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Forschungszentrum Jülich (ICG-I: Stratosphere), Germany

2
CNR-ISAC, Bologna, Italy

3
CAO, Dolgoprudny, Russia

4
Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Germany
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Abstract

During the second part of the TROCCINOX campaign that took place in Brazil in early

2005, chemical species were measured on-board of the high altitude research aircraft

Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to

20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly5

extending between 350 and 420 K.

Analysis of transport across TTL is performed using a new version of the Chemi-

cal Lagrangian Model of the Stratosphere (CLaMS). In this new version, the strato-

spheric model has been extended to the earth surface. Above the tropopause, the

isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and10

heating/cooling rates derived from a radiation calculation. Below the tropopause the

model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in

this way, takes into account the effect of large-scale convective transport as imple-

mented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible

transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates.15

Stratospheric and tropospheric signatures in the TTL can be seen both in the obser-

vation and in the model. The composition of air above ≈350 K is mainly controlled by

mixing on a time scale of weeks or even months. Based on CLaMS transport studies

where mixing can be completely switched off, we deduce that vertical mixing, mainly

driven by the vertical shear in the outflow regions of the large-scale convection and20

in the vicinity of the subtropical jets, is necessary to understand the upward transport

of the tropospheric air from the main convective outflow around 350 K up to the trop-

ical tropopause around 380 K. This mechanism is most effective if the outflow of the

mesoscale convective systems interacts with the subtropical jets.
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1 Introduction

The composition of the air entering the stratosphere is mainly determined by the

transport processes within the tropical tropopause layer (TTL) (Atticks and Robinson,

1983) coupling the Hadley circulation in the tropical troposphere with the much slower,

Brewer-Dobson circulation in the stratosphere. Whereas the first one is dominated5

by convective processes, the latter one is mainly driven by radiation and extratropical

wave drag (Holton et al., 1995).

The lowest boundary of the TTL around θ=350 K isentropic surface (see Fig. 1)

can be defined as the level of the main convective outflow (Folkins and Martin, 2005).

The upper TTL limit is expected to be above the cold point tropopause at around 380 K10

but below ≈420 K marking the highest level of the observed deepest convection events

(Kelly et al., 1993; Sherwood and Dessler, 2001).

Laterally, the TTL is confined by the subtropical jets (STJ) which vary seasonally

both their intensity and meridional position with a strong, equatorwards shifted jet in

the winter hemisphere (WH) and a weak, meandering, poleward shifted STJ in the15

summer hemisphere (SH). Following the concept of effective diffusivity, Haynes and

Shuckburgh (2000) showed that a strong STJ forms an effective transport barrier for

the meridional, isentropic transport between the TTL and mid latitudes with highest

permeability during monsoon circulations, mainly in the NH, when a strong upper-level

anticyclone over south-east Asia disrupts the zonal symmetry of the STJ. Furthermore,20

Haynes and Shuckburgh (2000) concluded that STJ in the SH is generally a stronger

transport barrier than STJ in the NH during the same season.

Because deep convection events transporting air directly into the stratosphere seem

to be too rare to supply the Brewer-Dobson circulation with sufficient mass (Gettelman

et al., 2002), the question arises what is the physical mechanism for the troposphere-to-25

stratosphere transport (TST) that lifts air parcels (AP) from the main convective outflow

around 350 K across the TTL into the lower stratosphere. The typical time scales for

this transport, as derived from the upward propagation of the the seasonal cycle of CO2
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arising in the planetary boundary layer, vary between 2 and 3 month for the upward

transport from θ=350 K up to 390 and 420 K, respectively (Andrews et al., 1999).

It is generally believed that the radiative heating effectively lifts AP within the TTL

above Q=0 level where the background clear sky heating rate changes from a net

cooling below to a net heating above. This transition level was generally found at an al-5

most constant value of θ =360 K (≈15 km) (Gettelman et al., 2002). The transition from

radiative cooling to radiative heating is driven by the combination of a rapid decrease

in water vapor mixing ratios (longwave cooling is negligible above 360 K), suppressed

longwave emission from CO2 and ozone due to extremely cold temperatures and an

increase of shortwave heating above 360 K owing to enhanced ozone mixing ratios.10

Although, this explanation is widely subscribed, there remain aspects of TST that

are not adequately addressed, e.g.: how do AP overcome the vertical gap between

the main convective outflow around 350 and the level with significant heating rates.

Normally, AP within the outflow region of the convective towers sink due to radiative

cooling rather than ascend into the stratosphere. Clouds in the TTL tend to increase the15

potential temperature where Q=0 occurs due to suppressed longwave heating of the

earth above clouds (Doherty et al., 1984; Gettelman et al., 2002). Consequently clouds

increase the gap between the convective outflow and radiation driven transport by up

to ≈25 K. Recently, Corti et al. (2006) proposed a new radiation-based mechanism

showing that lofting via cirrus cloud-radiation has the potential to overcome this gap20

but there are still neither experimental evidences nor 3-D transport studies driven by

realistic winds and cirrus cloud distributions which would support this theory.

Here, we propose an alternative mechanism for TST across the TTL mainly based

on mixing in this region as diagnosed by the Chemical Lagrangian Model of the Strato-

sphere (CLaMS) (McKenna et al., 2002; Konopka et al., 2004). We show that the25

concept of deformation-induced mixing driven by large-scale meteorological winds as

implemented in CLaMS identifies the TTL as a region with enhanced horizontal and

vertical gradients in the horizontal wind, i.e. with increased horizontal shear and ver-

tical strain rates, mainly occurring in the outflow of large-scale convection and in the
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vicinity of the STJ.

Enhanced small-scale turbulence and mixing generated by shear induced by gravity

waves can form in the large scale flow as was observed around the jet stream (Pavelin

and Whiteway, 2002). Additionally regions with enhanced shear and strain rates can be

diagnosed in terms of enhanced Lyapunov exponents (Pan et al., 2006) which, in turn,5

lead to increased mixing in the CLaMS parameterization, in particular to enhanced

vertical mixing. This shear driven mixing offers an alternative mechanism for the TST

across the TTL.

The paper is organized as follows: In the next section we describe the newly im-

proved version of CLaMS. In this new version, the stratospheric CTM is extended10

through hybrid coordinate to the surface, incorporating the entire troposphere. To vali-

date this new version, we use in situ observations on-board of the high altitude Russian

aircraft Geophysica during the TROCCINOX (Tropical Convection, Cirrus and Nitrogen

Oxides Experiment) campaign in early 2005 in Brazil that is shortly described in Sect. 3.

In particular, to validate both STT and TST we compare in Sects. 4 and 5, respectively,15

the simulated tracer distributions with data obtained during two long-range flights pene-

trating the TTL. In Sect. 6 we discuss the contribution of mixing to the transport across

the TTL and, finally, conclusions are drawn in Sect. 7.

2 Model description: CLaMS with stratosphere and troposphere

To resolve transport processes in the troposphere, in particular within the TTL, the20

vertical coordinate of CLaMS was extended from the potential temperature θ, to a

hybrid pressure-potential temperature coordinate ζ (Mahowald et al., 2002). In this

section, we describe some details of this extension with the main focus on implications

for the vertical transport, in particular in regions affected by convection and by the STJ.
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2.1 Hybrid vertical coordinate

Following the equations proposed by Mahowald et al. (2002), we generalize the po-

tential temperature θ, to a hybrid coordinate ζ , that below a certain pressure level pr

approximating the tropopause (i.e. for pressure values p>pr ) smoothly transforms from

isentropic to pressure coordinates:5

ζ (p) = f (η)θ(p, T (p)), η =
p

p0

(1)

with

f (η) =







sin
(

π
2

1−η
1−ηr

)

η > ηr

1 η ≤ ηr , ηr =
pr

p0

(2)

and θ=T (p0/p)
κ
, κ=0.286. Here, T denotes the temperature, p0=1013 hPa is the sur-

face pressure and pr=100 hPa was chosen. This pressure level roughly corresponds10

to the pressure at the tropical tropopause.

