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Abstract. Observations of internal solitary waves over an 1994), we revisit the classical analysis leading to the conclu-
antarctic ice shelf (Rees and Rottman, 1994) demonstrateion that large amplitude waves can be induced in the infin-
that even large amplitude disturbances have wavelengths thdty long limit. Scorer (1949) pointed out that longer waves
are bounded by simple heuristic arguments following fromthan a particular value selected by the shear and stratification
the Scorer parameter based on linear theory for wave trapprofiles, radiate vertically, and thus are not trapped by the
ping. Classical weak nonlinear theories that have been apwaveguide. This condition is the modification due to shear
plied to stable stratifications all begin with perturbations of the classical Brunt-¥isala frequencyfor vertical radiation

of simple long waves, with corrections for weak nonlin- of waves in a purely stratified fluid. In this paper, we take
earity and dispersion resulting in nonlinear wave equationdgnto account this limitation and pose a derivation of the non-
(Korteweg-deVries (KdV) or Benjamin-Davis-Ono) that ad- linear evolution equation (NEE) which reduces to the clas-
mit localized propagating solutions. It is shown that thesesical Korteweg-de Vries equation in the case that the Scorer
theories are apparently inappropriate when the Scorer pawvavenumber approaches zero so that infinitely long waves
rameter, which gives the lowest wavenumber that does noare trapped.

radiate vertically, is positive. In this paper, a new nonlinear Benney (1966) and Benjamin (1966) independently de-
evolution equation is derived for an arbitrary wave packetrived the first NEE for large amplitude solitary disturbances
thus including one bounded below by the Scorer parameteiin a stable stratification with shear flow. They both assumed
The new theory shows that solitary internal waves excited inweak nonlinearity and weak dispersion due to a long wave
high Richardson number waveguides are predicted to have approximation. The derived NEE, which applies equally to
halfwidth inversely proportional to the Scorer parameter, ineither temperature or streamfunction disturbances, takes the
agreement with atmospheric observations. A localized anform of a Korteweg-deVries (KdV) equation, with coeffi-
alytic solution for the new wave equation is demonstrated,cients that depend on both the conditions of the waveguide
and its soliton-like properties are demonstrated by numerica(functionals of the stratification and shear profiles) and on

simulation. the characteristics of the disturbance itself (wavelength and
amplitude):
oA +(c+ A) + —83A 0 Q)
: — c —+o0o =0.
1 Introduction ar ax 9.3

Chemical engineering abounds with unit operations wherelhis has the solution that the amplitude at timer and po-
solitary waves can be induced. Film flows, especially in con-sitionx, is
densers and distillation columns, give rise to sheared, sta-

ble stratifications where solitary waves can be induced by, _ 3Agsech? <<
mass transfer (Hewakandamby and Zimmerman, 2003) or

heat transfer effects that are driven by surface tension gradi- . ) o
ents. In this paper, motivated by recent studies of surfactanf'nere Ao is the amplitude of the initial disturbance,the
spreading on sheared, stable stratifications and observatiof1ase velocity of infinitely long waves, and=cH ?/6is the

in the stable Antarctic boundary layer (Rees and RottmanParameter measuring dispersioH. is the Ia%/er depth. The
halfwidth of the solitary wave isAg/160)~Y/2. Because this

Correspondence tddV. B. Zimmerman halfwidth is inversely proportional t¢/o, it follows that the
(w.zimmerman@shef.ac.uk) wavelength of a localised disturbance depends inversely on

Ao\ 1/2
EO) (x—(C-i-Ao)t)) @)
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the spectral width of the wave packet that characterizes thén the waveguide, it is not at first clear why large amplitude
Fourier power spectrum of the disturbance. solitary disturbances exhibit the Scorer wavenumber.

The KdV theory proposed by Benney and Benjamin is Ursell (1953) resolved a long standing paradox in the the-
robust, with many applications in atmospheric and oceano-ory of solitary surface gravity waves by coining a new dimen-
graphic analysis, e.g. Doviak et al. (1991). Neverthelesssionless number Ue AgL2/H3 =¢/u?, the ratio of two di-
there is a fundamental problem with the derivation of the mensionless numbers= A/ H is the ratio of the maximum
KdV theory from the infinitely long wave limit. Essentially, streamfunction displacement to the heidghtof the wave-
in some circumstances, the waveguide will be depleted ofguide. u = H/L is the ratio of the height of the waveguide
wave energy in long scales. This is described more fully be-to the expected wavelengih of the long wave disturbance.
low. Benney’s derivation begins with a linear wave equation Thus,e andu are properties of the resultant wave generated
that to leading order is a simple wave of infinitely long wave- from some initial disturbance to the waveguide. Since the

length, satisfying: formation of a solitary wave may occur after a combination

of the nonlinear breaking of the initial disturbance or the dis-
dA dA . . .
4 c—=0 (3) persion of different components, the length scales of the ini-
dt dx tial conditions may have little bearing on the resultant wave.

Scorer (1949), however, considers modified Brudisiia Thus, the description of solitary wave motion by the param-
vertical buoyancy waves in the presence of shear flow. Heetersu ande ignores the history of its formation. Ursell sug-
concludes that wave energy is only trapped if it is confinedgested that when Ur 1, with bothe <1 andu « 1, soli-

to wavenumbers that are greater than the Scorer parametertary waves of permanent form can propagate. In fact, this

L defined here: argument previously appeared in the pioneering papers of

2 oA (Boussinesq, 1871a,b, 1872) and was understood earlier by
N1 du (4)  Lord Rayleigh (Rayleigh, 1876). It should be noted, that in
(ﬁ — v)2 (’2 - V) dy? definingu ande as above, the solitary wave is presupposed

is the B N is the oh | to exist. On dimensional analysis groundsande are inde-
N'is td? ru_nt-h 'S‘;a krequegcy,hv IS t eﬂp asﬁ_ \r/]e_oc— pendent parameters. The Ursell hypothesis relating the two
Ity, andi (y) is the background shear profile, w ICN 1S 8S- fo)10ws from the stronger constraint that the solitary wave
sumed steady before and after the passage of the dISturb"’m"ﬁs‘ihould have permanent form. The specific functional rela-

\éVave \e/nergljy can raq]lathe vertically Ogjt of fthﬁ ngegl:)lde ascionship that Ursell proposed was physically motivated by the
runt-Vaisaia waves If the wavenumber of the disturbance o .panism maintaining permanent form—nonlinear steepen-

is smaller thanl. Scorer (1949), showed that the Fourier ing balancing wave dispersion.

