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Abstract. Observations of internal solitary waves over an
antarctic ice shelf (Rees and Rottman, 1994) demonstrate
that even large amplitude disturbances have wavelengths that
are bounded by simple heuristic arguments following from
the Scorer parameter based on linear theory for wave trap-
ping. Classical weak nonlinear theories that have been ap-
plied to stable stratifications all begin with perturbations
of simple long waves, with corrections for weak nonlin-
earity and dispersion resulting in nonlinear wave equations
(Korteweg-deVries (KdV) or Benjamin-Davis-Ono) that ad-
mit localized propagating solutions. It is shown that these
theories are apparently inappropriate when the Scorer pa-
rameter, which gives the lowest wavenumber that does not
radiate vertically, is positive. In this paper, a new nonlinear
evolution equation is derived for an arbitrary wave packet
thus including one bounded below by the Scorer parameter.
The new theory shows that solitary internal waves excited in
high Richardson number waveguides are predicted to have a
halfwidth inversely proportional to the Scorer parameter, in
agreement with atmospheric observations. A localized an-
alytic solution for the new wave equation is demonstrated,
and its soliton-like properties are demonstrated by numerical
simulation.

1 Introduction

Chemical engineering abounds with unit operations where
solitary waves can be induced. Film flows, especially in con-
densers and distillation columns, give rise to sheared, sta-
ble stratifications where solitary waves can be induced by
mass transfer (Hewakandamby and Zimmerman, 2003) or
heat transfer effects that are driven by surface tension gradi-
ents. In this paper, motivated by recent studies of surfactant
spreading on sheared, stable stratifications and observations
in the stable Antarctic boundary layer (Rees and Rottman,
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1994), we revisit the classical analysis leading to the conclu-
sion that large amplitude waves can be induced in the infin-
ity long limit. Scorer (1949) pointed out that longer waves
than a particular value selected by the shear and stratification
profiles, radiate vertically, and thus are not trapped by the
waveguide. This condition is the modification due to shear
of the classical Brunt-V̈ais̈alä frequencyfor vertical radiation
of waves in a purely stratified fluid. In this paper, we take
into account this limitation and pose a derivation of the non-
linear evolution equation (NEE) which reduces to the clas-
sical Korteweg-de Vries equation in the case that the Scorer
wavenumber approaches zero so that infinitely long waves
are trapped.

Benney (1966) and Benjamin (1966) independently de-
rived the first NEE for large amplitude solitary disturbances
in a stable stratification with shear flow. They both assumed
weak nonlinearity and weak dispersion due to a long wave
approximation. The derived NEE, which applies equally to
either temperature or streamfunction disturbances, takes the
form of a Korteweg-deVries (KdV) equation, with coeffi-
cients that depend on both the conditions of the waveguide
(functionals of the stratification and shear profiles) and on
the characteristics of the disturbance itself (wavelength and
amplitude):

∂A

∂t
+ (c + A)

∂A

∂x
+ σ

∂3A

∂x3
= 0 . (1)

This has the solution that the amplitudeA, at timet and po-
sitionx, is

A = 3A0sech
2

((
A0

4σ

)1/2

(x − (c + A0)t)

)
(2)

whereA0 is the amplitude of the initial disturbance,c the
phase velocity of infinitely long waves, andσ = cH 2/6 is the
parameter measuring dispersion.H is the layer depth. The
halfwidth of the solitary wave is(A0/16σ)−1/2. Because this
halfwidth is inversely proportional to

√
σ , it follows that the

wavelength of a localised disturbance depends inversely on
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the spectral width of the wave packet that characterizes the
Fourier power spectrum of the disturbance.

The KdV theory proposed by Benney and Benjamin is
robust, with many applications in atmospheric and oceano-
graphic analysis, e.g. Doviak et al. (1991). Nevertheless,
there is a fundamental problem with the derivation of the
KdV theory from the infinitely long wave limit. Essentially,
in some circumstances, the waveguide will be depleted of
wave energy in long scales. This is described more fully be-
low. Benney’s derivation begins with a linear wave equation
that to leading order is a simple wave of infinitely long wave-
length, satisfying:

∂A

∂t
+ c

∂A

∂x
= 0 (3)

Scorer (1949), however, considers modified Brunt-Väis̈alä
vertical buoyancy waves in the presence of shear flow. He
concludes that wave energy is only trapped if it is confined
to wavenumbersk that are greater than the Scorer parameter
L defined here:

L2
=

N2(
û− ν

)2 − 1(
û− ν

) d2û

dy2
(4)

N is the Brunt-V̈ais̈alä frequency,ν is the phase veloc-
ity, and û (y) is the background shear profile, which is as-
sumed steady before and after the passage of the disturbance.
Wave energy can radiate vertically out of the waveguide as
Brunt-Väis̈alä waves if the wavenumber of the disturbance
is smaller thanL. Scorer (1949), showed that the Fourier
component of the vertical velocitŷwk satisfies in the linear
approximation:

d2ŵk

dy2
+

(
L2
− k2

)
ŵk = 0 . (5)

y is the vertical coordinate andk is the wavenumber of the
disturbance. Scorer showed that whenL2 decreases with
height, energy can be trapped at low levels. More generally,
within in any waveguide, ifL2>k2, Eq. (5) admits oscilla-
tory solutions that radiate vertically as Brunt-Väis̈alä waves.
WhenL2<k2, one solution of Eq. (5) is a bound-state, i.e.
energy is trapped in the waveguide and can only propagate
within the waveguide. The other solution to Eq. (5) in this
case is exponential growth far away from the waveguide,
which is rejected as aphysical.