The ζ -coordinate is illustrated in the left panel of Fig. 2.

Here, as an example, the isolines of the zonally averaged pressure p (black) and

potential temperature θ (orange) were calculated for one particular ECMWF data set (1

January 2004, 12:00 UT) and plotted as a function of latitude and the hybrid coordinate15

ζ . Above approximately ζ=380 K, the θ-isolines and the ζ -coordinates are the same,

whereas the p−isolines cross the ζ−levels. Contrary, below about ζ=300 K, the p
and ζ levels tend to become parallel to each other (even if the units of ζ are Kelvin),

whereas the isentropes cross these lines. The ζ=0 level exactly corresponds to p=p0.

The black region is confined by the ζ=0 level and the highest values of the orography20

within each latitude bin (e.g. the highest point corresponds to the location of Mount

Everest).
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2.2 Entropy-preserving vertical distribution of AP

Unlike Eulerian CTMs, CLaMS considers an ensemble of AP on a time-dependent

irregular grid (McKenna et al., 2002; Konopka et al., 2004, 2005). The initial positions

of the AP have to be specified both in the horizontal and vertical. For a given horizontal

resolution, i.e. the mean horizontal separation r0 between adjacent AP, their mean5

vertical separation is, at first, a free parameter.

The layerwise mixing concept in CLaMS (i.e., the deformation-induced mixing is ap-

plied layerwise, with each layer containing approximately the same number of AP)

requires that a grid of vertical layers, each with the thickness ∆ζ , has to be defined.

Generally, ∆ζ depends on ζ . In every layer, the AP are approximately uniformly dis-10

tributed over the layer thickness ∆ζ and, consequently, the mean vertical separation

between the AP is given by ∆ζ/2. The dependence of ∆ζ on ζ is motivated by the

following ideas:

The ratio between the mean horizontal and vertical distance between the adjacent

AP in a given layer ∆ζ , the so-called aspect ratio α, controls not only the spatial res-15

olution in CLaMS but also the horizontal and vertical diffusivities if the AP being con-

sidered are involved in a mixing event. These diffusivities are proportional to r2
0 and

∆ζ2/4, respectively. Thus, an appropriate choice of α guarantees that the ratio be-

tween the horizontal and vertical diffusivity is correctly described. Furthermore, if α is

correctly set, it also guarantees that the horizontal and vertical resolution of the model20

are consistent i.e. the tracer variability is resolved, both horizontally and vertically, to

the same degree.

Haynes and Anglade (1997) derived from observations and theoretical estimates

that α=250 is a good choice for the lower stratosphere. Using this value and the po-

tential temperature as the vertical coordinate, CLaMS simulations, mainly in the lower25

stratosphere, could successfully reproduce the observed small-scale structures as fil-

aments, vortex remnants or tracer gradients across the vortex edge (Konopka et al.,

2003, 2004; Grooß et al., 2005).
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Because the assumption of α=const cannot be applied for the troposphere (where

much stronger vertical mixing is expected than in the lower stratosphere) and for the

middle and upper stratosphere (where only an increase of the vertical diffusivity with

altitude can explain the observed profiles of the stratospheric age Ehhalt et al., 2004),

we need an additional criterion to create the grid of vertical layers, in particular if the5

CLaMS domain extends from the earth surface up to the stratopause.

Here, we propose that the “volume” of every AP should contain “the same amount

of information” or, because the number of AP in each layer is approximately the same,

we require a constant “amount of information” per layer, i.e. the total entropy of the

layer ∆S should be constant. The latter one can be derived from the entropy density S10

defined as (Holton, 1992):

S ∼ cpn ln
θ

θ0

(3)

with the specific heat cp, air density n, potential temperature θ and the reference po-

tential temperature θ0. Using θ and n profiles of the U.S. standard atmosphere, S(ζ )

calculated from (3) is plotted in the right panel of Fig. 2 (black) showing a clear max-15

imum around 15 km. This is because θ increases while n decreases with the altitude

(or with ζ ) and, consequently, S(ζ ) that is proportional to n lnθ, has a maximum.

Thus, in the new version of CLaMS, the vertical grid of layers is defined in the follow-

ing way (see left panel of Fig. 2 where such layers are colored alternating with gray and

white): first, for a given horizonal resolution r0 and aspect ratio α (here α=250), a layer20

in the lower stratosphere with a thickness ∆ζ=αr0 is created. The total amount of en-

tropy ∆S in this layer defines the thickness of all other layers by requiring ∆S=const in

each layer. Using this condition and the entropy density S calculated for the U.S. stan-

dard atmosphere, a variable vertical spacing of layers is defined. An example is shown

in Fig. 2 where r0=200 km was specified. Note that the vertical grid with the thinnest25

layer around the tropical tropopause implies also the lowest vertical diffusivity per mix-

ing event within this layer and that this diffusivity increases both above and below this

level (red line on the right side of Fig. 2). The upward increase by about a factor
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of 10 near 30 km is in a qualitative agreement with the expected relative increase of

the vertical diffusivity as derived from the investigations of the age of air and of (one-

dimensional) eddy diffusion coefficients (Ehhalt et al., 2004).

2.3 Hybrid vertical velocity

An important advantage of the ζ−coordinate is that it allows to couple the vertical ve-5

locities in the troposphere as implemented in the meteorological data, in particular the

large-scale, convection-driven transport in the tropics, with the radiation-driven vertical

velocities in the stratosphere. Thus, as in the previous version of CLaMS, the isentropic

and cross-isentropic advection in CLaMS above the tropopause is driven by ECMWF

winds and heating/cooling rates derived from the Morcrette scheme (clear sky condi-10

tions), respectively (Morcrette, 1991; Zhong and Haigh, 1995).

Below the tropopause, where the ζ−coordinate behaves like a pressure coordinate,

the ECMWF vertical p-velocity (ṗ) is used which, within the ECMWF model, is derived

from the continuity equation (Simmons et al., 1999). Strong updrafts due to enhanced

values of ṗ were found in the ECMWF analysis in regions where large-scale convection15

as those organized in the mesoscale convective systems (MCS) occurred (e.g. Hegglin

et al., 2004). Following Mahowald et al. (2002), the time derivative of ζ follows from

eq. (1):

ζ̇ =
dζ

dt
= ḟ θ + f θ̇ (4)

with20

ḟ =

{

π
2

η̇
ηr−1

cos
(

π
2

1−η
1−ηr

)

η > ηr

0 η ≤ ηr

(5)

and η̇=ṗ/p0, where ṗ is the vertical velocity in pressure coordinates ( here provided

by ECMWF) and θ̇ is derived from the Morcrette scheme. Generally, the first term in

Eq. (4) dominates the second in convective regions. When ṗ is negligible (e.g. away
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from convective regions), Eq. (4) reduces to ζ̇=f θ̇. Thus, for pr=100 hPa (as used

here), the factor f decreases from 1, to 0.97, and 0.9 at p=100, 200 and 300 hPa,

respectively, guaranteeing that radiation, i.e. θ̇, dominates the vertical velocities in the

TTL in regions not affected by convection.

A new aspect of transport arises below the tropopause, where enhanced values of ζ̇5

are dominated by large-scale convection. To illustrate this, we show, as an exemple, in

the two top panels of Fig. 7

how a fast vertical transport can be diagnosed from the backward trajectories starting

from the ζ=340 K surface (i.e. p≈180 . . . 220 hPa) on 8 February 2005, 12:00 UT (there

is no preference for this apart from the fact that it coincides with a Geophysica flight10

that will be discussed below).

