in Sect. 3.3, the proposed wavelet trans-
form covariance provides a direct, effective alternative for
analysing some complex invariants of theDst index. The
wavelet transform covariance techniques are likely to be use-
ful for identifying dynamical invariants of other geomagnetic
activity indices, as well as the localβ-values and a corre-
sponding multifractional Brownian motion model.
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