The wavelength of solitary disturbances over an Antarctic
ice shelf has been discussed by Rees and Rottman (1994).
These authors provided empirical evidence showing that
even large amplitude disturbances have halfwidths that agree
remarkably well with the linear Taylor-Goldstein theory de-
scribed by Scorer (1949). This is a surprising result in that for
the large amplitude disturbances that were reported by Rees
and Rottman (1994), nonlinear effects are important and lin-
ear theory would be expected to fail. They cited Scorer’s ar-
gument that linear waves longer than wavenumberL would
radiate vertically out of the waveguide. Since wave energy
at scales shorter than the Scorer wavenumberL are trapped

in the waveguide, it is not at first clear why large amplitude
solitary disturbances exhibit the Scorer wavenumber.

Ursell (1953) resolved a long standing paradox in the the-
ory of solitary surface gravity waves by coining a new dimen-
sionless number Ur=A0L

2/H 3
= ε/µ2, the ratio of two di-

mensionless numbers.ε=A0/H is the ratio of the maximum
streamfunction displacement to the heightH of the wave-
guide. µ=H/L is the ratio of the height of the waveguide
to the expected wavelengthL of the long wave disturbance.
Thus,ε andµ are properties of the resultant wave generated
from some initial disturbance to the waveguide. Since the
formation of a solitary wave may occur after a combination
of the nonlinear breaking of the initial disturbance or the dis-
persion of different components, the length scales of the ini-
tial conditions may have little bearing on the resultant wave.
Thus, the description of solitary wave motion by the param-
etersµ andε ignores the history of its formation. Ursell sug-
gested that when Ur∼1, with bothε�1 andµ�1, soli-
tary waves of permanent form can propagate. In fact, this
argument previously appeared in the pioneering papers of
(Boussinesq, 1871a,b, 1872) and was understood earlier by
Lord Rayleigh (Rayleigh, 1876). It should be noted, that in
definingµ andε as above, the solitary wave is presupposed
to exist. On dimensional analysis grounds,µ andε are inde-
pendent parameters. The Ursell hypothesis relating the two
follows from the stronger constraint that the solitary wave
should have permanent form. The specific functional rela-
tionship that Ursell proposed was physically motivated by the
mechanism maintaining permanent form–nonlinear steepen-
ing balancing wave dispersion.

Internal solitary waves may propagate in a waveguide of
a stratified fluid layer, with and without shear. However, the
inclusion of shear introduces a free parameter, the Richard-
son numberRi, the ratio of buoyancy to shear forces, which
affects the balance of nonlinearity and dispersion in wave
pro- pagation. Dimensional analysis, along with the con-
straint that the waveform be permanent, results in the func-
tional relationshipε= f (µ,Ri). The form of this functional
relationship should be based on accounting for the relative
strength of shear and stratification in maintaining the balance
between nonlinearity and dispersion in the propagation of a
wave of permanent form. It follows that the wavelength that
should be selected in the long time asymptotic state should
be that with weakest dispersion balancing weak nonlinear-
ity – so that neither mechanism is strong enough to break up
the permanent form. Thus, in the time asymptotic state, the
wavelength should be as long as possible. The longest wave-
length admissible, therefore, in a sheared, stratified flow, is
identified with the Scorer wavenumberL.

Benney (1966) and Benjamin (1966) independently
treated the weakly nonlinear shallow layer approximation,
showing that disturbances travel according to the Korteweg-
deVries equation if the bounding surfaces of the layer are ma-
terial surfaces (no flux of momentum vertically, no horizon-
tal stress). This assumption is not always compatible with a
continuously stratified fluid where a small stratum forms the
waveguide, since waves longer than the Scorer wavenumber
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Fig. 1. Temperature (re-based) and vertical velocity of a solitary
disturbance observed at Halley Station by the British Antarctic Sur-
vey on 6 June 1986 at a height of 16 m. Measurements were made
using a sonic anemometer and were recorded at 20 Hz.

L radiate vertically. From the definition (4), there are two
distinct cases:L2>0, where longer waves radiate vertically;
L2< 0, where all wavenumbers are trapped. In this latter
case, the lack of radiation vertically is consistent with the
boundary conditions of the model adopted by Benney (1966)
and Benjamin (1966) leading to the KdV theory–parallel, im-
penetrable stress-free surfaces. Although in this paper the
focus is on wave propagation withL2>0, observations of
both cases in the STABLE data sets of the British Antarctic
Survey are reported.

WhenL2> 0, from the analysis of Scorer, it is clear that
the k= 0 long wave limit is inaccessible when shear and
stratification establish a waveguide that is one stratum of the
deeper fluid, since all wavenumbers smaller than|L| will ra-
diate vertically. Thus, long times after the initial disturbance
show depletion in the horizontal waveguide of energy in the
k ∈ [0, |L|) band. However, for wavenumbers greater than
|L|, the upper and lower surfaces of waveguide do act as ma-
terial surfaces, since these wavenumbers are trapped. It fol-
lows that the proper nonlinearisation of the linear dispersive
waves is bounded below in wavenumber space by|L|, and
is, therefore, distinctly different from the analysis of Ben-
ney (1966) and Benjamin (1966), which start from infinitely
long waves in the leading order separation condition (3). In
the theory that follows, the basic disturbance is taken to be a
harmonic wave with wavenumberk2>L2, and the first solv-
ability condition leads to an NEE similar in form to the KdV
equation.