Here, the elapsed time until a trajectory descended below pc=500 (top panel) and

pc=300 hPa (middle panel) defines the time scale of this upward transport. This time

allows the identification of regions where strong updraft in the last 120 h have occurred.

In the following, we denote this time as the age of convection. Thus, between Indonesia15

and south-eastern Pacific (black arrows) an updraft of ∆p≈300 hPa in the last 24 h was

found (top) while over Brazil, Central Africa and Madagaskar regions with ∆p≈100 hPa

could be identified (middle).

Now, we compare these signatures of large-scale convection with the analyzed

ECMWF specific humidity (H2O) distribution (bottom panel of Fig. 7). The ECMWF20

H2O distribution is a result of a 3-D variational analysis (3D-Var) combining the ra-

diosonde and satellite observations with transport calculations constrained by the six-

hourly analysis of wind and temperature (Simmons et al., 1999). The vertical transport

of H2O in the ECMWF model is driven not only by the p-velocity ṗ but, in addition,

by sub-scale convective transport based on the Tiedtke (1989) parameterization. Fur-25

thermore, condensation and evaporation processes shift water between the gaseous,

liquid and solid states.

Thus, the spatial distribution of the enhanced H2O values in the upper troposphere

can be understood as a proxy for the fresh impact of convection. In particular, between
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Indonesia and south-eastern Pacific (black arrows) this distribution correlates fairly well

with the large-scale, deep convection derived from pure trajectory calculations indicat-

ing that large-scale convective patterns, probably caused by MCS, are well represented

by ζ̇ .

Finally, to illustrate the typical meridional and vertical dependence of ζ̇ , its zonally5

and monthly averaged values calculated for March, June, September and December

2003 are shown in Fig. 4.

The vertical axis is rescaled by use of the entropy function S(ζ ) (see Fig. 2, right

panel), so the entropy density does not change along the vertical axis. In this way,

the tropopause region is expanded relative to the troposphere and to the stratosphere.10

The gray contour defined by ζ̇=0 separates the regions with positive (ascent) from

regions with negative values of ζ̇ (descent). The position of the tropopause (blue lines)

is inferred from the |PV|=2–4 isolines in the extratropics and θ=380 K in the tropics.

The p- and θ-isolines (black and pink) define the physical coordinates whereas ζ=θ is

valid only in the stratosphere.15

Thus, in the tropics, above θ=360 K, the radiatively driven ascent determines

the vertical velocities (ascending branch of the Brewer-Dobson circulation), whereas

connectively-driven transport within the Hadley circulation (red and blue regions near

equator) determines the vertical velocities below θ=340 K. In the polar regions during

the winter, increased diabatic descent above 10 hPa indicates the positions of the polar20

vortices.

The meridional positions of the jets can be deduced from the isolines of the wind

(white, solid – westerlies, dashed – easterlies) with a clear signature of STJ (maxima

around ζ=360 K) and of the polar jets in the middle stratosphere during the winter. Be-

low the tropopause in the extratropics, the signatures of the Ferrell cells can be seen25

which are driven by zonally asymmetric eddies along the poleward flanks of the STJ

which dominate the extratropical circulation (e.g. Holton, 1992). The upward veloci-

ties in the Ferrell cells reach the extratropical tropopause (the gray contours defining

ζ̇=0 cut the blue |PV|=2–4 PVU lines), although this ECMWF-based vertical transport
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is probably too strong (see ζ̇=0 isoline on the SH in September in Fig. 4 extending

up to 100 hPa). Thus, in the extratropics, pr values higher than 100 hPa seem to be

more appropriate for the transition level from the radiation- to ECMWF-related vertical

velocities.

2.4 Mixing5

As with the previous CLaMS version, the initial distribution of AP are transported ac-

cording to trajectories calculated from horizontal ECMWF winds and vertical velocities

ζ̇ with subsequent layerwise mixing. The mixing procedure uses the same optimized

mixing parameters as described in Konopka et al. (2004) (critical Lyapunov exponent

λc=1.5 day
−1

) and is applied after each advection step ∆t=24 h. The critical deforma-10

tion associated with this advection step is given by γc=λc∆t=1.5. Thus, flow deforma-

tions with γ>γc effectively trigger mixing within CLaMS. This spatially and temporally

inhomogeneous procedure is driven by strain and shear rates of the horizontal wind

with highest values in the vicinity of the jets, in particular in the outer flanks of the polar

jet (Konopka et al., 2004, 2005) or in the vicinity of the STJ (Pan et al., 2006).15

Now, we discuss how CLaMS mixing works within the TTL. In the three panels of

Fig. 7, the mean vertical diffusivity Dv per AP is shown for ζ=340, 360, 380 K from

top to bottom, respectively (blue shaded), as parameterized by the CLaMS mixing

algorithm applied on 8 February 2005, after the last advection step. Dv for each AP

involved into the mixing procedure is given by Dv≈∆z
2/4∆t and set to 0 if AP was not20

affected by mixing. The mean values of Dv are derived from the fraction of AP affected

by mixing within the grid box with 100 km length. ∆z is the geometric thickness of the

considered level ∆ζ . Dv varies between 0 (white) and ≈1 m
2
/s (dark blue).

The contours of the horizontal wind u (red) highlight the position of the STJ, with

highest values at ζ=340 and with a stronger jet in the winter NH (u>60 m/s) than in the25

summer SH. The yellow isolines show regions with enhanced absolute values of the

vertical shear, |du/dζ |, derived from the difference of the horizontal wind in the layer
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above and below the considered layer. Thus, increased values of Dv (dark blue) can

be found in regions with enhanced horizontal velocity (jets) or enhanced vertical shear

(tropics or jets). The highest values of vertical shear are diagnosed above the core of

the NH STJ at ζ=380 K or in the outflow regions of tropical convection at ζ=360 K. The

latter can be found e.g. above south-eastern Pacific, downwind of 24 h isolines of the5

age of convection as can be seen in Fig. 7 (black arrows).

Both, horizontal strain and vertical shear are sources of deformations in the flow

(high Lyapunov exponents, not shown) which trigger the mixing algorithm in CLaMS.

Whereas the signature of mixing at ζ=380 K coincides well with the position of the

jets, high vertical diffusivity values at 340 and 360 K in the tropics correlate to some10

extent with the locations where convection was diagnosed. A detailed analysis of the

Lyapunov exponents shows that increased vertical shear rates in the large-scale con-

vective outflow regions also cause high mixing rates in CLaMS.

The pattern of the horizontal diffusivity Dh is approximately the same as that of the

vertical diffusivity Dv . With Dh=α
2Dv and α=250 (Haynes and Anglade, 1997; Konopka15

et al., 2005), Dh is approximately by a factor 10
4

larger than Dv around the tropical

tropopause. Because α decreases with the distance from the ζ=380 K level, the cor-

responding values of Dh are also smaller. Thus, CLaMS transport in the TTL shows

high mixing rates in the vicinity of the STJ and in the outflow regions of the large-scale

convection, i.e., these locations are favored for the mixing-induced vertical transport20

across the TTL.

2.5 Boundary conditions

In addition to the initial conditions that will be described in the next section, bound-

ary conditions need to be specified for the CLaMS model domain. After each mix-

ing procedure, the AP in the top level of the model are replaced by their initial geo-25

metric configuration. Furthermore, the mixing ratios are set to prescribed values as

given by the HALOE climatology, Mainz-2D model or by some additional conditions
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(e.g. tracer-tracer correlation, e.g. Grooß et al., 2005). Also the AP with ζ0<ζ<ζ0+∆ζ0

with ∆ζ0=50 K and ζ0 defined by the surface that follows the orography at the bottom of

the model domain are replaced be their initial geometric positions. Their mixing ratios

are either redefined in a similar way as for the upper boundary or are interpolated from

their next neighbors and can be updated, e.g. according to prescribed fluxes.5

3 Validation of CLaMS transport by TROCCINOX measurements

To validate the properties of transport associated with the new hybrid coordinate ζ , we

use in situ data measured during the TROCCINOX campaign on-board of the high alti-

tude Russian aircraft Geophysica. The campaign took place in early 2005 in Araçatuba

(21.2
◦
S, 50.4

◦
W), Brazil with 8 local and 7 transfer flights extending up to 20 km (or up10

to θ≈450 K), i.e. well-covering the TTL region.

