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Abstract. The geomagnetic activity of thB,, index is an-  Baker et al. (1990), Vassiliadis (1990), Shan et al. (1991),
alyzed using wavelet transforms and it is shown thatite =~ Roberts et al. (1991), Takalo et al. (1993, 1995), Chen et
index possesses properties associated with self-affine fraal. (1994), \bros et al. (1994), Takalo and Timonen (1994a,
tals. For example, the power spectral density obeys a powert994b), Hongre et al. (1997) and Zotov (2000). Thg

law dependence on frequency, and thereforefeindex index, which is used to measure the disturbance of the ge-
can be viewed as a self-affine fractal dynamic process. lromagnetic field in the magnetic storm, can also be consid-
fact, the behaviour of th®,, index, with a Hurst exponent ered as the output of the magnetospheric system with the so-
H~0.5 (power-law exponerfi~2) at high frequency, is sim-  lar wind as the input. Some simple, effective input-output
ilar to that of Brownian motion. Therefore, the dynamical continuous-time models have been proposed to describe the
invariants of theDy, index may be described by a potential input-output relationship of the magnetosphere dynamics in-
Brownian motion model. Characterization of the geomag-cluding Burton’s linear model (Burton et al., 1975), the me-
netic activity has been studied by analysing the geomagnetichanical analogue model by Baker et al. (1990) and Klimas
field using a wavelet covariance technique. The wavelet coet al. (1997, 1998, 1999), directly driven model by Goertz et
variance exponent provides a direct effective measure of thal. 1993), the Faraday loop model by Klimas et al., (1996),
strength of persistence of the, index. One of the advan- and the recently proposed model by O'Brien and McPher-
tages of wavelet analysis is that many inherent problems enron (2000). Existing input-output observational data-based
countered in Fourier transform methods, such as windowingmodelling approaches which haven been applied to these in-
and detrending, are not necessary. dices include the ARMA model (McPherron, 1999; Vassil-
iadis et al., 2000), neural networks (Hernandez et al., 1993;
Takalo and Timonen, 1997; Wu and Lundsted, 1997), and the
NARMAX model (Boaghe et al., 2001).

In this study the fractal invariants of the,, index are an-

The magnetosphere can be considered as a complex inpudlyzed using wavelet transforms. It is shown that g
output system. For such a system, the solar wind plays thédex possesses properties of self-affine fractalsrgy’ et
role of the input and the geomagnetic indexes can be condl-» 1994), for example, the power spectral density obeys a
sidered as outputs. Properties of the output data sets can f@Wer-law dependence on frequency, and thereforeDife
used to analyse and to understand properties of the dynamidex can be viewed as a self-affine fractal dynamic pro-
cal system itself. In the present paper, properties ofilje ~ C€SS. Studies of the dynamical invariants of the fractals
index are studied to aid the understanding of properties of thé@lone do not reveal the underlying physics. However, the
complex magnetospheric dynamical system. fractal structure of theD; index does add to the informa-
Several approaches have been proposed to analyzgthe tion needed to find the physical mechanism responsible for
and other geomagnetic indices, see for example the revie§iS phenomenon.  The fractal dimension estimated from
by Klimas et al. (1996). As time series, these indices havel€ POWer exponent also provides information regarding the
been extensively studied by calculating the auto-correlationchoice of an appropriate embedding dimension for the dy-
power spectrum, phase-space density and dynamical invarff@mic modelling and forecasting (see, e.g., Hongre et al.,

ant properties relating to chaotic behaviour, see for exampld-999) of this index. One of the objectives of this work is
to provide an effective alternative approach for the estima-

Correspondence td4d. L. Wei tion of some dynamical invariants of thg,; index based on
(w.hualiang@shef.ac.uk) the auto-covariance of the wavelet transform.