component_of the vertical velocity, satisfies in the linear Internal solitary waves may propagate in a waveguide of
approximation: a stratified fluid layer, with and without shear. However, the
inclusion of shear introduces a free parameter, the Richard-
L%~ kz) w = 0. (5) son numberRi, the ratio of buoyancy to shear forces, which
affects the balance of nonlinearity and dispersion in wave
y is the vertical coordinate andis the wavenumber of the pro- pagation. Dimensional analysis, along with the con-
disturbance. Scorer showed that whéf decreases with ~ straint that the waveform be permanent, results in the func-
height, energy can be trapped at low levels. More generallytional relationshig = f (u«, Ri). The form of this functional
within in any waveguide, ifz2 > k2, Eq. (5) admits oscilla-  relationship should be based on accounting for the relative
tory solutions that radiate vertically as Brun&igala waves.  strength of shear and stratification in maintaining the balance
When £2 < k2, one solution of Eq. (5) is a bound-state, i.e. between nonlinearity and dispersion in the propagation of a
energy is trapped in the waveguide and can only propagatgvave of permanent form. It follows that the wavelength that
within the waveguide. The other solution to Eqg. (5) in this should be selected in the long time asymptotic state should
case is exponential growth far away from the waveguide,be that with weakest dispersion balancing weak nonlinear-
which is rejected as aphysical. ity — so that neither mechanism is strong enough to break up
The wavelength of solitary disturbances over an Antarcticthe permanent form. Thus, in the time asymptotic state, the
ice shelf has been discussed by Rees and Rottman (1994)avelength should be as long as possible. The longest wave-
These authors provided empirical evidence showing thatength admissible, therefore, in a sheared, stratified flow, is
even large amplitude disturbances have halfwidths that agreilentified with the Scorer wavenumbgr
remarkably well with the linear Taylor-Goldstein theory de- Benney (1966) and Benjamin (1966) independently
scribed by Scorer (1949). This is a surprising result in that fortreated the weakly nonlinear shallow layer approximation,
the large amplitude disturbances that were reported by Reeshowing that disturbances travel according to the Korteweg-
and Rottman (1994), nonlinear effects are important and lin-deVries equation if the bounding surfaces of the layer are ma-
ear theory would be expected to fail. They cited Scorer’s ar-terial surfaces (no flux of momentum vertically, no horizon-
gument that linear waves longer than wavenumbevould tal stress). This assumption is not always compatible with a
radiate vertically out of the waveguide. Since wave energycontinuously stratified fluid where a small stratum forms the
at scales shorter than the Scorer wavenungbare trapped  waveguide, since waves longer than the Scorer wavenumber
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Fig. 1. Temperature (re-based) and vertical velocity of a solitary Fig. 2. Temperature (re-based) and vertical velocity of a solitary
disturbance observed at Halley Station by the British Antarctic Sur-disturbance observed at Halley Station by the British Antarctic Sur-
vey on 6 June 1986 at a height of 16 m. Measurements were madeey on 14 August 1986.

using a sonic anemometer and were recorded at 20 Hz.

L radiate vertically. From the definition (4), there are two sults of the theory, demonstrating an analytic solution to the
distinct casest? > 0, where longer waves radiate vertically; full NEE. Furthermore, the prediction that the halfwidth of
£? <0, where all wavenumbers are trapped. In this latterthe solitary wave by the Scorer parameter, which is demon-
case, the lack of radiation vertically is consistent with the Strated in Sect. 2 on the STABLE data set, holds theoretically
boundary conditions of the model adopted by Benney (1966)n large Ri waveguides. Section 6 explores numerical simu-
and Benjamin (1966) leading to the KdV theory—parallel, im- lations of the NEE, which provide some evidence of solitonic
penetrable stress-free surfaces. Although in this paper thgehaviour for the dynamics of overtaking collisions involv-
focus is on wave propagation with? > 0, observations of ing solitary wave solutions to the NEE. In Sect. 6, conclu-
both cases in the STABLE data sets of the British AntarcticSions are drawn.
Survey are reported.

When £2 > 0, from the analysis of Scorer, it is clear that
the k=0 long wave limit is inaccessible when shear and2 Observations of atmospheric solitary disturbances in
stratification establish a waveguide that is one stratum of the the Antarctic
deeper fluid, since all wavenumbers smaller th@nwill ra-
diate vertically. Thus, long times after the initial disturbance As a result of strong radiative cooling at the earth’s surface
show depletion in the horizontal waveguide of energy in theduring the Antarctic winter, a strong, long-lasting, stably
k € [0, |L£]) band. However, for wavenumbers greater thanstratified atmospheric boundary layer is established at Hal-
|£], the upper and lower surfaces of waveguide do act as maley IV station, Antarctica (75%S, 26.7 W). Halley IV sta-
terial surfaces, since these wavenumbers are trapped. It folion is situated on the Brunt Ice Shelf which provides a uni-
lows that the proper nonlinearisation of the linear dispersiveform fetch of 10-40 km in all directions. Thus the site serves
waves is bounded below in wavenumber spaceédjyand as an “ideal” natural laboratory for the study of the stable
is, therefore, distinctly different from the analysis of Ben- atmospheric boundary layer and any wave-like structures it
ney (1966) and Benjamin (1966), which start from infinitely may support. The British Antarctic Survey have compiled
long waves in the leading order separation condition (3). Ina database of meteorological measurements from Halley IV
the theory that follows, the basic disturbance is taken to be station during their STABLE project for the purpose of de-
harmonic wave with wavenumbg? > £2, and the first solv-  veloping a climatology of gravity wave activity in the bound-
ability condition leads to an NEE similar in form to the KdV ary layer (King and Anderson, 1988; Rees, 1991; Rees et al.,
equation. 2000). The solitary large amplitude disturbances reported

The paper is organised as follows: In Sect. 2, two wavehere are typical examples of several observations in the data
events with.2 of different signs are reported from the British set. The meteorological data recorded in the 1986 STABLE
Antarctic Survey STABLE data sets (King and Anderson, projectincluded wind speed, wind direction, and temperature
1988). In Sect. 3, a KdV-like theory for arbitrary wavelength on a 32m mast, with measurements at six heights.
basic disturbances is derived. WhgR > 0, the theory is Figure 1 shows the temperature fluctuation about an ar-
only applicable for nearly monochromatic disturbances. Forbitrary mean and vertical velocity of a wave event recorded
£? <0, the trapping in the waveguide is complete and the6 June 1986 at a height of 16 m. By eye, it is apparent that the
theory is generally applicable. Section 4 discusses the refundamental assumption of both the KdV theory and BDO
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Fig. 3. Computed shear profile, temperature, Richardson numbefrig. 4. Computed speed, temperature, Richardson number and
and Scorer parameter of the observed solitary disturbance at Hallegcorer parameter of the observed solitary disturbance at Halley Sta-
Station by the British Antarctic Survey on 6 June 1986, at 100 stion by the British Antarctic Survey on 14 August 1986, at 300s
(after the wave passed) with the origin of time defined in Fig. 2, (after the wave passed) with the origin of time defined in Fig. 3,
following Rees and Rottman. following Rees and Rottman.