The experimental data used in this paper were sampled with FOZAN (ozone), FISH

(total and gas phase water), HAGAR (CH4), SIOUX (NO, NOy) and COLD (CO) instru-

ments. A detailed description of the instruments can be found in Stefanutti et al. (2004)

and Voigt et al. (2004) for the SIOUX instrument.15

3.1 Meteorological situation

The composition of tropical air in the vicinity of the tropopause over Araçatuba was fre-

quently influenced by the interaction between the upper-level, quasi-stationary Bolivian

high (BH) with STJ (see Fig. 6)

surrounding the BH southerly. Zhou and Lau (1998) have reported the existence of20

high-level southerlies over South America during the austral summer, which were influ-

enced by the BH, and pointed out some similarities of this circulation pattern with the

well-known summer monsoon circulation over south-east Asia (e.g. Dethof et al., 1999).

The air over Araçatuba was influenced by numerous MCS that frequently formed over

the southeast of South America (north Argentina, south Brazil, part of Paraguay and25
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part of Uruguay). These air masses were transported along the STJ, often displaced

by the high-level southerlies, to a region within the Geophysica range. In addition, iso-

lated thunderstorms in the vicinity of Araçatuba were also observed by the Brazilian

radar network.

The eight local flights performed during the campaign can be divided into 3 groups: 45

flights in almost pure tropical air, northwards of the STJ on 12, 15, 17 and 18 February,

2 flights above and within isolated thunderstorms on 4 and 5 February, and 2 flights

on 1 and 8 February in air masses strongly affected by the aged MCS and STJ. Be-

cause in contrast to the MCS, the isolated convective systems such as those on 4 and

5 February are not resolved by the ECMWF large-scale analysis, we focus our analy-10

sis on the flight on 1 February for stratosphere-troposphere transport (STT) and on 8

February for the reverse transport (TST) (Fig. 6 top and bottom). But first, we describe

the setup of CLaMS used for this study.

3.2 Configuration of CLaMS

The high resolution (50 km horizontally and up to 200 m vertically around the tropical15

tropopause) version of CLaMS as described in the previous section is used to trans-

port O3 and N2O as passive tracers without any chemical change. The model was

initialized globally, between the earth surface and ζ=1400 K, for 20 November 2004,

using MLS observations and Mainz-2D model above and below ζ=400 K, respectively

(Grooß et al., 2005).20

Two artificial tracers are used to mark air masses with different origins. In particular,

the stratospheric tracer (ST) is set to 100% at the initialization time in the domain

defined by ζ>380 in the tropics (i.e. within the latitude range between 20
◦
S and 20

◦
N)

and by |PV|>2 elsewhere. At the top CLaMS level, ST is held constant during the

entire simulation. The ST value of a given AP can change only due to mixing and,25

consequently, this value quantifies the percentage of stratospheric air within this air

mass. Similarly, the boundary layer tracer (BL) is re-initialized every 24 h to 100%

within the lowest layer with the thickness ∆ζ=50 K that follows the orography. Thus,
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high BL values in the upper troposphere indicate a fast vertical transport driven by

convection.

To understand the impact of mixing on the transport of species we run CLaMS in two

configurations: without mixing (i.e. transport only in terms of forward trajectories) and

with mixing by using mixing parameters described in Sect. 2.4.5

4 Stratospheric intrusion into the TTL

During the flight on 1 February, tracer signatures of a deep stratospheric intrusion into

the TTL were observed. This intrusion (cut-off low) was formed as a tongue of low PV

(see Fig. 6, top panel) that had been separated from the stratosphere and transported

on a time scale of several days into the TTL by a meandering and relatively weak STJ.10

Occasionally, the meandering STJ that surrounds the BH becomes unstable (usually

when the BH is displaced eastwards) and bifurcates into two branches. Whereas the

main branch follows the main eastward direction, a secondary branch flows anticlock-

wise around the BH and mixes into the TTL.

Along the flight track (Fig. 7, top panel), enhanced ozone values (black arrows) were15

observed several times by the FOZAN instrument (black)

clearly below the tropopause (defined here as |PV|=2 PVU surface). These signa-

tures could be successfully reproduced with CLaMS (colored line), with a better agree-

ment than the assimilated ozone provided by ECMWF (pink). The colors of the CLaMS

line denote the percentage of the stratospheric tracer ST. CLaMS results with mixing20

switched off (gray) strongly overestimate the observed ozone values, in particular be-

low the tropopause indicating to weak upward (or to strong downward) transport in pure

trajectory studies.

The vertical ST distribution above and below the flight track together with |PV|=2 PVU

(tropopause) and Q=0 (clear sky radiative equilibrium) are shown in the left bottom25

panel of Fig. 7. The spatial distribution of ST extends down up to about 500 hPa.

The position of the meandering STJ (see also Fig. 6) can be inferred from the iso-
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tachs of the horizontal wind (light gray). A strong STT signal observed during this flight

can also be seen in the comparison of the ozone profiles with all other profiles mea-

sured during the campaign (right bottom panel of Fig. 7). The profiles measured on 1

February which are also colored with ST, show strong stratospheric signatures around

ζ=250 K (≈500 hPa) with ozone values around 100 ppbv (black arrow). This is signifi-5

cantly higher than all other tropospheric ozone values measured during the campaign

(gray lines).

To some extent, the jet still isolates stratospheric intrusion from the tropical air while

the remnants of this intrusion are mixed into the troposphere, mainly below the jet. A

good agreement between the observed and simulated filaments (black arrows in the10

top panel of Fig. 7) and the position of the ST remnants shows the ability of CLaMS to

reproduce small-scale structure within the TTL.

An overall good agreement between the simulated and observed O3 and CH4 time

series could be achieved for all local flights with correlation coefficients 0.89 and 0.86,

respectively. The passively transported O3 slightly underestimates the observed values15

in the lower stratosphere indicating that chemical ozone production as expected in

the tropics might improve the agreement in full chemistry studies. Ozone assimilated

by ECMWF overestimates the FOZAN observations above θ=380 K, with a linearly

increasing error up to 40% at θ=450 K.

5 Troposphere-to-stratosphere transport along the subtropical jet20

The flight on 8 February, permits the study of the reverse process namely the trans-

port of tropospheric air into the TTL. During the outbound flight leg between 13:45

and 15:30 UT, the TTL was penetrated around θ≈360 K (see Fig. 6, bottom panel).

The considered flight leg starts slightly below the |PV|=2 VU surface over Araçatuba

and leads toward the STJ core around the easternmost point of the flight track with25

|PV|>3 PVU and wind velocities higher than 35 m/s (see also Fig. 12).

Along this leg (see Fig. 8),
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signatures of pure tropospheric and mixed, i.e. of tropospheric and stratospheric

influence were found in the beige (AB) and green (BC) colored time intervals, respec-

tively. In particular, enhanced values of total water (up to 30 ppmv, yellow) and wa-

ter vapor (up to 15 ppmv, blue) were detected by FISH instrument at pressure level

125 hPa, i.e. slightly above θ=360 K. A positive difference between the total water and5

water vapor indicate the existence of cirrus clouds. This signature can be seen twice,

shortly before 14:00 and a small spike after 15:00 UTC.