1 Introduction




304 H. L. Wei et al. : Analysis oDy, index and self-affine fractals

100

—
=
]
_-'
T

W
1 -300

400 f---- -

R I S beeo- N oo R
70— - L N I L b R R
600 | | | | | | | |
0 2 4 B o 10 12 14 16 15
Time {Hour) « 107
Fig. 1. The Dy; index for the years from 1981 to 2000 with a sampling period of 1 h.
2 The Dy, index as a self-affine dynamic process D, are related by the equatidgh=2—D. Therefore kD<2

corresponds to QH <1 for a self-affine fractal. 1#H=1, the
The term fractal, introduced by Mandelbrot (1983), involves self-affine fractal becomes self-similar, which is by defini-
three related concepts: geometric, temporal (dynamic) andion isotropic. A stochastic process or a surface \iith1/2
statistical fractals. Generally, the concept of a fractal is de-s said to be persistent, and that with<1/2 is said to be
fined in terms of self-similarity. A great number of natural antipersistent.
phenomena in physics, geometry, ecology, physiology and Following Malamud and Turcotte (1999a, 1999b) and Tur-
topography have been shown to exhibit self-similarity (Fleis- cotte (1997), the basic property of a self-affine time series is
chmann et al., 1990; Takayasu, 1990; Harrison, 1995). that the power spectral density of the time series has a power-

law d d f s
2.1 Self-affine fractals aw dependence on frequency

A self-affine set is statistically invariant under an affine trans-
formation. A 2-dimensional surface described by a function
f(x,y) is a self-affine fractal, if there exists a numbgr
such that

3 Spectral analysis for theD;; index

The physical features of a dynamic system can be easily de-
tected and revealed using frequency domain analysis, which
flx,y) = A‘Hf(kx, AHy) , (1) is often implemented by means of Fourier transforms of the
covariance functions. One feature of a self-affine time se-

where. is positive numbersf is called the Hurst exponent (e is that the power spectral density of the time series has a
or Hausdorff exponent or self-affine exponent with a Valuepower-law dependence on frequency

between 0 and 1, that is(H <1. The Eq. (1) indicates that

fux, Afy) is statistically similar tof (x, y) with a simi- P(w) o |o| P . 2)
larity exponentH. In one-dimension, a self-affine fractal

(Mandelbrot, 1983; Turcotte, 1997; Malamud and Turcotte,Note that for a relationship between the power-law exponent
1999a, 1999b) is defined g&x)=1" f(Ax). In this case, B, the Hurst exponent, and the fractal dimensio® is

x and f(x) are often interpreted as the time and the cor-given (Moss, 1988) byy=2H+1=5-2D. For a self-affine
responding trajectory (position), respectively. It has beenprocess (Malamud and Turcotte, 1999ayxH<1, 1<D<2
proved (Voss, 1988) that the Hurst exponeft, and the and 1<B8<3. For a Brownian motion (Malamud and Tur-
self-affine fractal dimension, or the box-counting dimension, cotte, 1999b)H =0.5, D=1.5 andg=2.
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Fig. 2. The power spectra of thB,; index for the years from 1981  Fig. 3. The average of the power spectral density functions of the
to 2000 with a sampling period of 1 h for each year index. The slopeDy; index for the years from 1981 to 2000 (the solid line) and the

of the spectral lines is approximately 2. overall power spectral density function of thg; index of 20 years
(the dashed line). The average slope of the spectral line is approxi-
mately 2.

The main point of this section is to show that the power
spectral density of th®,, index obeys a power-law depen-
dence on frequency. As an example, g index for the 4 Apalysis of the Dy, index using wavelet transforms
years from 1981 to 2000 were considered (see Fig. 1) andthe  and wavelet decompositions
power spectra for th®, index of each year were calculated
separately and are shown in Fig. 2, where the sampling pejust as Fourier series can be used to superimpose sines and
riod for each yearly index is 1 h and the frequency has beertosines to represent other functions, wavelets are functions
normalised. The average of the 20 power spectral densityhat possess certain properties that can be used to repre-
functions is plotted in Fig. 3 (the solid line). TH®,, index  sent complex signals. However, wavelets differ greatly from
over the 20 years can also be considered as a single sign&burier series. Unlike the Fourier basis functions, wavelet
s(r)consisting of 175 320 points. The power spectrum of thisbasis functions have the property of localisation both in time
signal was estimated and is also shown in Fig. 3, where agaiand frequency. Due to this inherent property, wavelet approx-
the frequency has been normalised. Figures 2 and 3 clearlymation provides the foundation for representing arbitrary
show that the power spectra of tifiilg; index obey a power-  signals economically, using just a small number of wavelets.