The paper is organised as follows: In Sect. 2, two wave
events withL2 of different signs are reported from the British
Antarctic Survey STABLE data sets (King and Anderson,
1988). In Sect. 3, a KdV-like theory for arbitrary wavelength
basic disturbances is derived. WhenL2>0, the theory is
only applicable for nearly monochromatic disturbances. For
L2< 0, the trapping in the waveguide is complete and the
theory is generally applicable. Section 4 discusses the re-

Fig. 2. Temperature (re-based) and vertical velocity of a solitary
disturbance observed at Halley Station by the British Antarctic Sur-
vey on 14 August 1986.

sults of the theory, demonstrating an analytic solution to the
full NEE. Furthermore, the prediction that the halfwidth of
the solitary wave by the Scorer parameter, which is demon-
strated in Sect. 2 on the STABLE data set, holds theoretically
in largeRi waveguides. Section 6 explores numerical simu-
lations of the NEE, which provide some evidence of solitonic
behaviour for the dynamics of overtaking collisions involv-
ing solitary wave solutions to the NEE. In Sect. 6, conclu-
sions are drawn.

2 Observations of atmospheric solitary disturbances in
the Antarctic

As a result of strong radiative cooling at the earth’s surface
during the Antarctic winter, a strong, long-lasting, stably
stratified atmospheric boundary layer is established at Hal-
ley IV station, Antarctica (75.6◦ S, 26.7◦ W). Halley IV sta-
tion is situated on the Brunt Ice Shelf which provides a uni-
form fetch of 10–40 km in all directions. Thus the site serves
as an “ideal” natural laboratory for the study of the stable
atmospheric boundary layer and any wave-like structures it
may support. The British Antarctic Survey have compiled
a database of meteorological measurements from Halley IV
station during their STABLE project for the purpose of de-
veloping a climatology of gravity wave activity in the bound-
ary layer (King and Anderson, 1988; Rees, 1991; Rees et al.,
2000). The solitary large amplitude disturbances reported
here are typical examples of several observations in the data
set. The meteorological data recorded in the 1986 STABLE
project included wind speed, wind direction, and temperature
on a 32 m mast, with measurements at six heights.

Figure 1 shows the temperature fluctuation about an ar-
bitrary mean and vertical velocity of a wave event recorded
6 June 1986 at a height of 16 m. By eye, it is apparent that the
fundamental assumption of both the KdV theory and BDO
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Fig. 3. Computed shear profile, temperature, Richardson number
and Scorer parameter of the observed solitary disturbance at Halley
Station by the British Antarctic Survey on 6 June 1986, at 100 s
(after the wave passed) with the origin of time defined in Fig. 2,
following Rees and Rottman.

theory is approximately satisfied, i.e. that the streamfunction
and temperature fieldT have the same disturbance waveform
in the horizontal waveguide. Since vertical velocityw is the
expressed through a spatial derivative of the streamfunction,
this can be modelled by separation of variables:

T = A (x, t) θ (y)+O(ε)

w =
∂A

∂x
φ (y)+O(ε) (6)

For simple long waves, to a first approximation

∂A

∂x
= −

1

c

∂A

∂t
(7)

Since it appears that the vertical velocity in Fig. 1 is roughly
proportional to the negative time derivative of the disturbance
temperature field, it is consistent with the premise that either
weakly nonlinear theory (KdV or BDO) applies.

Figure 2 is from a different wave event which occurred on
14 August 1986. Although the qualitative picture remains
very similar to the event on 6 June 1986, there is a funda-
mental difference in the vertical structure of the waveguides.
Figure 3 shows fitted profiles for the background shear flow
and temperature, with the Richardson number and Scorer pa-
rameter computed from them. The details of the modelling of
the data were presented by Rees and Rottman (1994). What
is apparent from the Richardson number plot is that there is

Fig. 4. Computed speed, temperature, Richardson number and
Scorer parameter of the observed solitary disturbance at Halley Sta-
tion by the British Antarctic Survey on 14 August 1986, at 300 s
(after the wave passed) with the origin of time defined in Fig. 3,
following Rees and Rottman.

a stratum of very strong stratification at a low level (circa
10 m) subtended by upper and lower regions of strong shear.
In the vicinity of this stratum, the Scorer parameter has an
internal maximum which is greater than zero, the condition
under which Scorer argued that energy could be trapped at
higher wavenumbers at low levels. Those authors noted that
for this event, the wavelength of waves at the Scorer cut-off
is approximately:

2π
√

0.001 m−2
≈ 200 m

Rough statistics on the solitary disturbance give duration 50 s
and phase velocity 4.5 m/s, i.e. a wavelength of 225 m. Given
the accuracy at which the duration can be estimated, say
between 40 s (wavelength 180 m) and 50 s, this is quite as-
tonishing agreement. Nor is this an isolated event. The
Scorer parameter is negative below 5 m, indicating that all
wavenumbersk≥0 are trapped below this height.

Figure 4 gives the equivalent observed and derived fea-
tures for the wave event on 14 August 1986. In this instance,
the stratum for which stratification dominates shear is both
broader and weaker. The Scorer parameter is negative in this
stratum, indicating that all wavenumbersk≥ 0 are trapped.
Estimates of a duration of 33 s and phase velocity of 7.0 m/s
give a similar wavelength of 210 m.