Surprisingly, after about 14:30 UT (BC), enhanced ozone values (up to 150 ppbv,

FOZAN) were detected (black), indicating increasing stratospheric influence. This tran-

sition from the tropospheric to stratospheric O3 mixing ratios is also reproduced by10

CLaMS simulations with mixing (red). On the other hand, pure trajectory calculations

(gray) significantly overestimate the observed ozone values showing that such calcula-

tions do not correctly represent the upward transport.

The simultaneous presence of the tropospheric and stratospheric signatures in the

air masses observed on 8 February (and 1 February) can also be seen in Fig. 915

where the profiles of the total water (a) as well as the correlations of ozone with

total water (b) and NO/NOy (c) are compared with other pure tropical flights (black

versus gray) or with the flight on 1 February (violet). Thus, significant higher values of

H2O were observed within the TTL affected by the STJ (black and violet) than within

the tropical TTL far away from the STJ (gray). In particular, as can be deduced from20

the ozone/total water correlation, the air masses sampled along the entire ABC leg

were influenced by mixing between the troposphere and stratosphere (relatively strong

deviation of the observed correlations from an ideal, unmixed, L-shaped correlation)

with much higher stratospheric influence along the BC than along the AB part of the

leg.25

Furthermore, comparatively high ratios of NO/NOy (30–55%) were observed along

the entire ABC segment that indicates contributions of relatively fresh lightning. Based

on observations around 200 hPa, Schumann et al. (2004) report that ratios between

30 and 50% are signatures of lightning not older than 3 h. Because the lifetime of NOx
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at 125 hPa is by about a factor 10 longer than at 200 hPa (Tie et al., 2001, 2002), the

observed NO/NOy ratios may be typical for an elapsed time of the order of few days.

Using trajectory analysis, we discuss now the the origin of these air masses.

5.1 Trajectory analysis

A common way to trace back the origin of the sampled air masses, is to use backward5

trajectories starting from the flight track (see Fig. 10, top panel). Here, the positions

and the ECMWF H2O mixing ratios along 3-days backward trajectories are shown.

The trajectories were calculated using ζ -coordinates and the CLaMS trajectory module

driven by the 6-h ECMWF analysis data.

The trajectories show high ECMWF H2O values of about 50 ppmv about 30 h before10

the flight whereas about 40 h prior the flight H2O values less than 7 ppmv were found in

these air masses. Furthermore, the potential temperature did not significantly change

along these trajectories (the absolute variation is smaller than 2 K) indicating an almost

isentropic transport. Because the trajectories do not descend below ≈200 hPa, the

diagnosed high ECMWF H2O values are probably caused by the sub-grid parameteri-15

zation of convection in the ECMWF model.

Similar results were also found with the FLEXPART model (Ren et al., 2006
1
) and

with LAGRANTO trajectories driven by 3-h ECMWF data (Wernli and Davies, 1997),

even if some of those backward trajectories reached ≈220 hPa level. Furthermore, for

all flight legs on 1, 4, 5 and 8 February with 350<θ<380, the corresponding back-20

ward trajectories, calculated both with CLaMS and LAGRANTO, do not descend be-

low ≈300 hPa for the previous 5 days, even on 4 and 5 February when the observed

air masses were strongly influenced by fresh convection. The small discrepancies

between CLaMS and LAGRANTO likely originate from the differences in the applied

1
Ren, C., MacKenzie, A. R., and Schiller: Diagnosis of processes controlling water vapour

in the tropical tropopause layer by a Lagrangian cirrus model, Atmos. Chem. Phys. Discuss.,
submitted, 2006.
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ECMWF data (6 versus 3-h frequency) rather then from the differences in the trajec-

tory advection schemes.

The vertical displacement of the backward trajectories changes significantly if their

start positions are shifted down below the flight track by 25 K.

In the bottom panel of Fig. 10, the horizontal coordinates of the 3-days backward tra-5

jectories are shown, which were initialized 25 K below the flight leg ABC on 8 February

(i.e. 25 K below the beige and green time segments). The positive (negative) values of

∆θ along the trajectories denote their total ascent (descent) with increasing time. The

gray footprints show the positions where these trajectories crossed the 400 hPa level

and, in the following, these positions are interpreted as regions where convection lifted10

the corresponding air masses. The age of convection can be derived from the trajec-

tory length (see legend in Fig. 10) and varies between 30 and 70 h for the southern-

and westernmost footprints, respectively.

Such interpretation of the footprints is supported by the infrared (chanel 4) GOES-

East satellite pictures (Fig. 11),15

which show a convective cloud covering 53, 40 and 30 h before the flight at approxi-

mately the same locations as inferred from trajectory calculations. Thus, it seems that

two MCS, the older one over northeast of south of Brazil and part of Uruguay (beige)

and the younger one over Argentina (green), contributed to the tropospheric signatures

in the respective AB and BC parts of the considered flight leg. A different origin of these20

air masses manifests also in a discontinuity in the measured time series of water vapor

around 14:30 UT (see Fig. 8). This discontinuity can also be seen in the time series

of temperature (first part of the leg is colder by ≈3 K) and the relative humidity (not

shown).

5.2 Contribution of mixing25

Thus, the question arises what is the reason that trajectory analysis can explain the

convection-induced tropospheric signatures at most up to θ≈340 K but not the ob-

served relatively fresh tropospheric signatures (enhanced NO/NOy ratio and cirrus
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clouds) found slightly above 360 K? As a first hypothesis, it is possible that ζ̇ derived

from the large-scale ECMWF p-velocity underestimates the vertical velocities in re-

gions affected by convection.

To some extent this hypothesis is supported by observations of CO by the COLD in-

strument on 4 February with maximum mixing ratio of ≈140 ppbv extending up to about5

360 K in air masses within and slightly above an isolated convective cell (unfortunately,

there are no observations of CO on 1 and 8 February and the quality of the CLaMS CO

distribution is strongly limited by a very uncertain data-base of CO sources, in particu-

lar in South America). Within CLaMS, the highest impact of convection can be defined

as the highest level reached by undiluted values of the BL tracer (i.e. ≈100%). For all10

flights when CO was available, this level was found by about θ=350 K, i.e. about 10 K

below the highest convective outflow derived from CO observations.

However, the underestimation of the convective outflow by ∆θ≈10 K does not com-

pletely explain the discrepancy between the backward trajectory analysis that started

25 K below the flight level and the observed, relatively fresh tropospheric signatures15

at ≈360 K. In the remaining part of this section, we show that mixing, in particular as

those implemented in CLaMS, has the potential to close this gap.

To explore this hypothesis, an additional CLaMS simulation was performed, with BL

tracer re-initialized 3 days before the flight to 100% and 0 above and below 400 hPa,

respectively. In this way, we redefine the boundary layer tracer BL to a tropospheric20

tracer and ask if during the following 3 days, convection and mixing can lift this tracer up

to about θ=360 K. The results are plotted as a curtain along the flight track in Fig. 12.

Here, the BL tracer extends well above the θ=335 K, i.e. well above the maximum

of the upward transport as inferred from the pure trajectory analysis shown in Fig. 10.

In particular the BL signature extends up to the AB part of the leg around 14:00 UT25

(beige), but never reaches the BC part of the leg (green) getting no closer than 10 K

below the flight level at 14:45 UT. The position of the first BL signature (beige arrow)

roughly coincides with the position of the cirrus clouds.