law in the sense thaP(f)o|f|~#, where f~2(H~0.5). In wavelet analysis, the scale that is used to analyse the data
This suggests that thB,, index can be considered as a self- plays a special role.
affine time series and the process of Ihg index is strongly The wavelet analysis procedure consists of adopting a

persistent. From the results otxos et al. (1994) and Hon- wavelet prototype function, called the analysing wavelet or
gre et al. (1999), which demonstrated the chaotic behavioumother wavelet or simply wavelet. Temporal analysis is
of the geomagnetic field dynamics, the broadband spectra gberformed with a contracted, high-frequency version of the
the Dy, index also indicates that a potential chaotic behavioursame function. Because the signal to be analysed can be rep-
may exist in the dynamic process. resented in terms of a wavelet expansion, data operations can
A closer inspection of Figs. 2 and 3 also reveals anotheibe performed using only the corresponding wavelet coeffi-
fact that the power spectrum of thig;, index exhibits some cients.
periodicities. In fact, Takalo et al. (1995) showed that there Wavelets have an excellent approximation capability, that
are peaks in the power spectrum at frequencies of abous why wavelet theory has so many applications in many
1/(6T), 1/(8T), 1/(12T), 1/(24T), 1/(648), whereT=1h. diverse fields, namely signal and image processing, speech
The first 4 peak frequencies are visible in the power spec-analysis, fault detection, fractals, system identification and
trum shown in Figs. 2 and 3, but the fifth frequency, which so on. The wavelet transform also possesses a property of
was detected by Takalo et al. (1995) via the structure functiorself-similarity. This makes wavelets particularly useful for
(SF), is not visible from the power spectrum. While the peakdealing with nonperiodic and nonstationary multiscaled time
frequencies 1/(28) and 1/(64&) can be explained as the series (Holschneider, 1988, 1995), including self-similarity
results of the diurnal variation and the solar rotation (Takaloand self-affine signals and fractional Brownian motions (see,
et al., 1993), it is difficult to deduce the significant of other e.g., Wornell, 1996; Kumar and Foufoula-Georgiou, 1997;
peaks from the power spectrum (Takalo et al., 1995). Simonsen, 1998, Malanmud and Turcotte, 1999b).
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Fig. 4. The Dy; index for the period from 1 July to 30 September 2000 with a sampling interval of 1 h.
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Fig. 5. The continuous wavelet transform of thg; index from 1 July to 30 September 2000, consisting of 2208 data points with a sampling
interval of 1 h. The 2nd order Daubechies wavelet (Daub2) was used and the range for the scale parambtar 4160



H. L. Wei et al. : Analysis ofD,, index and self-affine fractals 307

Ahsolute Walues of Cab Coefficients fora= 123456 ..
|

200 400 GO0 200 1040 1200 1400 1600 1300 2000 2200
b thour)

127
120
113
106

a(scale)
[ny]
Fu

Fig. 6. The phase picture of the wavelet transform of e index from 1 July to 30 September 2000, consisting of 2208 data points with a
sampling interval of 1 h. The 2nd order Daubechies wavelet (Daub2) was used and the range for the scale parametefiads 1

4.1 Wavelet transforms of 1 h. Figure 5 is a 3-D plot showing the wavelet transform
(3) of the Dy, index from 1 July to 30 September 2000 where

Let fbe a function defined ih?(R). The continuous wavelet  the second order Daubechies wavelet (Daub2) was adopted.

transform (CWT) with respect to the mother waveletis |t can be seen from the Fig. 5 that the wavelet amplitude

defined as (Chui, 1992; Daubechies, 1992). ‘W}/’ (b, a)| becomes stronger when the frequency becomes

" 1 [+ b\ lower (which corresponds to a large scale faetpr This is

Wy (b,a) = ﬁ/ foy (T)d” ®3) an important feature of a self-affine process (Malamud and
- Turcotte, 1999b)(The image of the wavelet coefficients for

with the dilation (scale) parametee R and the shift (trans-  the scale level 2a<128 is shown in Fig. 6.
lation) parametebe R. The over-bar above the functign(-)
indicates complex conjugate. The Eq. (3) states that the; 2 wavelet decompositions
transformW"’(b, a) is the correlation off (r) with a shifted
(by b) and scaled (by:) version ofy(-). The transform  ynder some assumptions and considerations, an orthogonal
(3) can also be viewed as the output of a filter matched toyavelet system can be constructed using a multiresolution
¥ ((t—b)/a), with the impulse response| /2y ((1—b)/a),  analysis (MRA)(Mallat, 1989; Chui, 1992). Assume that the
attimeb given f as the input. wavelety and associated scaling functignconstitute an