theory is approximately satisfied, i.e. that the streamfunctior? Stratum of very strong stratification at a low level (circa
and temperature fielff have the same disturbance waveform 10 m) subtended by upper and lower regions of strong shear.
in the horizontal waveguide. Since vertical veloaityis the N the vicinity of this stratum, the Scorer parameter has an
expressed through a spatial derivative of the streamfunctioninternal maximum which is greater than zero, the condition

this can be modelled by separation of variables: under which Scorer argued that energy could be trapped at
higher wavenumbers at low levels. Those authors noted that

T=Ax,1)0 Q)+ 0(e) for this event, the wavelength of waves at the Scorer cut-off

A is approximately:
w = a—xcﬁ (»)+ 0(e) (6) o
—— ~200m
For simple long waves, to a first approximation +/0.001 2
9A 194 Rough statistics on the solitary disturbance give duration 50 s
%= 23 (7) and phase velocity 4.5 m/s, i.e. a wavelength of 225 m. Given
X C

the accuracy at which the duration can be estimated, say
Since it appears that the vertical velocity in Fig. 1 is roughly between 40s (wavelength 180 m) and 50 s, this is quite as-
proportional to the negative time derivative of the disturbancetonishing agreement. Nor is this an isolated event. The
temperature field, it is consistent with the premise that eitherScorer parameter is negative below 5m, indicating that all
weakly nonlinear theory (KdV or BDO) applies. wavenumberg > 0 are trapped below this height.

Figure 2 is from a different wave event which occurred on  Figure 4 gives the equivalent observed and derived fea-
14 August 1986. Although the qualitative picture remains tures for the wave event on 14 August 1986. In this instance,
very similar to the event on 6 June 1986, there is a fundathe stratum for which stratification dominates shear is both
mental difference in the vertical structure of the waveguides.broader and weaker. The Scorer parameter is negative in this
Figure 3 shows fitted profiles for the background shear flowstratum, indicating that all wavenumbetrs- 0 are trapped.
and temperature, with the Richardson number and Scorer pastimates of a duration of 33 s and phase velocity of 7.0 m/s
rameter computed from them. The details of the modelling ofgive a similar wavelength of 210 m.
the data were presented by Rees and Rottman (1994). What The events reported here lead to the question of whether
is apparent from the Richardson number plot is that there ighere exists a selection mechanism for the wavelength of
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solitary internal waves. The focus on the Scorer paramethat the disturbance field has zero mean in some sense. The
ter, given the indication that whef? > 0, there is apparent sense adopted here is that the background fields are time-
correlation with observed wavelengths, begs the question overaged and thus steady. Further, the background fields are
the mechanism of wavelength selection. Further, if there isprescribed and independent of the horizortabordinate.

a wavelength selection for waveguides with> 0, is there

none for£2 < 0? The theory developed in the next section is 7 = L () +&T (x,y,1)

motivated by these questions. W= (y)+ey(x,y,1) (11)
e = Ag/ h is the dimensionless characteristic size of the dis-
3 Model system turbance fields, whergg is the maximum value of the initial
disturbance. For convenience, the following representative
3.1 Equations and scaling case of linear shear and stratification are considered:

Consider a fluid layer bounded above and below by paraIIeIT =y
material surfaces. The upper material surface is constrained y
to move at velocityy =y H, wherey is the shear rate, and )

is held at constant temperatufe=1. The lower is held at Since it is the long time waveform which is required, and it

jT:Q and at res_t. As thg model_ that is proposed is Galllganls expected that that the form of solution will be steady in a
invariant, an arbitrary uniform wind component could be in-

cluded without loss of generality. The fluid is inviscid and the frame of reference of the phase velosihthe following

nonconducting. All lengths are scaled B, velocity by coordinate transform is made: ‘

U, and time byH/U. The flow is assumed to be two- /x E=x—vt % = %

dimensional and divergence free, thus expressible through , ; D _ed _ 0

a streamfunction(u, v) = (¥, —¥,). Scalar transport is o T Tor T ok

modelled as convection only: It is anticipated that the approach to a wave of permanent
form occurs over a slow time scale. Substituting Eq. (11)

T+ W - W7, =0 ®)  into Egs. (8) and (9) yields

A Boussinesq fluid is as_sumec_j, with denS|t_y Ilnearly relatedTé (y—v)— e =¢ (—6% YTy — 1y Ts)

to temperature. The dimensionless densityis 1—87, .

whereg is the dimensionless group formed from the coef- [¥ye (v —v) — ‘”é‘]y + RiT; + [V (v — V)]S

2
(12)

T =¢&t (13)

ficient of thermal expansiop*, the unscaled temperature —¢
. =&Yy + v~ -
difference between the upper and lower surfasés, and ( Ve + Ve — v, wéér)
po, the density of the fIwi at*the reference temperature ofthe | . (Ws Vey — %%g]g> (14)
lower surface. Namely§ = 8*A7T / po.
\orticity w = — V2W is transported by If ¢ <1, itis quite natural to consider the vanishing ampli-

‘ tude limit of e = 0. The basic disturband&®, v (@ satisfies
0= RiTy + [y + Wy Wyy — Wy ]|

(O N (O
(W + Wy Wy — W0, ] @ L& O-wm-yg =0

which is the curl of the Boussinesqg momentum equation. The[wyé
Richardson number is a measure of the relative importance ©) _
of buoyant forces to shear forceBi = fgH/U% = N?/y2. + [wéé o - '))L =0 (15)

The assumption of a Boussinesq fluid is that the velocity f|eld_|_he expectation that the disturbance should be wavelike in

Is divergence-fregff =0, and theki remains finite. No pene- the horizontal at any given heightis equivalent to the sepa-
tration (and stress free) and fixed temperature boundary con- v 9 q P

ditions are imposed: ration of variables
TOE ) =4©00)
) VOEV=4©9m (16)

(‘al'he system (15) then simplifies to

(0) 0 . (0
O (y—v) — v >]y+RzT;)

V|,—0=Tly—0 =0
Wl = Thyor = 1

Because there is no dynamic boundary condition, pressur
was eliminated, resulting in the momentum (9). A (O (y—v)—¢)=0

Ag [¢y (v —v) — ¢]y + RiOAg + Agge (y —v) ¢ =0 (17)

i .. The system (17) has solutions only if a separation condition
Generally, the flow and temperature fields can be arb|trar|IyonA is satisfied, namely

decomposed into background fields and disturbance fields.
To make the procedure deterministic, the assumption is madéss; = —k2A¢ (18)

3.2 Wave disturbances of permanent form
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The separation constant was chosen to clarify thatust be ~ separation of the full system (14) only up to errorgofs).
a harmonic wave to leading order. If Eq. (18) holds, then the
system (17) reduces to Asze = —k%As + O (¢) (21)

0= ¢ The Ansatz that the full system separates with errors of
yov P O (?) is made with the error in Eq. (21) taking the explicit