In addition, the distribution of the ST tracer (not shown) that can be approximated
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by ST≈100%-BL coincides with the increasing stratospheric properties of the sampled

air masses as the Geophysica comes closer to the STJ (illustrated here by the iso-

tachs of the horizontal wind, light gray). The aircraft cross the |PV|=2 PVU tropopause

around 14:00 UT (the violet line denotes the tropopause in Fig. 10), with an increasing

stratospheric character of the sampled air along the BC part of the flight leg. Thus,5

in agreement with observed and simulated O3 time series (Fig. 8), the stratospheric

contribution increases during the considered flight leg as the Geophysica approaches

the jet core. At the end of the second part of the leg (point C), slightly above the PV-

tropopause, BL and ST tracers transported over the entire period of 3 months show

the weakest tropospheric impact and the strongest contribution of air originating in the10

lowermost stratosphere, respectively.

We conclude that vertical and isentropic mixing as implemented in CLaMS extend

the pure trajectory calculations and explain, at least qualitatively, the observed signa-

tures. In the following section, we discus some additional arguments supporting this

hypothesis.15

6 Mixing-driven transport in the TTL

To show that mixing in CLaMS does play a crucial role in lifting tropospheric air from

the convective outflow around 350 K up to the tropical tropopause around 380 K, we

discuss now in Fig. 13

the horizontal (top row) and zonally averaged vertical (bottom row) distributions of BL20

tracer after more than 3 months of transport (108 days) of transport with and without

mixing. In the case without mixing, pure advective transport along trajectories occurs,

which are calculated in ζ−coordinates, i.e. by the use of hybrid vertical velocities ζ̇ .

The horizontal distributions in the top row of Fig. 13 show AP within the layer around

ζ=380 K. The beige lines are the isotachs of the total and zonal wind in the horizontal25

and vertical cross sections, respectively and illustrate the positions of STJ on the last

day of the simulation period (i.e. on 7 March 2005). The blue lines in the bottom row

12238

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 12217–12266, 2006

Contribution of

mixing to the upward

transport across the

TTL

P. Konopka et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

indicate the position of the tropopause and are inferred from the |PV|=2–4 isolines in

the extratropics and θ=380 K in the tropics.

The large white gaps where AP are absent in the left top panel of Fig. 13 illustrate

that insufficient number of AP ascend in the tropics, or, in other words, that the upward

transport driven by convection (from ECMWF) and by radiation (clear sky) is too weak5

to transport tropospheric species up to the tropical tropopause at θ≈ζ=380 K. By con-

trast, the full CLaMS simulations with mixing (right top panel of Fig. 13) show a clear,

filamentary signature of upward transport within the tropics laterally confined between

the northern and southern STJ and with highest BL values in the tropics over Indonesia

and south of the equator over the western Pacific.10

The zonally averaged vertical distribution of the BL tracer shown in the bottom right

panel of Fig. 13 illustrates also a clear signature of mixing if compared with the results

of a pure trajectory transport (bottom left). The vertical mixing strongly affects the TTL

region above ζ≈360 K. Furthermore, a stronger convective activity and a weaker STJ in

the summer hemisphere effectively fill the SH lowermost stratosphere with tropospheric15

air whereas in the NH a stronger STJ combined with an enhanced diabatic descent into

the lowermost stratosphere hinder an effective TST.

The meridional distribution of the fraction of CLaMS AP affected by mixing and aver-

aged over the entire simulation time is shown in the top panel of Fig. 14.

The white and gray lines denote the mean wind isotachs and the mean Q=0 line,20

respectively. The blue lines denotes the mean tropopause calculated as for Fig. 13. All

these lines are derived from the meteorological data averaged over the entire simula-

tion time of 108 days.

Thus, a stronger STJ in the NH is associated with a higher mixing intensity both be-

low the jet and on its tropical side. Remarkably, the whole TTL, i.e. the region confined25

by the jets and θ-values between 350 and 420 K is affected by mixing even if the largest

contribution can be found on the tropical side of the STJ. Note that convection in the

tropics below ≈340 K is described in CLaMS as advective part of transport (i.e. in terms

of trajectories and without mixing) and, consequently, does not significantly contribute
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to CLaMS mixing.

It should be emphasized that our concept of mixing-driven transport, in particular in

the vicinity of the jets, does agree with the general understanding of STJ as seasonally-

dependent barriers for isentropic transport (Haynes and Shuckburgh, 2000). This effect

that hinders horizontal transport of constituents from or into the TTL manifests in steep5

isentropic gradients of tracers perpendicular to the jet axis which form on a time scale of

several weeks. This property can be seen in the meridional distribution of the BL tracer

shown in the right bottom panel in Fig. 13 with a more permeable summer southern

STJ in comparison to the northern STJ.

Although the highest mixing intensity in CLaMS is found on the tropical side of the10

winter STJ (see top panel of Fig. 14), such a jet, mainly due to a strong zonal ori-

entation, serves as a very effective barrier for the isentropic transport. Conversely, a

weak meandering summer STJ offers only a weak barrier for horizontal transport de-

spite smaller mixing rates diagnosed in its vicinity. Thus, mixing through the barrier

weakening the isentropic tracer gradients across the barrier does not necessary follow15

high local mixing rates diagnosed on both sides of the barrier. The winter (summer)

STJ forms such a strong (weak) transport barrier. One has to distinguish two different

features of transport: the net transport across the barrier occurring on a time scale of

several weeks and the local mixing rates on both sides of such a barrier occurring on

time scale of hours and homogenizing the tracer distributions separated by the barrier.20

Here, these two features are anti-correlated.

Furthermore, even if the mean lowest temperatures (thick black lines in Fig. 14) are

symmetrically located over the equator, their position with respect to the jets is strongly

asymmetric. Thus, despite a stronger vertical mixing at the tropical side of the NH

STJ, water vapor can be more effectively condensed above this region than during the25

upward transport occurring in the vicinity of the SH STJ. This means that sufficiently

strong convection interacting with the summer STJ seems to be a favored path for an

effective upward transport of water vapor.

To some extent the enhanced mixing in CLaMS around θ=380 K results from the
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necessity to fill the “white” regions in the left top panel of Fig. 13 with new AP (note that

additional interpolations mean adding new AP that, consequently, means additional

mixing in the model Konopka et al., 2004). This can be understood as a consequence

of the violation of the continuity equation caused by the use of hybrid vertical velocities

where approximately above 300 hPa the ECMWF vertical p-velocities (which fulfill the5

continuity equation) are gradually replaced by the vertical velocities calculated from the

radiation scheme.

Because in the parts of the UT/LS region which are not affected by convection, the

vertical velocities are, at least, by two orders of magnitude smaller than the horizontal

wind, their values derived from the continuity equation are strongly affected by the10

limited accuracy of the horizontal wind. Typical horizontal and vertical velocities in the

UT/LS region are of the order 10 and less than 0.01 m/s, respectively. Thus, horizontal

wind accuracy higher than 1% would be necessary to resolve such small vertical winds.

This is the reason why most of the stratospheric CTMs like SLIMCAT (Feng et al.,

2004) or CLaMS or trajectory-based studies in the stratosphere (Schoeberl and New-15

man, 1995; Rex et al., 1998) utilize vertical velocities calculated from a radiation

scheme and why these velocities in the UT/LS region if derived from the horizontal

wind via continuity equation are used only in statistical sense, e.g. in terms of monthly

averaged values (Norton, 2002) or by appropriate climatology of trajectories (Stohl,

2000; Fueglistaler et al., 2004).20

In the bottom panel of Fig. 14 the mean residual R of the continuity equation in ζ -

coordinates (i.e. mainly the divergence of the velocity field) averaged over the simulated

period is shown (see Holton, 1992, Eq. 4.31 with σ=−g−1∂p/∂ζ ). High absolute values

of R identify regions where the velocity field does not fulfill the continuity equation. In

particular, strong negative values of R as diagnosed in the TTL region (Fig. 14) are25

caused by too weak upwelling or too strong poleward transport.

In CLaMS the diffusive flux lifts tropospheric air into the stratosphere across the TTL.