The events reported here lead to the question of whether
there exists a selection mechanism for the wavelength of
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solitary internal waves. The focus on the Scorer parame-
ter, given the indication that whenL2>0, there is apparent
correlation with observed wavelengths, begs the question of
the mechanism of wavelength selection. Further, if there is
a wavelength selection for waveguides withL2>0, is there
none forL2< 0? The theory developed in the next section is
motivated by these questions.

3 Model system

3.1 Equations and scaling

Consider a fluid layer bounded above and below by parallel
material surfaces. The upper material surface is constrained
to move at velocityU = γH , whereγ is the shear rate, and
is held at constant temperatureT = 1. The lower is held at
T =0 and at rest. As the model that is proposed is Galilean
invariant, an arbitrary uniform wind component could be in-
cluded without loss of generality. The fluid is inviscid and
nonconducting. All lengths are scaled byH , velocity by
U , and time byH/U . The flow is assumed to be two-
dimensional and divergence free, thus expressible through
a streamfunction,(u, v) =

(
9y,−9x

)
. Scalar transport is

modelled as convection only:

Tt +9yTx −9xTy = 0 (8)

A Boussinesq fluid is assumed, with density linearly related
to temperature. The dimensionless density isρ= 1−βT ,
whereβ is the dimensionless group formed from the coef-
ficient of thermal expansionβ∗, the unscaled temperature
difference between the upper and lower surfaces1T , and
ρ0, the density of the fluid at the reference temperature of the
lower surface. Namely,β =β∗1T /ρ0.

Vorticity ω= −∇29 is transported by

0= RiTx +
[
9yt +9y9xy −9x9yy

]
y

+
[
9xt +9y9xx −9x9xy

]
x

(9)

which is the curl of the Boussinesq momentum equation. The
Richardson number is a measure of the relative importance
of buoyant forces to shear forces,Ri=βgH/U2

=N2/γ 2.
The assumption of a Boussinesq fluid is that the velocity field
is divergence-free,β ≡0, and theRi remains finite. No pene-
tration (and stress free) and fixed temperature boundary con-
ditions are imposed:

9|y=0 = T |y=0 = 0

9|y=1 = T |y=1 = 1 (10)

Because there is no dynamic boundary condition, pressure
was eliminated, resulting in the momentum (9).

3.2 Wave disturbances of permanent form

Generally, the flow and temperature fields can be arbitrarily
decomposed into background fields and disturbance fields.
To make the procedure deterministic, the assumption is made

that the disturbance field has zero mean in some sense. The
sense adopted here is that the background fields are time-
averaged and thus steady. Further, the background fields are
prescribed and independent of the horizontalx-coordinate.

T = T̂ (y)+ εT (x, y, t)
9 = ψ̂ (y)+ εψ (x, y, t) (11)

ε=A0/h is the dimensionless characteristic size of the dis-
turbance fields, whereA0 is the maximum value of the initial
disturbance. For convenience, the following representative
case of linear shear and stratification are considered:

T̂ = y

ψ̂ =
y2

2
(12)

Since it is the long time waveform which is required, and it
is expected that that the form of solution will be steady in a
the frame of reference of the phase velocityν, the following
coordinate transform is made:(
x

t

)
→

(
ξ = x − νt

τ = εt

)
;

( ∂
∂x
=

∂
∂ξ

∂
∂t
= ε ∂

∂τ
− ν ∂

∂ξ

)
(13)

It is anticipated that the approach to a wave of permanent
form occurs over a slow time scale. Substituting Eq. (11)
into Eqs. (8) and (9) yields

Tξ (y − ν)− ψξ = ε
(
−θτ + ψξTy − ψyTξ

)[
ψyξ (y − ν)− ψξ

]
y
+ RiTξ +

[
ψξξ (y − ν)

]
ξ

= ε
(
−ψyτ +

[
ψξψyy − ψyψξy

]
y
− ψξξτ

)
+ ε

([
ψξψξy − ψyψξξ

]
ξ

)
(14)

If ε� 1, it is quite natural to consider the vanishing ampli-
tude limit ofε=0. The basic disturbanceT (0), ψ (0) satisfies

T
(0)
ξ (y − ν)− ψ

(0)
ξ = 0[

ψ
(0)
yξ (y − ν)− ψ

(0)
ξ

]
y
+ RiT

(0)
ξ

+

[
ψ
(0)
ξξ (y − ν)

]
ξ
= 0 (15)

The expectation that the disturbance should be wavelike in
the horizontal at any given heighty is equivalent to the sepa-
ration of variables

T (0) (ξ, y) = A (ξ) θ (y)

ψ (0) (ξ, y) = A (ξ) φ (y) (16)

The system (15) then simplifies to

Aξ (θ (y − ν)− φ) = 0

Aξ
[
φy (y − ν)− φ

]
y
+ RiθAξ + Aξξξ (y − ν) φ = 0 (17)

The system (17) has solutions only if a separation condition
onA is satisfied, namely

Aξξξ = −k
2Aξ (18)
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The separation constant was chosen to clarify thatAmust be
a harmonic wave to leading order. If Eq. (18) holds, then the
system (17) reduces to

θ =
φ

y − ν[
φy (y − ν)− φ

]
y
− k2 (y − ν) φ + Ri

φ

y − ν
= 0 (19)

The second equation above is the well known Taylor-
Goldstein equation (Taylor, 1931; Goldstein, 1931) for the
particular case of a constant buoyancy frequency. For pre-
scribedRi, Eq. (19) is a two point boundary value problem
(φ|y= 0=φ|y= 1=0) for the eigenvalueν. In the long wave
limit, the regular spectrum (Davey and Reid, 1977) ofνn,
n= ± 1,±2, . . . , and the singular spectrum (Maslowe and
Redekopp, 1980) (νn ∈ [0, 1]) are known whenRi > 1/4.
For 0<Ri <1/4, νn are complex conjugates, implying that
one harmonic wave grows without bound and the other de-
cays.