[6) =) = 8], - K=o+ Ri-= =0 (9 form

. . 2 '
The second equation above is the well known Taylor-Asss = —k°Az —& Y 1DV (&) (22)
Goldstein equation (Taylor, 1931; Goldstein, 1931) for the i
particular case of a constant buoyancy frequency. For pre-

scribedRi, Eq. (19) is a two point boundary value problem Theé unknown TQ”C“O“SD(” and coefficients,; are deter-
(#ly—0=¢|,—1=D0) for the eigenvalue. In the long wave ~ Mined by requiring that the (e) equations have solutions.

limit, the regular spectrum (Davey and Reid, 1977)vpf The temperature and streamfunction are approximated by
n= £ 1,+£2 ..., and the singular spectrum (Maslowe and
Redekopp, 1980), € [0, 1]) are known whenRi > 1/4. T@JozA@nuw+sﬂD@Jy+0@§
For O< Ri < 1/4, v, are complex conjugates, implying that 1 )
one harmonic wave grows without bound and the other de3 (€.y) = A (&) ¢ (y) + ¥ P (5. y) + O (8 ) (23)
cays.
Zimmerman and Velarde (1997) demonstrate an analyticThe system which must be satisfied@te) is
solution for the higher order dispersive terms in the long
wave expansion and solvability condition, which is equiva- 7@, v @D _ A A, (66 — 6.0) — A6
lent to the series solution to Eq. (19) in powerséf § l(y )~V L ¢ (¢ i # 1)
[w;; (y—v)— wé )]y + RIiTV + wé,;)s (y—=v)

o0
v=c+ Y kZs (20)
2 = AA; [0y — 010, + 00y [AF — Adge|,
The first fives; were given in closed form for the regular +—Argy — Ageep + YLDV (v —v) (24)

modes. It was shown that the radius of convergence of the
seriess; is at least, =1 for all Ri andk, ~ 10 for Ri > 1.
In general, with the exception ati | 1/4, ¢>>s1>>s2>>  1he above system separates, by analogy with Eq. (16)
etc., showing that phase velocity is highly insensitive to finite _ '
wavenumber effects. T =3"FO &0y
1

3.3 Perturbation expansion y® = Z FO &) D (y) (25)

The basic wave solution (18) and the accompanying bound-
ary value problem for the vertical modal structure Eq. (19)
differ fundamentally from the basic state adopted in the shal
low layer model of Benney (1966). His basic wave is a
simple plane wave, taken in the infinitely long wave limit _q) 2 (i)

k=0, i.e. A, +cA, =0, wherev =c is the phase velocity £ — —F 00 (26)
found as an eigenvalue of Eq. (19) whieg: 0. Benney pro-

providedF,” = D™ and to a first approximation the® are
"harmonic waves

ceeded to expand in smallandk?. There are good reasons Linearity of Eg. (2.4) permits the.solution. to'be constructed
to adopt the infinitely long wave as the basis of an expan—EZJEZ;UID\?;E?S'“(;Z&L?: Srglsuj'lgrr:s ?rgmletr:ghaosr;o%i?ee;uosf
sion procedure: (i) there are closed form solutions for someth DO y that ph ' ¢ 9 i 9
shear profiles (Maslowe and Redekopp, 1980) and stratifica- € SO that each component separates.
tions (Weidman and Velarde, 1992); (ii) the procedure shows _,
that long wave disturbances approximately satisfy the KdV T
equation and thus have soliton or conoidal character. HowD(z) = Ager
ever, extending the analysis of Benney to a viscous fluid isp® _— AAg
problematic—awkward questions about the ordering of weak .,
nonlinearity, weak dispersion, and weak dissipation arise.” ~— Adgeg
The long wave limit presupposes that viscosity can only haveD® = AgAge (27)
a damping effect on waves.

Here a regular perturbation expansion is adopted. Thén the case of the linear term¥; and Ag¢., « =k. For the
starting point is the separation condition (18), which permitsnonlinear termsAAg, AAgee and Ag Age, k =2k. The five
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inhomogeneous systems that arise are

171

thep® are

Li[e®] = Rio + ¢y =) =22y = )29

oD _ i -0 @] _ 2
Mk|:¢(1)] = o —M(y—v)qﬁ} Ly [co ] =¢(y—v)—Ar(y—v)¢

b7 T 9 Lo [<p<3>] = —Ri (6,0 — 0,)
M| s | =g, — a0 (y —

i’ LAy = r2 =) + =) [0y — 2] —As (-0

—v — — —v

07 [ 6,9 — 00, ’ SRS
Yl | = | [00w — 03] —ra0 -0 Lo [0®] = 06, (v =) = har — )29

09 _ T 0 Lo [¢® | = =99y (v =) =25 (v = 1)@ (31)
Mat| 5@ | = |~y —2a(y = v) ¢] 1+ }

0™ T 0 Application of the Fredholm alternative theorem yields the
My 60 | = |y — 25y — v) ¢} (28)  following expressions for the;:

(Ri62 + ¢,0) (y — v) dy

O —p

The linear operatoM is identified by rewriting Eq. (19) asa i1 =
homogeneous boundary value problem. The Fredholm al-
ternative theorem provides a criterion for the existence of
solutions of the above five inhomogeneous boundary value .
problems—the inner product of the forcing vector with any f¢2dy

eigenfunctions of the adjoint operatdf* must vanish. Due 0

to the extended separation of variables (22) and (25), thé2 = T

Fredholm alternative theorem holds independently for all [¢?(y —v)dy

DY since a linear system (28) results for each undetermined 0

function D@ that is solvable only if the identifications (27) !

are made. Thus since the quadratic order operators are alls = — | Ri / 0 (2k) (qub - 9¢y) dy
Moy, the criteria is that the inhomogeneous forcing vector 0

must be orthogonal in these cases to the eigenfunctions of 1

this operatorMy;, not M. This solvability condition only 5
obtains because the extended separation of variables (22) +/9 (@) v = v) [(M)yy - ¢y]ydy)

1
[¢2(y —v)dy
0

and (25) results in a hierarching of linear systems for which 0

the superposition principle holds. This distinction must be 1 -1
made since there is no general solvability condition for fully (/ 0 (2k) ¢ (y — v)? dy)
nonlinear systems, for instance Eq. (14). The purpose of ,

our analysis is to use perturbation methods and a separation
scheme so that the component linear systems (28) are solv-

1
able. {9 (2k) pgy (y — v) dy

Ay =
In order to save on computations, it is desirable to work 1 2
. 7 o 2k —
with a self-adjoint system. Following Weidman and Velarde ge( )¢ (v —v)"dy
(1992), it is observed that the boundary value problems for)LS = A4
the modified vertical eigenfunctions

W _ ¢(1)
y—v

(32)