In contrast to Eulerian models where (numerical) mixing in form of numerical diffusion

is proportional to the flow velocity, i.e. D∼u (Courant et al., 1928), the Lagrangian
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approach, in particular the implementation of mixing in CLaMS, allows to couple mixing

with gradients of u (horizontal strain and vertical shear) which, generally, are believed

to drive turbulence and mixing (Smagorinsky, 1963).

The high rates of such deformations within the TTL, in particular in the outflow of the

large-scale convection and in the vicinity of the STJ, enhance the diffusive flux across5

the TTL. This occurs even if the continuity equation would be satisfied because the

number of mixing events which are necessary to close the white gaps in the left top

panel of Fig. 13 is only a small fraction (≈5%) of all the mixing events induced by the

flow deformations.

To summerize, there are several options to reevaluate the transport processes in the10

TTL: either the mean convective outflow described in terms of the ECMWF large-scale

vertical velocities is higher than 350 K and has to be parameterized by including sub-

grid convection as discussed e.g. in Tiedtke (1989), or, the clear sky radiation has to

be extended by accounting for the effect of thin cirrus clouds in the way proposed by

Corti et al. (2006), or the mixing-driven transport as proposed in this paper is, at least,15

an additional mechanism that effectively lifts the air masses across the TTL.

7 Conclusions

The mixing-driven transport from the mean convective outflow across the TTL up into

the stratosphere offers an alternative path for the troposphere-to-stratosphere trans-

port (TST). Both the experimental data measured on-board of high altitude research20

aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range

spanning the TTL regions and the CLaMS studies with and without mixing strongly

support this idea. The mixing-induced vertical transport occurs preferentially in regions

with high shear and strain rates mainly found in the outflow of the large-scale convec-

tion and in the vicinity of the subtropical jets. Even when a strong winter jet acts as an25

effective barrier for isentropic transport, enhanced vertical transport can occur within its

tropical flanks. Conversely, a weak summer jet can be characterized by a higher isen-
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tropic permeability and a weaker vertical transport. TST seems to be most effective if

the outflow of mesoscale convective systems which reach the region penetrated by the

subtropical jet. In particular, the most effective upward transport of H2O is expected in

the subtropical summer hemisphere.
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Fig. 1. Schematic of the troposphere-to-stratosphere transport (TST) occurring in the TTL.
This transport path starts approximately at the main convective outflow level around 350 K and,
following the blue arrows, crosses the level of zero clear sky radiative heating (Q=0) around
360 K, and finally, reaches the lower stratosphere above the cold point tropopause around
380 K.
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Fig. 2. CLaMS hybrid vertical coordinate ζ . Left: Entropy preserving CLaMS layers ∆ζ col-
ored alternating with gray and white are overlaid with the isolines of zonally averaged pressure
p (black) and potential temperature θ (orange) (for illustration derived for one ECMWF data
set at 1 January 2004, 12:00 UT). Right: Entropy density profile S(ζ ) (black) derived from
equation (3) for the U.S. standard atmosphere. The condition ∆S=const in every layer ∆ζ
was used to generate CLaMS layers. The red bold dots denote the relative vertical diffusivity
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Fig. 3a. Age of convection (top and middle panel) and the ECMWF water vapor distribution at
ζ=340 K (bottom). The age of convection is derived from the backward trajectories starting at
this level on 8 Febrauary 2005, 12:00 UT and is defined as the time lag between the initialization
time and the time when the trajectory descended below pc=500 (top) and pc=300 hPa (middle).
The gray-colored lines denote the pressure isolines.
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Fig. 3b. Age of convection (top and middle panel) and the ECMWF water vapor distribution at
ζ=340 K (bottom). The age of convection is derived from the backward trajectories starting at
this level on 8 Febrauary 2005, 12:00 UT and is defined as the time lag between the initialization
time and the time when the trajectory descended below pc=500 (top) and pc=300 hPa (middle).
The gray-colored lines denote the pressure isolines.
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Fig. 3c. Age of convection (top and middle panel) and the ECMWF water vapor distribution at
ζ=340 K (bottom). The age of convection is derived from the backward trajectories starting at
this level on 8 Febrauary 2005, 12:00 UT and is defined as the time lag between the initialization
time and the time when the trajectory descended below pc=500 (top) and pc=300 hPa (middle).
The gray-colored lines denote the pressure isolines.
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Fig. 4. Zonally and monthly averaged vertical velocities ζ̇ shown as the function of the entropy-
weighted hybrid coordinate θ (i.e. the entropy density along the vertical axis is constant). The
gray contour defined by ζ̇=0 separates the ascent from descent regions. White contours (solid
– westerlies, dashed – easterlies) describe the zonal wind. The isolines of pressure (black)
and potential temperature (pink) are overlaid. The isolines |PV|=2 and 4 PVU together with the
θ=380 K line (blue) approximate the position of the tropopause in the extra-tropics and in the
tropics, respectively.
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Fig. 5a. CLaMS vertical diffusivity Dv on 8 February 2005 at ζ=340, 360 and 380 K from
top to bottom as implemented in CLaMS by the deformation-induced mixing procedure (blue
shaded). Overlaid are contours of the absolute horizontal wind velocity u (red) plotted for 30,
40, and 60 m/s with increasing thickness together with the contours of the absolute vertical
shear of the horizontal wind |du/dζ | (yellow) shown for 0.4, 0.7, and 0.9 m/sK. Whereas high
values of u estimate the position of the subtropical jets, the enhanced values of |du/dζ | can be
found either near the jets, preferably above the jet core, or in the tropics. The latter are located,
to some extend, in the outflow of fresh convection (black arrows, compare for with Fig. 7).