It is easy to verify that the continuous wavelet transform orthogonal wavelet system, then any functipaL?(R) can

(3) possesses the following basic self-similarity property: letpe expressed as a multiresolution wavelet decomposition
feL?(R) and satisfyf (An1)=1" f(¢) for a similarity param-
eter H>0 and any real number>0, then

FO) =" ajoxdipr@)+ Y > dixix(x), (5)
W}/f(b, a) = )f(HJr%)W}/f()»b, ra) . (4) k jzjo k

Figure 4 shows thé;, index from 1 July to 30 September wherey; ;(x)=2//2y(2/ x—k) ande;  (x)=2//2¢ (2/ x—k),
2000, consisting of 2208 data points with a sampling intervalj, ke Z, and the wavelet approximation coefficien » and
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Fig. 7. The wavelet approximations at scale@mputed with Daub2 for th®y; index of the year 2000, consisting of 8784 data points with
a sampling interval of 1 h.

the wavelet detail coefficiemt; , can be calculated in theory clearly seen from Figs. 7 and 8 that the amplitudes of the

by the inner products: wavelet coefficients become stronger when the frequency be-
comes lower (which corresponds to a large mipsThis is
ajok =< [ Qjo.k >= / J ) Pjo.r(x)dx (6)  animportant property of a self-affine process (Malamud and

Turcotte, 1999a, 1999b).

dix =< fi¥jr>= / FOVjk(x)dx (7)

4.3 Wavelet transform covariance
and jo is an arbitrary integer representing the lowest resolu-
tion or scaling level.

The Dy, index of the year 2000 consisting of 8784 data
points with a sampling interval of 1 h was decomposed into
the multiresolution wavelet decomposition (5), where the
second order Daubechies wavelet (Daub2) was used. The
wavelet approximation coefficients ; and the detail coef- RV (15 v —
ficientsd; x are shown in Figs. 7 and 8. Again, it can be “x (t,s:0) = E [Wx (. a)Wx (S’a)} . ®)

Following Flandrin (1989), the covariance of the wavelet
transform (3) of a signat(¢) at a given scale can be de-
fined as



H. L. Wei et al. : Analysis ofD,, index and self-affine fractals 309

5':' T T T T T T T T

=1 DMLM*HHMH&W%—
| | | | | | 1 1

1000 2000 3000 4000 A000  BOOO 7000 8000 5000

| | | | | | 1 1
1000 2000 3000 4000 &000  sOOO0 7000 s000 5000

=4

1000 2000 3000 4000 2 A000 G000 YOOO 8000 S000

-

j:-E 0 .

1000 2000 3000 4000 S000  s0OOO 7000 8000 2000
Time (hour)

Fig. 8. The wavelet details at scalé 2omputed with Daub?2 for th®y; index of the year 2000, consisting of 8784 data points with a
sampling interval of 1 h.

It can be shown by means of the convolution theory and Par-
seval's identity that

whereC=5 [ oo 00’1/, )‘

dw. EQ. (10) suggests that for a

" . a s . 2 s self-affine 5|gnalx(t), the covariance of the wavelet trans-
Ry (t,55a) = o / Py (w) ‘W(aw)) € dw 9) form of signalx(r) also obeys the power-law with respect to
- the wavelet scale parameteand the exponent associated to
the wavelet transform covariancefs which is the same as
that of power-law exponent. Therefore, the new introduced
formulas (10) can be used to estimate the power-law expo-
nent of theDy, index. The property of the wavelet transform
covariance of Brownian motion has been studied in detail by

where P, (w) is the power spectrum of the signafr). If
x(t) is a self-affine signal obeying the power-law (2) with a
power exponeng, then the auto-covariance of the wavelet
transform also obeys a power-law in the sense that

v ¥ w¥ o ’w(aw)‘ Holschneider (1995) and Malamud and Turcotte (1999a, b).
RY (a) = W7 (t,a)Wy (t,a) - )
le‘B Figure 9 shows the auto-covariance of the wavelet trans-
form of the Dy, index for the years from 1981 to 2000. The
‘1/,(60)‘ slope of the auto-covariance function with respect to the scale
L do=Cd (10)  factorlogga is about 2, which is identical with the power ex-