Figure 5 shows an example calculation of the phase ve-
locity v (k) for Ri =10, and the eigenfunctiop (y) with
k=0.05. The two point boundary value problem (30) was
solved numerically with homogeneous boundary conditions.
As the boundary value problem is derived from an invis-
are self-adjoint. Namely, the linear operator, on eliminating cid model, it does not suffer from the well known parasitic
the temperatures) is growth problem, thus standard numerical integration tech-
nigues (e.g. Runge-Kutta) are sufficient to maintain accuracy.
. 2 .2 2 The inviscid modes were solved for previously by Davey and
Lilel = [(y —v) wy]y + (Rl KO-V )¢ (30 Reid (1977) using a long wave limit. The extension to finite
wavenumber is straightforward here. The only particular dif-
ficulty, somewhat apparent from Fig. 5, is that the approach
The five inhomogeneous boundary value problems now forof the eigenfunction toy =1 becomes steep a& — 1/4,

¢ (29)
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Fig. 5. (a)Phase velocity vs. wavenumbet at Ri = 10. (b) Eigenfunctionp vs. heighty with £k =0.05 andRi = 10.

causing Newton’s method to fail. The bisection method, it plays an important role in solitary wave collisions; (ii) the
however, does not suffer from numerical difficulties in this coefficient of the accumulation term is practically invari-
case. The search for the phase veloeity) was limited to  ant with Ri; (iii) the coefficienti, of the mixed derivative
v>1in all cases. term Agg, does not become negligible within a representa-

There are two types of modes for the boundary value probliVe range ofRi, and is typicallyO (1); (iv) formally, in or-
lem (19). Regular modes havg > y for y € [0, 1]. Singular der for the perturbation theory applied here to be valid, all
modes have, = yeit for a critical heightyerir. The analysis ~ ©f the termssz; must be small relative to unity, putting an
given here tacitly assumes that is positive, i.e. the waves UPPer limit on the magnitude of the wave amplitude; thus
move rightward. For regular modes, it is clear that the de-the formal constraint at lowki is on the coefficient of non-
nominator in Eq. (32) is always negative, regardless afid linearity e23 « 1, and for highri it is on the accumulation
Ri. For the singular modes it appears possible that the de¢O€fficienter1 < 1. In practice, however, the stability of the
nominator can change signs. It can be verified that for theS0litary wave depends on a balance between the leading non-

eigenfunctions found by Maslowe and Redekopp (1980) forinear term and dispersion. Zimmerman and Velarde (1997)
the singular limitk = 0 and Couette shearing, the denomina- &/9U€ that the balance of these terms leads to the requirement

tor is also negative for ali. that Ur* =er3/k?~ 1 so that solitary waves neither break
by steepening nor by spreading. This condition permits ex-
tremely large solitary waves whe®¥ > 1, since the numer-
ically small coefficient.s offsets larges values so that the

long wave regime. The apparent qgadratuk pehawou_r of product still satisfies the formal requirement of the perturba-
v (k) to a first approximation is entirely consistent with the tion theory. In this paper, however, the formal requirement
assumptions of the long wave theory of Zimmerman and Ve~ 1./id be violated in the h,igIRi regin’1e agi1 becomes the
larde (1997). Figure 6 demonstrates the computation of theﬁmiting contribution.

thek—dependence of the . Again, consistent with Zimmer-

man and Velarde (1997), the coefficients of the linear terms,

A1 andiz, show a quadratic dependencekithat is numer- 4 Solutions to the nonlinear evolution equation

ically small (5—-10%) of the leading order value. The coef-

ficients of the nonlinear termggz and 4, also demonstrate 4.1 Analytic solutions to the hybrid BBM-KdV equation

quadratic dependence én

Figure 5 demonstrates weak dependence @) on k —
apparently quadratic with small coefficient — 0.01 in the

Given that all the coefficients derived above for the separa—In this septlon, the SOIUt'Or.'S to the separation (22) arg gon3|d—
ered. In light of the numerical values bf « A3 for all Ri, it

tion condition demonstrate quadratic dependence st . > . ! ; . .
q b Gea is convenient to begin the discussion by neglecting the higher

squared fits show the linear terméris of the order of trun- d i i bel Wh ical soluti
cation error), the whole of the long wave regime can be de-2T2¢" Noninear lerms below. €h numerical Solutions are

scribed by thek — 0 leading order term and the coefficient considered, ho_vvever,_ the full Eq. (22), suitably scaled and
of O(k?) for v and thei; for fixed Ri. Representative val- ransformed, will be simulated.

ues of Ri are taken in Table 1 and the coefficients of the K2Ag + Agge + & (MAc + hoAger +A34A¢) =0 (33)
power series expansion shownd@gk?). There are some key

observations: (i) the higher order nonlinearity(is 2-3 or-  Equation (33) is an ordinary differential equation for the
ders of magnitude smaller than the leading order nonlinearitywaveform in frame of¢ =x —vt. Regardless of the val-
(13) throughout this whole range; although the implication is ues of the coefficients (unless zero), this equation is equiv-
that higher order nonlinearity is negligible, it turns out that alent to the KdV equation at steady state and always has
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Fig. 6. Coefficientsiq, A2, A3, A4 VS. wavenumbet at Ri = 10.
Table 1. Representative values of the coefficients in Eq. (33) for variius
Ri 32y | N 3%rq | 3210 | N 323 | N 3204 |
1 C —= k= — k= — k= — k= — | k=
0 ax2 k=0 1 or2 k=0 2 or2 k=0 3 ar2 k=0 4 or2 k=0
2. 1103 -0.01199 8.960 1.012 -1.963 -0.09875 -95.10 —52.69 1.777 1.805
5. 1310 -0.02787 9.469 1.004 -1.334 -0.06638 —3173 —-1132 0.4493  0.4358
10. 1576 -0.04444 9.662 1.000 -0.9675 -0.04846 -—16.54 —4.547 0.1751 0.1648
20. 1973 -0.06665 9.764 1.000 -0.6932 -0.03487 —9.445 —2.148 0.07270 0.06678
50. 2782 -0.1091 9.827 1.000 -0.4419  -0.02230 —4.942 —0.9530 0.02445 0.02201
100. 3705 -0.1561 9.848 1.000 -0.3133 -0.01583 -3.175 —0.5670 0.01117 0.00995
500. 7628 -0.3523 9.865 1.000 -0.1404 -0.00710 —1.248 —0.2030 0.00197 0.00173
1000. 1057  -0.4987 9.867 1. -0.09932 -0.005022 —0.8560 —0.1352 0.00096 0.00084

localisedsech? soliton solutions and periodic conoidal wave tiple steady wave homoclinic solutions whose phase velocity
solutions. Equation (33) has the same form as the invisciddepends on amplitude. It is logical to seek solutions in the
limit of a wave evolution equation found by a center mani- form of Eq. (2):

fold approach by Zimmerman and Velarde (1996) which ap-
proximates the vertical modal structure of temperature by a ,(E—Ct
sine function and absorbs the error into the coefficients of thed = sech ( )
horizontal wave equation upon depth averaging.