Zimmerman and Velarde (1997) demonstrate an analytic
solution for the higher order dispersive terms in the long
wave expansion and solvability condition, which is equiva-
lent to the series solution to Eq. (19) in powers ofk2:

ν = c +

∞∑
l=1

k2lsl (20)

The first fivesl were given in closed form for the regular
modes. It was shown that the radius of convergence of the
seriessl is at leastkr =1 for all Ri andkr ≈10 forRi�1.
In general, with the exception ofRi ↓ 1/4, c� s1� s2�
etc., showing that phase velocity is highly insensitive to finite
wavenumber effects.

3.3 Perturbation expansion

The basic wave solution (18) and the accompanying bound-
ary value problem for the vertical modal structure Eq. (19)
differ fundamentally from the basic state adopted in the shal-
low layer model of Benney (1966). His basic wave is a
simple plane wave, taken in the infinitely long wave limit
k=0, i.e.At + cAx = 0, whereν= c is the phase velocity
found as an eigenvalue of Eq. (19) whenk=0. Benney pro-
ceeded to expand in smallε andk2. There are good reasons
to adopt the infinitely long wave as the basis of an expan-
sion procedure: (i) there are closed form solutions for some
shear profiles (Maslowe and Redekopp, 1980) and stratifica-
tions (Weidman and Velarde, 1992); (ii) the procedure shows
that long wave disturbances approximately satisfy the KdV
equation and thus have soliton or conoidal character. How-
ever, extending the analysis of Benney to a viscous fluid is
problematic–awkward questions about the ordering of weak
nonlinearity, weak dispersion, and weak dissipation arise.
The long wave limit presupposes that viscosity can only have
a damping effect on waves.

Here a regular perturbation expansion is adopted. The
starting point is the separation condition (18), which permits

separation of the full system (14) only up to errors ofO (ε).

Aξξξ = −k
2Aξ +O (ε) (21)

The Ansatz that the full system separates with errors of
O
(
ε2
)

is made with the error in Eq. (21) taking the explicit
form

Aξξξ = −k
2Aξ − ε

∑
i

λiD
(i) (ξ) (22)

The unknown functionsD(i) and coefficientsλi are deter-
mined by requiring that theO (ε) equations have solutions.
The temperature and streamfunction are approximated by

T (ξ, y) = A (ξ) θ (y)+ εT (1) (ξ, y)+O
(
ε2
)

ψ (ξ, y) = A (ξ) φ (y)+ εψ (1) (ξ, y)+O
(
ε2
)

(23)

The system which must be satisfied atO (ε) is

T
(1)
ξ (y − ν)− ψ

(1)
ξ = AAξ

(
φθy − φyθ

)
− Aτ θ[

ψ
(1)
yξ (y − ν)− ψ

(1)
ξ

]
y
+ RiT

(1)
ξ + ψ

(1)
ξξξ (y − ν)

= AAξ
[
φφyy − φyφy

]
y
+ φφy

[
A2
ξ − AAξξ

]
ξ

+− Aτφy − Aξξτφ +
∑
i

λiD
(i)φ (y − ν) (24)

The above system separates, by analogy with Eq. (16)

T (1) =
∑
i

F (i) (ξ) θ (i) (y)

ψ (1) =
∑
i

F (i) (ξ) φ(i) (y) (25)

providedF (i)ξ =D
(i) and to a first approximation theF (i) are

harmonic waves

F
(i)
ξξξ = −κ

2F
(i)
ξ +O (ε) (26)

Linearity of Eq. (24) permits the solution to be constructed
by the superposition of the solutions of five inhomogeneous
boundary values problems, resulting from the assignment of
theD(i) so that each component separates.

D(1) = Aτ

D(2) = Aξξτ

D(3) = AAξ

D(4) = AAξξξ

D(5) = AξAξξ (27)

In the case of the linear termsAτ andAξξτ , κ = k. For the
nonlinear termsAAξ , AAξξξ andAξAξξ , κ =2k. The five
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inhomogeneous systems that arise are

Mk

[
θ (1)

φ(1)

]
=

[
−θ

φy − λ1 (y − ν) φ

]
Mk

[
θ (2)

φ(2)

]
=

[
θ

φy − λ2 (y − ν) φ

]
M2k

[
θ (3)

φ(3)

]
=

[
θyφ − θφy[

φφyy − φ
2
y

]
y
− λ3 (y − ν) φ

]

M2k

[
θ (4)

φ(4)

]
=

[
0

−φφy − λ4 (y − ν) φ

]
M2k

[
θ (5)

φ(5)

]
=

[
0

φφy − λ5 (y − ν) φ

]
(28)

The linear operatorM is identified by rewriting Eq. (19) as a
homogeneous boundary value problem. The Fredholm al-
ternative theorem provides a criterion for the existence of
solutions of the above five inhomogeneous boundary value
problems–the inner product of the forcing vector with any
eigenfunctions of the adjoint operatorM∗ must vanish. Due
to the extended separation of variables (22) and (25), the
Fredholm alternative theorem holds independently for all
D(i) since a linear system (28) results for each undetermined
functionD(i) that is solvable only if the identifications (27)
are made. Thus since the quadratic order operators are all
M2k, the criteria is that the inhomogeneous forcing vector
must be orthogonal in these cases to the eigenfunctions of
this operatorM2k, notMk. This solvability condition only
obtains because the extended separation of variables (22)
and (25) results in a hierarching of linear systems for which
the superposition principle holds. This distinction must be
made since there is no general solvability condition for fully
nonlinear systems, for instance Eq. (14). The purpose of
our analysis is to use perturbation methods and a separation
scheme so that the component linear systems (28) are solv-
able.