12254

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 12217–12266, 2006

Contribution of

mixing to the upward

transport across the

TTL

P. Konopka et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 5b. CLaMS vertical diffusivity Dv on 8 February 2005 at ζ=340, 360 and 380 K from
top to bottom as implemented in CLaMS by the deformation-induced mixing procedure (blue
shaded). Overlaid are contours of the absolute horizontal wind velocity u (red) plotted for 30,
40, and 60 m/s with increasing thickness together with the contours of the absolute vertical
shear of the horizontal wind |du/dζ | (yellow) shown for 0.4, 0.7, and 0.9 m/sK. Whereas high
values of u estimate the position of the subtropical jets, the enhanced values of |du/dζ | can be
found either near the jets, preferably above the jet core, or in the tropics. The latter are located,
to some extend, in the outflow of fresh convection (black arrows, compare for with Fig. 7).
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Fig. 5c. CLaMS vertical diffusivity Dv on 8 February 2005 at ζ=340, 360 and 380 K from
top to bottom as implemented in CLaMS by the deformation-induced mixing procedure (blue
shaded). Overlaid are contours of the absolute horizontal wind velocity u (red) plotted for 30,
40, and 60 m/s with increasing thickness together with the contours of the absolute vertical
shear of the horizontal wind |du/dζ | (yellow) shown for 0.4, 0.7, and 0.9 m/sK. Whereas high
values of u estimate the position of the subtropical jets, the enhanced values of |du/dζ | can be
found either near the jets, preferably above the jet core, or in the tropics. The latter are located,
to some extend, in the outflow of fresh convection (black arrows, compare for with Fig. 7).
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Fig. 6. Map of ECMWF potential vorticity (PV) at θ=360 K on 1 February (top) and on 8
February, 12:00 UT (bottom). On these 2 days signatures of STE were observed (white thick
lines denote the flight tracks). Pink arrows show the horizontal wind with highest values in
the STJ surrounding the upper-level, quasi-stationary Bolivian high (BH). The black lines are
pressure isolines (in hPa). Top: Air masses with low PV values (blue) east of Araçatuba are
trapped in the TTL by a cut-off low. These air masses have been separated from the lowermost
stratosphere, transported along the STJ and mixed into the TTL (STT). Bottom: MCS over
Argentina and South Brazil (white dashed contours denote regions with ECMWF-H2O >25
ppmv on 7 February, 06:00 UT, i.e about 32 h prior the flight) transports air masses from the
boundary layer up to about 330–340 K. Vertical mixing along the STJ lifts these air masses
up to about 360 K, where cirrus clouds, enhanced water vapor, and increased NO/NOy ratios
were observed (TST).
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Fig. 7a. Top: Ozone observations (FOZAN-black, ECMWF-pink) and CLaMS simulations col-
ored with the percentage of the stratospheric tracer ST (Strat. Air) within the observed air
masses as modeled by CLaMS during the flight on 1 February. Bottom left: The vertical distri-
bution of CLaMS ST tracer along the flight track. Thin black and pink lines are p and θ-isolines,
respectively. The tropopause defined as |PV| = 2 PVU surface (violet), the Q=0 level (dark gray)
and the isotachs (light gray) indicating the position of the STJ are also shown. Bottom right:
FOZAN profiles as observed during all local flights (gray) compared with the profile measured
on 1 February and colored with the ST tracer.
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Fig. 7b. Top: Ozone observations (FOZAN-black, ECMWF-pink) and CLaMS simulations col-
ored with the percentage of the stratospheric tracer ST (Strat. Air) within the observed air
masses as modeled by CLaMS during the flight on 1 February. Bottom left: The vertical distri-
bution of CLaMS ST tracer along the flight track. Thin black and pink lines are p and θ-isolines,
respectively. The tropopause defined as |PV| = 2 PVU surface (violet), the Q=0 level (dark gray)
and the isotachs (light gray) indicating the position of the STJ are also shown. Bottom right:
FOZAN profiles as observed during all local flights (gray) compared with the profile measured
on 1 February and colored with the ST tracer.
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Fig. 8. Flight on 8 February. Top: Potential temperature (black) and pressure (red) along the
flight track. Bottom left: Total water (yellow) and water vapor (blue) as observed by FISH instru-
ment. Bottom right: Observed (black) and simulated ozone with (red) and without mixing (gray).
In the beige (AB) and green (BC) colored segments of the flight (≈360 K), pure tropospheric
and mixed, i.e. tropospheric and stratospheric signatures were observed which, using CLaMS,
can be explained as a consequence of mixing within the TTL.
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Fig. 9. Profiles of total water (a), correlations of ozone with total water (b) and NO/NOy (c)

during the flight on 8 February (black) and 1 February (violet) compared with pure tropical
flights (gray). The contributions from the AB and BC flight segments are colored beige and
green, respectively.
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Fig. 10. 3-days backward trajectories starting on 8 February 2005 between 13:45 and 15:30 UT
from the AB (beige) and BC (green) flight legs (top) or 25 K below these flight legs (bottom).
Top: ECMWF H2O interpolated along these trajectories. Bottom: ∆θ experienced by the air
masses along the backward trajectories starting 25 K below the flight track. Positive (red) and
negative (blue) values correspond to up- and downward motion of air with increasing time.
The gray footprints are places where the trajectories crossed the 400 hPa level. In the satellite
pictures (GOES), fresh convective clouds could be found in the same region (see Fig. 11).
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53 hours before

40 hours before

30 hours before 

Fig. 11. Convection as detected by the GEOS satellite 53 (top), 40 (middle) and 30 h (bottom)
prior the flight on 8 February.
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Fig. 12. Vertical distribution of the BL tracer (B. Layer) along the flight track on 8 February
2005. Here, BL was re-initialized 3 days before the flight to 100% and 0 above and below
400 hPa, respectively. The distribution of this tracer shows that mixing has the potential to lift
the air masses from the convective outflow around θ=335 K up to 360 K (white means no BL
contribution in this region). The tropopause (|PV|=2 PVU, violet), the Q=0 level (dark gray) and
the isotachs (light gray) indicating the position of the STJ are also shown.

12264

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 12217–12266, 2006

Contribution of

mixing to the upward

transport across the

TTL

P. Konopka et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

No mixing

−50 0 50

Latitude, [deg N]

 200.

 250.

 300.

 340.

 360.

 380.

 450.

H
yb

rid
 P

ot
. T

em
pe

ra
tu

re
, ζ

, [
K

]

−50 0 50

Latitude, [deg N]

 200.

 250.

 300.

 340.

 360.

 380.

 450.

H
yb

rid
 P

ot
. T

em
pe

ra
tu

re
, ζ

, [
K

]

500

300
300

200

200

100
100

310

310

330
330

340
340

350
360

380

420

20

20

20

20

25

25

25

25

30
40

2

2

4

4

With mixing

−50 0 50

Latitude, [deg N]

 200.

 250.

 300.

 340.

 360.

 380.

 450.

−50 0 50

Latitude, [deg N]

 200.

 250.

 300.

 340.

 360.

 380.

 450.

0.0

1.4

1.8

2.5

3.4

4.6

6.3

8.6

11.7

15.8

21.5

29.3

39.8

54.1

73.6

100.0

B. Layer [%]

500

300
300

200

200

100
100

310

310

330
330

340
340

350
360

380

420

20

20

20

20

25

25

25

25

30
40

2

2

4

4

Fig. 13. Horizontal distribution of CLaMS BL tracer (B. Layer) at ζ=380 K (top row) and zonally
averaged vertical distribution of BL (bottom row) after more than 3 months of transport (108
days) on 7 March 2005 calculated without (left) an with (right) mixing.

12265

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/12217/2006/acpd-6-12217-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 12217–12266, 2006

Contribution of

mixing to the upward

transport across the

TTL

P. Konopka et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

−50 0 50

Latitude, [deg N]

 150.

 250.

 300.

 340.

 360.

 380.

 450.

 500.

H
yb

rid
 P

ot
. T

em
pe

ra
tu

re
, ζ

, [
K

]

−50 0 50

Latitude, [deg N]

 150.

 250.

 300.

 340.

 360.

 380.

 450.

 500.

H
yb

rid
 P

ot
. T

em
pe

ra
tu

re
, ζ

, [
K

]

0.

4.

8.

12.

16.

20.

24.

28.

32.

36.

40.

44.

48.

52.

56.

60.

Mixed Air [%]

10

10

10

10

10

20

20

20

20

25

25
30

30 35
40

500

300
300

200

100
100

70

70

310

310
2

2

4

4 195

200

200

330
330

2

2

4

4 195

200

200

340340

2

2

4

4 195

200

200
350

2

2

4

4 195

200

200 360

2

2

4

4 195

200

200

380

2

2

4

4 195

200

200

420

2

2

4

4 195

200

200

−50 0 50

Latitude, [deg N]

 150.

 250.

 300.

 340.

 360.
 380.

 450.

 500.

H
yb

rid
 P

ot
. T

em
pe

ra
tu

re
 [K

]

−50 0 50

Latitude, [deg N]

 150.

 250.

 300.

 340.

 360.
 380.

 450.

 500.

H
yb

rid
 P

ot
. T

em
pe

ra
tu

re
 [K

]

−5.0
−4.3
−3.7
−3.0
−2.3
−1.7
−1.0
−0.3

0.3
1.0
1.7
2.3
3.0
3.7
4.3
5.0

R [Pa*day/K*m]

10

10

10
10

10

20

20

20

20

25

25
30

30 35
40

500

300
300

200

100
100

70

70

50

300

300

320

320

330
330

340340

360

380

400

450

2

2

4

4

Fig. 14. Mean mixing intensity plotted as the percentage of AP affected by mixing (top) and
the mean residual of the continuity equation R calculated in ζ -coordinates (bottom) and zonally
averaged over the entire simulation time (108 days). The isotachs of the wind (light gray), Q=0
line, and the blue lines approximating the tropopause.
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