(34)

In addition to the steady wawech? soliton solutions for Further, it is convenient to return to the original time scale:
Eq. (33), as the underlying dynamical system is dissipation-
free and nonlinear, one must entertain the possibility of mul-k?Ag + Agge + A A; 4+ A2Ase, + eA3AAs =0 (35)
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Imposing Eq. (34) as solution to Eq. (35) yields the
following constraints om\ andC:

1—Cx
A2 = 8—2
k2 — Chy+ g3
—20+ k?A2 + 26 A%
C— + + Ze 3 (36)
A2)1 — 2015

That there is a solution of this form is not surprising. Equa-
tion (35) is a hybrid between the KdV equation and the simi-
lar BBM equation proposed for surface water waves by Pere-
grine (1966) and Benjamin et al. (1972). The BBM equation
has been extensively studied by numerical integration (Bona,
1980) and shown to hasech? solutions with collision prop-
erties that differ from the soliton (see Bona, 1980). The fol-
lowing remarks follow from Eq. (36):

— Sincer = ¢t, using the original time variable keeps the
phase velocityC as a regular quantity ia.

— There is a double parametér, k) infinity of solutions
with A2 (¢, k) andC (¢, k).

— Equation (36) has two solutions:

. k2 A3 2 124 — 12](2)»2 — dehorg
N A1 3Ag] - EA1A3
1
Cc=_, A%2=0 (37)
A2

As the latter has apparently no physical meaning, it is
rejected as extraneous. The former, however, has sev-
eral meaningful special cases.

Classical solution theory for the KdV shows that the
phase velocityC is linearly proportional to the ampli-
tudee, and that the halfwidth is inversely proportional
to the square root of the amplitude. This can be seen
to hold in the same small amplitude, long wave limit for
which Benney (1966) first derived the KdV equation for
internal gravity waves. FoRi =10 and smalk ande,

the asymptotic expansion of Eq. (37) yields

C =0.1035%2 + (—0.5705— 0.0977&2) e+ 00k ?)

12
A? = 38
(—16.54 — 4.547%2) ¢ (38)

— Special case of nor-dependence,
AM=Xi2=0
This results in

equivalent to

) 8 —3k?

Cc=0 = £ —
k2 + eh3 A3

The latter condition shows that there are only steady
wave solutions in the reference framé the constraint
on the amplitude balancing weak dispersion is satisfied.

W. B. Zimmerman and J. M. Rees: Long solitary waves

This is effectively a modified Ursell number for the sit-
uation:
& -3

2 s

If £2>0, by the argument of the Introductioh= £

is the wavenumber selected by the waveguide for the
longest wave trapped, then the amplitude of such waves
is completely fixed by the Ursell humber condition.
Zimmerman and Velarde (1997) estimatein the long
wave limit as follows:

1132
c—1 ) (39)

c

A3 = re 1
T Rit2lc—172

whereA:,/Ri—%. This function becomes unbounded
as Ri|1/4, demonstrating that this-invariant steady
wave has vanishing amplitude for strongly sheared, but
stable stratifications. Conversely, this function vanishes
as Ri— oo, implying that this solitary wave is required

to become extremely large as the stratification becomes
strong. There is no violation of the formal requirements
under which the weakly nonlinear theory was derived,
as the nonlinear terms remain small both in Eg. (33)
and the full heat and momentum equations. It should be
noted that qualitatively, the predictions of solitary waves
of temperature depression, the wavelength appropriate
to the Scorer parameter, and a large amplitude distur-
bance occurring in a higRi ~ 800 waveguide are borne
out in the STABLE wave event on 6 June 1986 reported
here.

— Special case of the long wave linkit=0

It is noted that the halfwidtia is given by

L I
AZ_) 4()\1;_8)»3) (40)

with phase velocity

—(¢A3)
C — v (41)

specified as the infinitely long wave limiting solution.
With ¢ « 1, the former specifies an Ursell number

28

eN2 > —
313

(42)
which agrees with the findings of Zimmerman and Ve-
larde (1997) in the long wave limit. Thus, whég < 0,

the expectation is that the longest trapped harmonic
waves would bé& = 0, giving rise to the usual constraint
that the nonlinearity balances dispersion so as to con-
strain the amplitude and halfwidth of the solitary wave
jointly.
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It was found from the numerical evaluation of the coeffi- 0
cientsa, that at allRi, there is only a weak dependence on -05
wavenumbelk (see Table 1), and thus the long wave limit a

k=0 is a good estimate for the coefficients appropriate to T 15l

long waves. Thus, we can use Eq. (40) to test our original =
hypothesis that th€ wavenumber is a good predictor of the >

halfwidth of a solitary wave of permanent form. We argue as & >°[|
follows. For the case of Couette shear, the definition (4) of -3
the Scorer parametdt, in the scales chosen here, reducesto  -35
Ri -
£2 = —2 (43) 45 L L L L L | | | |
(y — 1)) 0 100 200 300 400 500 600 700 800 900 1000

. . Richardson number Ri
Consequently, the minimum wavenumber that does not radi-

ate vertically is found at the bottom of the waveguide O: Fig. 7. Plot of A3v2/Ri vs. Ri. If the Scorer wavenumbef is
Ri inversely proportional to the halfwidth of the solitary wave, then
£2 = (44) the quantity plotted on the ordinate should be constant withlt

" v2 apparently approaches a constant at hitgh

Equation (42) implies that for a solitary wave of permanent

form, A2~ 1/x3. Thus, if the halfwidth is predicted by the

extreme Scorer parameter, thegv?/Ri must be a constant.

Figure 7 tests this hypothesis. Strikingly, the desired nearThe theory presented here predicts this occurrence in high
constant behaviour is found for higti. This is gratifyingly =~ Ri waveguides. Curiously, although the NEE derived here
in agreement with the observation from the STABLE data nonlinearizes about finite harmonic wave packets, this re-
set illustrated in Fig. 3. The spike iRi to ~ 1000 at about Sult about wavenumber selection is not sensitive to the ba-
10m in height coincides with the extreme Scorer parame-Sic wavenumbek, and holds in theé =0 limit. Thus, this

ter which best approximates the halfwidth of the observedprediction should be available from the theory derived from
solitary wave of temperature depression shown in Fig. 1. Rethe infinitely long wave limit by either Benney or Benjamin.
markably, the nonlinear theory derived here shows an intrinNevertheless, in this paper, a new NEE which can be limited
sic feature (the halfwidth\) of the nonlinear solitary wave to finite wavenumber disturbances has been derived, so its
that is set by the Scorer parameter of linear theory. One canProperties should be characterized. In the next subsection,
not help but wonder how this arises. A key point is that thelocalized analytic solutions are presented. In the following
solitary wave is of permanent form (34), which translates intoSection, numerical simulations explore the soliton-like colli-
a requirement on the modified Ursell number (42) that it besion properties of solitary wave solutions to the NEE.

fixed at a value that balances nonlinearity and dispersion. So

although the mathematical analysis permits the amplitude . . . ] )

to be a free parameter, the physical stability of the wave-4-2 Analytic solutions of the nonlinear evolution equation
form (34) which requires the balance of nonlinearity and
dispersion, is equivalent to fixing the value of the modified
Ursell number (42). Since at higki, the factorA2~ 1/x3

is roughly constant, a fixed modified Ursell number imposes
a fixede. Thus, in highRi waveguides, the halfwidth and
amplitude of solitary waves of permanent form are selecte
by the dynamics of the NEE and the stability criterion that
the wave be of permanent form.