In order to save on computations, it is desirable to work
with a self-adjoint system. Following Weidman and Velarde
(1992), it is observed that the boundary value problems for
the modified vertical eigenfunctions

ϕ(i) =
φ(i)

y − ν
(29)

are self-adjoint. Namely, the linear operator, on eliminating
the temperaturesθ (i) is

Lk [ϕ] =
[
(y − ν)2 ϕy

]
y
+

(
Ri − k2 (y − ν)2

)
ϕ (30)

The five inhomogeneous boundary value problems now for

theϕ(i) are

Lk

[
ϕ(1)

]
= Riθ + φy (y − ν)− λ1 (y − ν)

2 φ

Lk

[
ϕ(2)

]
= φ (y − ν)− λ2 (y − ν)

2 φ

L2k

[
ϕ(3)

]
= −Ri

(
θyφ − θφy

)
+ (y − ν)

[
φφyy − φ

2
y

]
y
− λ3 (y − ν)

2 φ

L2k

[
ϕ(4)

]
= φφy (y − ν)− λ4 (y − ν)

2 φ

L2k

[
ϕ(5)

]
= −φφy (y − ν)− λ5 (y − ν)

2 φ (31)

Application of the Fredholm alternative theorem yields the
following expressions for theλi :

λ1 =

1∫
0

(
Riθ2

+ φyθ
)
(y − ν) dy

1∫
0
φ2 (y − ν) dy

λ2 =

1∫
0
φ2dy

1∫
0
φ2 (y − ν) dy

λ3 = −

Ri 1∫
0

θ (2k)
(
θyφ − θφy

)
dy

+

1∫
0

θ (2k) (y − ν)
[
φφyy − φ

2
y

]
y
dy



·

 1∫
0

θ (2k) φ (y − ν)2 dy

−1

λ4 =

1∫
0
θ (2k) φφy (y − ν) dy

1∫
0
θ(2k)φ (y − ν)2 dy

λ5 = −λ4 (32)

Figure 5 shows an example calculation of the phase ve-
locity ν (k) for Ri=10, and the eigenfunctionϕ (y) with
k=0.05. The two point boundary value problem (30) was
solved numerically with homogeneous boundary conditions.
As the boundary value problem is derived from an invis-
cid model, it does not suffer from the well known parasitic
growth problem, thus standard numerical integration tech-
niques (e.g. Runge-Kutta) are sufficient to maintain accuracy.
The inviscid modes were solved for previously by Davey and
Reid (1977) using a long wave limit. The extension to finite
wavenumber is straightforward here. The only particular dif-
ficulty, somewhat apparent from Fig. 5, is that the approach
of the eigenfunction toy=1 becomes steep asRi→1/4,
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Fig. 5. (a)Phase velocityν vs. wavenumberk atRi=10. (b) Eigenfunctionϕ vs. heighty with k=0.05 andRi=10.

causing Newton’s method to fail. The bisection method,
however, does not suffer from numerical difficulties in this
case. The search for the phase velocityν (k) was limited to
ν>1 in all cases.

There are two types of modes for the boundary value prob-
lem (19). Regular modes haveνn>y for y ∈ [0, 1]. Singular
modes haveνn= ycrit for a critical heightycrit. The analysis
given here tacitly assumes thatνn is positive, i.e. the waves
move rightward. For regular modes, it is clear that the de-
nominator in Eq. (32) is always negative, regardless ofk and
Ri. For the singular modes it appears possible that the de-
nominator can change signs. It can be verified that for the
eigenfunctions found by Maslowe and Redekopp (1980) for
the singular limitk=0 and Couette shearing, the denomina-
tor is also negative for allRi.

Figure 5 demonstrates weak dependence ofν (k) on k –
apparently quadratic with small coefficient∼−0.01 in the
long wave regime. The apparent quadratic ink behaviour of
ν (k) to a first approximation is entirely consistent with the
assumptions of the long wave theory of Zimmerman and Ve-
larde (1997). Figure 6 demonstrates the computation of the
thek−dependence of theλi . Again, consistent with Zimmer-
man and Velarde (1997), the coefficients of the linear terms,
λ1 andλ2, show a quadratic dependence ink that is numer-
ically small (5–10%) of the leading order value. The coef-
ficients of the nonlinear terms,λ3 andλ4, also demonstrate
quadratic dependence onk.