- 271 B . i
ks || ponent estimated from the power spectral density where the
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Fig. 9. The auto-variance of the wavelet transform of fig index for the years from 1981 to 2000, the sampling period forDheindex
of each year is 1 h. The slope of the auto-covariance is approximétey The 4th-order Daubechies wavelet (Daub4) was used and the
range for the scale parameter a fsal<32.

value of the slope is approximately2. This indicates that 5 Conclusions and discussions
the auto-covariance function of the wavelet transform of the
Dy, index obeys a power-law in the sense tR%tﬁ (a)x |al? The broadband and power-law dependence of the spectrum
with g~2. Note that the possible periodicities that appearedof the D, index, identified in this study and in previous work
in the power spectrum of th®,; index have been filtered of other authors, clearly show that tli®, index possesses
out by the wavelet transform and do not occur in the auto-properties associated with self-affine fractals. This suggests
covariance function. that the dynamical invariants of thB,, index might be de-
scribed by a possible Brownian motion model.
The wavelet transform behaves like a microscope and de-
composes a signal into amplitudes depending on dilations
(scale) and translation (position). Multi-resolution decompo-
The fractal feature of theDy; index with a power- sition enables a signal to be “observed” at higher and higher
law exponentf~2 (Hurst exponentH~0.5, the fractal resolutions at different locations. These features of wavelet
dimensioD~1.5) suggests that the dynamics of the time se-transforms along with the property of self-similarity, make
ries is similar to that of a Brownian motion (see, e.g., Peltierwavelets particularly useful for dealing with nonperiodic and
and Levy-Vehel, 1995). This implies that a Brownian motion nonstationary multiscaled time series, including signals as-
model might be adopted to describe some aspects of the dysociated with self-affine and self-similar fractals. The power
namics of theD;, index. On the other hand, the fractal prop- exponent of theDy, index obtained from the wavelet trans-
erty possessed by the time series also indicates thabthe form covariance is the same as that estimated from the tra-
index, as the output of a complex system with the solar windditional power spectral density. This means that, both the
and other parameters as the inputs, may be sufficiently dewavelet covariance method and the Fourier transform based
scribed using a discrete-time input-output model with a low power spectral approach give almost the same results for a
embedding dimensioni&2D+1~4). This provides useful long data set. However, numerous experiments show that
information for modelling theD;, index based only on given for a short-time signal the wavelet covariance outperforms
observational data sets. the Fourier transform based approach. Understanding the



H. L. Wei et al. : Analysis ofD,, index and self-affine fractals 311

mechanisms of the self-affine fractal of thg; index is help- Holschneider, M.: On the wavelet transforms of fractal objects,
ful for building either an analogue model or an observational Journal of Statistical Physics, 50 (5-6), 953—-993, 1988.
data-driven input-output model for ana|ysis and forecastingHO|SChneider, M.: Wavelets: An Analysis Tool, Clarendon Press,
of the geomagnetic activity. Wavelet-based input-output non- ©Oxford, 1995. . .
linear models can also be estimated and used to predict thgondre. L., Sailhac, P., Alexandrescu, M., and Dubois, J.: Nonlin-
D,, index. ear and multifractal approa_ches_ of the geomagnetic field, Physics
‘AS discussed in Sect. 3.3, the proposed wavelet trans; of the earth and planetary interiors, 110 (3-4), 157-190, 1997.

) Co T ) . Klimas, A. J., Vassiliadis, D., Baker, D. N.: Data-derived analogues
form covariance provides a dlr_ect, eﬁectlve_ alternative for — ¢ihe magnetospheric dynamics, J. Geophys. Res. Space-Phys.,
analysing some complex invariants of tiig, index. The 102 (A12), 26 993-27 009, 1997.
wavelet transform covariance techniques are likely to be usekjimas, A. J., Vassiliadis, D., Baker, D. NBy; index prediction
ful for identifying dynamical invariants of other geomagnetic  using data-derived analogues of the magnetospheric dynamics,
activity indices, as well as the locglvalues and a corre- J. Geophys. Res. Space-Phys., 103 (A9), 20 435-20447, 1998.
sponding multifractional Brownian motion model. Klimas, A. J., Vassiliadis, D., Baker, D. N., and Roberts, D. A.: The

organized nonlinear dynamics of the magnetosphere, J. Geophys.
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