In the Introduction, the appropriateness of the modelling
of the boundary conditions (10) used by both Benney and’
Benjamin was discussed. It should be clear at this point that
the feature that is being modelled is the trapping of wave en- )
ergy within a waveguide. As a fluid stratum embedded within - — —20+ kA + 2A¢eh3 — 1804
a stratification, the vertical extent of the waveguide must Ar1 — 202
itself be Qetermined. Scorer’s critgrion_ (chrer, 1949) for 8 8Ciy + 6ehs
the trapping of wave energy essentially identifies the waveg-A = ——————
uide for which the boundary conditions (10) are a plausi- ke —Cr1+eh3
ble model. The frequent recurrence of the halfwidth of ob-
served solitary waves in agreement with the Scorer parameter
(Rees and Rottman, 1994) is a consequence of the longevity These constraints can be analytically solved for two
of large amplitude solitary waves in higRi waveguides. solutions; only the following is physically meaningful:

Since the solitary wave form (34) fits solutions to the KdV
equation and the BBM-KdV Eq. (33), it is reasonable to
search for solutions of this form to the the full NEE (22). Sur-
OPrisingly, the extra nonlinearity in this equation does not de-
stroy the existence of an analytic solution of the homoclinic
type, without recourse to further approximations. Imposing
Eqg. (34) as solution to the full nonlinear evolution Eg. (22)
ields the following constraints oN andC:

(45)
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Table 2. Characterization of the solitary solutions (34) to the hybrid BBM-KdV Eq. (35), whgre 0, and ZR (22) equations fati =10
and varioug, ¢ pairs.

k P C BBM-KdV A2 BBM-KdV C ZR A2ZR
0.05 -1 0570442 0725191 05336 0972316
0.05 -6 342446 0120865 272698 0312483
0.05 -12 684866 00604326 482226 0215112

(Christov and Velarde, 1995), as standard finite difference
approximations were found to be inherently unstable.

One technique that has demonstrated robust stability prop-

c_ —3k2 (14 ex4) + £A3 (4 + 3era)

) D ) erties is the method of lines (MOL). Schiesser (2001) de-
+(k + 25)‘3) (A (3k2 )) (k + 28)»3) scribes the salient features that the spatial discretization is

— (A2 +er3) )+ —F= . . . .
rD rD established permanently in the simulation, but the temporal

\/ ) 5 2 solution is adaptive, using local error estimates to adapt the
Xy —6e22142h3ha + (A2 (k2 + £23) — 3h1 (L + £2a)) time step to within the desired error tolerance. We coded the
5 —2A2 (3k2 + 8)»3) 3(1+ehy) 2 method of lines, using Runge-Kutta-Fehlberg (a 4-5 method)
AT = eh1ha + eh3 eA1A3 in time, and up to seven point differences to accomodate the
5 Agge term. Figure 8 shows the evolution of a single local-
X\/—682)»1?»2?»3k4 + (A2 (3k2 4 £A3) — 3h1 (1 + £ha)) ized disturbance under the approximate KdV dynamics and
of the ad hoc removal of the “BBM termAg¢,, which has
where only the extra nonlinearity in addition to the KdV terms. Al-
though this method proved adequate for the approximations
attempted in Fig. 8, demonstrating the known analytic form
\/ 5 5 > of solution Eq. (34), it was not possible to include either the
+y —6e“A1h2h3ra + ()‘2 (3k2 + 8)‘3) =31+ 8)“4)) BBM term nor to resolve overtaking collisions of two ini-
tial disturbances. With the method of lines technique, the
BBM term, Agg,, can only be included consistently by finite
difference approximations at the last time step. This delay
contributes to numerical instability, which manifests as the
inability to adapt the time step to the error tolerance. The
collision simulation with MOL performs adequately with the
KdV equation, with nonlinearity treated by delayed differ-
ences. However, the additional nonlinear terms form a shock

This is closely comparable with the approximatio@=0  \yave upon collision which cannot be resolved by the tech-
of the last subsection. As it has just been shown that thert,a]ique'

is a new, analytic solution of the solitary wave form to a . e . - .
newly derived inviscid NEE, it is conventional to explore by Since the difficulty lies within the delayeq dn‘ference treat—.
ment of some terms, the prescribed solution is to use semi-

numerical simulations along the lines of the seminal paper.

by Zabusky and Kruskal (1965) whether the solutions are|mpI|C|t |r_1tegrat|on schemes. _The Workhor_se method |s_the
. L Crank-Nicholson scheme, which uses spatial centered differ-
soliton-like in character.

Table 2 demonstrates the distinctly different solitary wave?hnec?jt:rrgr:in%?gily a%’ﬁ;?:g}E;“ggi?n::i;nuégigtl t'glsvaeréd
features for the two different solitary wave equations ex- P y )

plored here — the ZR solitary wave is always broader and" (e method adopted here, the linear terms are treated in
: ._the Crank-Nicholson fashion. The nonlinear terms are ap-
slower propagating due to the presence of the hypernonlin- "~ ° .
earity with coefficient.s proximated by delays. The BBM term is treated by an Euler
' step in time, centered difference at both the current and fu-

turetime. IfA(§ = jh, t =nAt) = A;!, whereh is the spatial

resolution, then a banded matrix equation results:

D=—i, (3k2 n 115,\3) 430 (1+eAg) (46)

For Ri =10 and smalk ande, the asymptotic expansion
of Eq. (46) yields

C = 0.1035k2 + (—0.5705— 0.09778k2> e+ 0K D

0.1269) 0.7257
€

A% = 02734+ k? (—0.1061+ —_— + 0 (k4 e)(47)
&

4.3 Numerical simulations of the nonlinear evolution
equation

Itis V\{e!l known _that NEEs that_ are modifi_ed KdV equations alA;ié + azA;?ﬁ + asA;gH + a4A?fi + a5A;;J_r;
are difficult to simulate numerically. For instance the KdV- br AT boA™ oA+ byA” be AT
KSV equation with both instability and hyperdiffusion terms ~ — P1A4j+2 T 02441 034 +baAj 4 + 0545 5

required treatment by the method of variational embedding +N (A, Ag, Age, Ages) (48)
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Fig. 8. (a) Simulation of only the KdV terms in Eq. (35) arft]) Simulation of the all terms in Eq. (35) except the BBM, term; for
Ri =10 andk = 0.05, with an initial conditions of Eq. (34) with (&)= —6; (b) e = —1 with origin shifted toxg=10. Time is scaled
arbitrarily so as to graphically separate successive time steps. Are(g), 20]. In (b), ¢ € [0, 40]. Both simulations have spatial resolution
h =0.1 horizontally.