Given that all the coefficients derived above for the separa-
tion condition demonstrate quadratic dependence onk (least
squared fits show the linear term ink is of the order of trun-
cation error), the whole of the long wave regime can be de-
scribed by thek→0 leading order term and the coefficient
of O(k2) for ν and theλi for fixedRi. Representative val-
ues ofRi are taken in Table 1 and the coefficients of the
power series expansion shown toO(k2). There are some key
observations: (i) the higher order nonlinearity (λ4) is 2–3 or-
ders of magnitude smaller than the leading order nonlinearity
(λ3) throughout this whole range; although the implication is
that higher order nonlinearity is negligible, it turns out that

it plays an important role in solitary wave collisions; (ii) the
coefficient of the accumulation termλ1 is practically invari-
ant withRi; (iii) the coefficientλ2 of the mixed derivative
termAξξτ does not become negligible within a representa-
tive range ofRi, and is typicallyO(1); (iv) formally, in or-
der for the perturbation theory applied here to be valid, all
of the termsελi must be small relative to unity, putting an
upper limit on the magnitudeε of the wave amplitude; thus
the formal constraint at lowRi is on the coefficient of non-
linearity ελ3�1, and for highRi it is on the accumulation
coefficientελ1�1. In practice, however, the stability of the
solitary wave depends on a balance between the leading non-
linear term and dispersion. Zimmerman and Velarde (1997)
argue that the balance of these terms leads to the requirement
thatUr∗= ελ3/k

2
≈1 so that solitary waves neither break

by steepening nor by spreading. This condition permits ex-
tremely large solitary waves whenRi�1, since the numer-
ically small coefficientλ3 offsets largeε values so that the
product still satisfies the formal requirement of the perturba-
tion theory. In this paper, however, the formal requirement
would be violated in the highRi regime asελ1 becomes the
limiting contribution.

4 Solutions to the nonlinear evolution equation

4.1 Analytic solutions to the hybrid BBM-KdV equation

In this section, the solutions to the separation (22) are consid-
ered. In light of the numerical values ofλ4� λ3 for all Ri, it
is convenient to begin the discussion by neglecting the higher
order nonlinear terms below. When numerical solutions are
considered, however, the full Eq. (22), suitably scaled and
transformed, will be simulated.

k2Aξ + Aξξξ + ε
(
λ1Aτ + λ2Aξξτ + λ3AAξ

)
= 0 (33)

Equation (33) is an ordinary differential equation for the
waveform in frame ofξ = x− νt . Regardless of the val-
ues of the coefficients (unless zero), this equation is equiv-
alent to the KdV equation at steady state and always has
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Fig. 6. Coefficientsλ1, λ2, λ3, λ4 vs. wavenumberk atRi=10.

Table 1. Representative values of the coefficients in Eq. (33) for variousRi.

Ri c0
∂2ν

∂k2
|k=0 λ1

∂2λ1

∂k2
|k=0 λ2

∂2λ2

∂k2
|k=0 λ3

∂2λ3

∂k2
|k=0 λ4

∂2λ4

∂k2
|k=0

2. 1.103 -0.01199 8.960 1.012 -1.963 -0.09875 −95.10 −52.69 1.777 1.805
5. 1.310 -0.02787 9.469 1.004 -1.334 -0.06638 −31.73 −11.32 0.4493 0.4358

10. 1.576 -0.04444 9.662 1.000 -0.9675 -0.04846 −16.54 −4.547 0.1751 0.1648
20. 1.973 -0.06665 9.764 1.000 -0.6932 -0.03487 −9.445 −2.148 0.07270 0.06678
50. 2.782 -0.1091 9.827 1.000 -0.4419 -0.02230 −4.942 −0.9530 0.02445 0.02201

100. 3.705 -0.1561 9.848 1.000 -0.3133 -0.01583 −3.175 −0.5670 0.01117 0.00995
500. 7.628 -0.3523 9.865 1.000 -0.1404 -0.00710 −1.248 −0.2030 0.00197 0.00173

1000. 10.57 -0.4987 9.867 1. -0.09932 -0.005022 −0.8560 −0.1352 0.00096 0.00084

localisedsech2 soliton solutions and periodic conoidal wave
solutions. Equation (33) has the same form as the inviscid
limit of a wave evolution equation found by a center mani-
fold approach by Zimmerman and Velarde (1996) which ap-
proximates the vertical modal structure of temperature by a
sine function and absorbs the error into the coefficients of the
horizontal wave equation upon depth averaging.

In addition to the steady wavesech2 soliton solutions for
Eq. (33), as the underlying dynamical system is dissipation-
free and nonlinear, one must entertain the possibility of mul-

tiple steady wave homoclinic solutions whose phase velocity
depends on amplitude. It is logical to seek solutions in the
form of Eq. (2):

A = sech2
(
ξ − Ct

3

)
(34)

Further, it is convenient to return to the original time scale:

k2Aξ + Aξξξ + λ1At + λ2Aξξ t + ελ3AAξ = 0 (35)
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Imposing Eq. (34) as solution to Eq. (35) yields the
following constraints on3 andC:

32
= 8

1− Cλ2

k2− Cλ1+ ελ3

C =
−20+ k232

+ 2ε32λ3

32λ1− 20λ2
(36)

That there is a solution of this form is not surprising. Equa-
tion (35) is a hybrid between the KdV equation and the simi-
lar BBM equation proposed for surface water waves by Pere-
grine (1966) and Benjamin et al. (1972). The BBM equation
has been extensively studied by numerical integration (Bona,
1980) and shown to havesech2 solutions with collision prop-
erties that differ from the soliton (see Bona, 1980). The fol-
lowing remarks follow from Eq. (36):

– Sinceτ = εt , using the original time variable keeps the
phase velocityC as a regular quantity inε.

– There is a double parameter(ε, k) infinity of solutions
with 32 (ε, k) andC (ε, k).