The scheme is first order in time, second order in spaceear terms are naturally small, implying that large amplitude
For the purposes of discussion, it is necessary to noteas possible before the practical requirement that the neglected
only thata; =1/2h% andaz =11/Ar — A»/Ath?. Crank-  terms are appreciable comes into force. Consequently, a ro-
Nicholson methods are absolutely stable (see e.g. Ganzhiaust simulation for large has practical value.

and Vorozhtsov (1996) for the von Neumann criterion).  Figure 9 demonstrates the Crank-Nicholson simulation of
However, the sparse solver method becomes poorly condithe full NEE Eq. (35) for single and double localized distur-
tioned if the matrix is not diagonally dominant, leading t0 pance initial conditions of the form Eq. (34) appropriate to
spurious oscillations. Typically, for third order pdes, the con-the analytic solution foC and A. In contrast to the MOL
dition for diagonal parity is that\s ~ /3, i.e. the first term  sojutions, here the solitary wave amplitude is taken as intrin-
of a3 is of the same order ag. This necessitates ridicu-  sjcally positive, even though=—1. So these frames both
lously small times stepa for any common choice of res-  represent waves of temperature and streamfunction depres-
olution in &, say 102. In this case, however, diagonal par- sjon, Frame (a) agrees roughly with the expected analyt-
ity is achieved by balancing the second termugiwith az, ically predicted phase velocitg for the given conditions.
yielding Az~ h. This is apparently a desirable situation from Frame (b) demonstrates a clear phase shift — a boost to the
the standpoint of stability. Curiously, however, the system|arger, overtaking wave and a delay to the slower wave — due
is poorly conditioned at achieving accuracy with decreasingig the collision. The waves themselves appear unchanged
At andh. As the second term ing, which originates from gt this resolution. These features establish the soliton-like

the BBM term, always dominates the first term/a$, itis  character of the solutions (34) as originally established by
found that the linear terms in Eq. (48) approximate an iden-zapusky and Kruskal (1965).

tity operator on any signad(¢) at a given time. 43 has a
similar structure, which leads to the mappin it A;% as

h }. Thus, only since.1 is naturally larger in modulus than
A2 (see Table 1) is there a window in simulation parameter
space(h, At) which is reasonably accurate and numerically
stable.

Contemporary connotations of soliton character imply that
the equation is integrable (e.g. Cervero and Zurron, 1996),
and thus an inverse scattering transform exists (for instance,
Gardner et al., 1967) which permits the characterization of
the time asymptotic state. Whether or not the NEE (35)
o ] ] . is integrable is not addressed here. There is greater likeli-
As an aside, it is possible to evade the whole issue of simy 444 that it is integrable if it conserves wave energy, which

ulating the BBMA¢¢. term via applying the perturbation as- s tested below. Multiplying the NEE by, and integrating
sumption. Peregrine (1966), in deriving the equation for angyer | space yields:

undular bore, noted that up to the order of the error in the per-

turbation schemed . ; ~ A, .. In this case, the fundamental o ~

assumption of a harmonic wave to leading order Eq. (18), al- 4 2 5

lows the approximations Az, ~ —k2i24,, which is ami- ~ *17; / A% = —haolp —k / AAggeds

nor modification to the accumulation term. However, this is —00 —00

formally only valid fore « 1. Indeed, although the NEE de- o

rived here Eq. (35), is formally only valid for smal| in the + A3 / A2A5d$ —eMgly (49)
case of highri (see Table 1), the coefficients of the nonlin- e
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Fig. 9. Simulation of the full Eq. (35); foRi = 10 andk = 0.05, with an initial conditions of Eq. (34) with= —1, with origin shifted to
(a) xo = 10 for a single disturbance of unit amplitude gbjl an additional disturbance initially at =20 with half unit amplitude. In both
figures, integer times and unit amplitudes are displayed. Both simulationg:ha0e&25 horizontally and\s = 0.001.

Terms two and three on the RHS of Eq. (49) are well knownnecessary role in preventing the formation of a discontinu-
from the KdV equation to identically vanish with boundary ity through feedback from wave steepening through the RHS
conditions thatA and all its derivatives vanish gt— =+ co. of Eqg. (52). Otherwise, if4 is negligible, it can be seen that
The other two terms will be considered individually, by in- the weighted combination of wave energy and wave momen-
tegration by parts. Only the first contribution fp need be  tym (5,42 + A2A§> is conserved. The angle brackets refer
considered, as one integration by parts yields the same for% the integral over all space. The NEE can be differenti-

as the other term, which is constructively reinforced: ated with respect t6, multiplied by A, and integrated over

x all space, which by analogy with the above Eg. (49), should
Iy = / [A2A$Sé - AAéASé] dé§ yield a conservation o(fklAg + A2A§s>. lterating this pro-
—o0 cess will lead to an infinity of conserved quantities. Whether
x this is sufficient to demonstrate that this system is integrable
=-3 / A (AgAge) dé is an open question. If so, then there is likely to be an in-
e verse scattering transformation, which would theoretically
00 ) 00 specify the time asymptotic state. Zimmerman and Haarlem-
_ 3 AaASd _3 A34 50 mer (1999a) have demonstrated some utility in the discrete
T2 9E § 2 / £ds (50) periodic inverse scattering transform (DPIST) for analysis of
o0 - wave propagation in a stratified fluid. The DPIST analysis
The second term is readily evaluated as identified the “soliton” component of a wave passing the sen-
00 ) sor that was unchanged at a second sensor downstream in a
I = di / AAgedt = _d / Agds. (51) stratified_wave tank. Osborne and coyvorkers (;ee Osborne
T dt and Petti, 1994, and references therein) have pioneered the
—0oQ —00

use of DPIST as a data analysis tool for surface water wave
The latter, combined with Eq. (49) leads to the conclusiongata sets.

that wave energy and momentum are not conserved, but
rather are interchanged and can be created or destroyed, ac-
cording to the sign oA as seen below.
o o It should be noted that the NEE can be formally mod-

d 2 2 3 3 ified by application of the original separation condition
dt / (MA +A2A5)d€ = ot / Agds . ®2) " that 10 leading order, the waveform should be a har-

—o0 - monic wave. This permits the formal substitution that
Although it should be noted that the RHS Eq. (52) has asmalldge, = — k%A, + O(e). This alters the conserved quantity
constant of proportionality, for steep waveforms the NEE to ((Al —kzx\z) AZ). It also reduces the NEE, with the as-
lacks any mechanism to oppose shock formation. Thus, dissumption|i4| <« 1, to the KdV equation. Thus, the NEE is a
sipative mechanisms that were neglected in the model (vis*nearly integrable” system, for which DPIST may prove suf-
cous friction, thermal or solutal diffusivity) would play a ficiently accurate for long waves of nearly permanent form.
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5 Conclusions
Edited by: A. Osborne
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