– Equation (36) has two solutions:

C =
k2

λ1
+
ελ3

3λ1
, 32

=
12λ1− 12k2λ2− 4ελ2λ3

ελ1λ3

C =
1

λ2
, 32

= 0 (37)

As the latter has apparently no physical meaning, it is
rejected as extraneous. The former, however, has sev-
eral meaningful special cases.

Classical solution theory for the KdV shows that the
phase velocityC is linearly proportional to the ampli-
tudeε, and that the halfwidth is inversely proportional
to the square root of the amplitude. This can be seen
to hold in the same small amplitude, long wave limit for
which Benney (1966) first derived the KdV equation for
internal gravity waves. ForRi=10 and smallk andε,
the asymptotic expansion of Eq. (37) yields

C = 0.1035k2
+

(
−0.5705− 0.09778k2

)
ε +O(k4, ε2)

32
=

12(
−16.54− 4.547k2

)
ε

(38)

– Special case of noτ -dependence, equivalent to
λ1= λ2=0
This results in

C = 0 32
=

8

k2+ ελ3
ε→

−3k2

λ3

The latter condition shows that there are only steady
wave solutions in the reference frameν if the constraint
on the amplitude balancing weak dispersion is satisfied.

This is effectively a modified Ursell number for the sit-
uation:

ε

k2
=
−3

λ3

If L2>0, by the argument of the Introduction,k=L
is the wavenumber selected by the waveguide for the
longest wave trapped, then the amplitude of such waves
is completely fixed by the Ursell number condition.
Zimmerman and Velarde (1997) estimateλ3 in the long
wave limit as follows:

λ3 =
λc

(Ri + 2) |c − 1|1/2

(
1−

∣∣∣∣c − 1

c

∣∣∣∣3/2
)
, (39)

whereλ=
√
Ri−1

4. This function becomes unbounded
asRi↓1/4, demonstrating that thisτ -invariant steady
wave has vanishing amplitude for strongly sheared, but
stable stratifications. Conversely, this function vanishes
asRi→∞, implying that this solitary wave is required
to become extremely large as the stratification becomes
strong. There is no violation of the formal requirements
under which the weakly nonlinear theory was derived,
as the nonlinear terms remain small both in Eq. (33)
and the full heat and momentum equations. It should be
noted that qualitatively, the predictions of solitary waves
of temperature depression, the wavelength appropriate
to the Scorer parameter, and a large amplitude distur-
bance occurring in a highRi≈ 800 waveguide are borne
out in the STABLE wave event on 6 June 1986 reported
here.

– Special case of the long wave limitk=0
It is noted that the halfwidth3 is given by

32
→

4
(
λ2
λ1
+

7
ελ3

)
3

(40)

with phase velocity

C →
− (ε λ3)

7λ1
(41)

specified as the infinitely long wave limiting solution.
With ε�1, the former specifies an Ursell number

ε 32
→

28

3λ3
(42)

which agrees with the findings of Zimmerman and Ve-
larde (1997) in the long wave limit. Thus, whenL2<0,
the expectation is that the longest trapped harmonic
waves would bek= 0, giving rise to the usual constraint
that the nonlinearity balances dispersion so as to con-
strain the amplitude and halfwidth of the solitary wave
jointly.
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It was found from the numerical evaluation of the coeffi-
cientsλn that at allRi, there is only a weak dependence on
wavenumberk (see Table 1), and thus the long wave limit
k=0 is a good estimate for the coefficients appropriate to
long waves. Thus, we can use Eq. (40) to test our original
hypothesis that theL wavenumber is a good predictor of the
halfwidth of a solitary wave of permanent form. We argue as
follows. For the case of Couette shear, the definition (4) of
the Scorer parameterL, in the scales chosen here, reduces to

L2
=

Ri

(y − ν)2
(43)

Consequently, the minimum wavenumber that does not radi-
ate vertically is found at the bottom of the waveguidey=0:

L2
m =

Ri

ν2
(44)

Equation (42) implies that for a solitary wave of permanent
form,32

∼1/λ3. Thus, if the halfwidth is predicted by the
extreme Scorer parameter, thenλ3ν

2/Ri must be a constant.
Figure 7 tests this hypothesis. Strikingly, the desired near
constant behaviour is found for highRi. This is gratifyingly
in agreement with the observation from the STABLE data
set illustrated in Fig. 3. The spike inRi to ∼1000 at about
10 m in height coincides with the extreme Scorer parame-
ter which best approximates the halfwidth of the observed
solitary wave of temperature depression shown in Fig. 1. Re-
markably, the nonlinear theory derived here shows an intrin-
sic feature (the halfwidth3) of the nonlinear solitary wave
that is set by the Scorer parameter of linear theory. One can-
not help but wonder how this arises. A key point is that the
solitary wave is of permanent form (34), which translates into
a requirement on the modified Ursell number (42) that it be
fixed at a value that balances nonlinearity and dispersion. So
although the mathematical analysis permits the amplitudeε

to be a free parameter, the physical stability of the wave-
form (34) which requires the balance of nonlinearity and
dispersion, is equivalent to fixing the value of the modified
Ursell number (42). Since at highRi, the factor32

∼ 1/λ3
is roughly constant, a fixed modified Ursell number imposes
a fixedε. Thus, in highRi waveguides, the halfwidth and
amplitude of solitary waves of permanent form are selected
by the dynamics of the NEE and the stability criterion that
the wave be of permanent form.

In the Introduction, the appropriateness of the modelling
of the boundary conditions (10) used by both Benney and
Benjamin was discussed. It should be clear at this point that
the feature that is being modelled is the trapping of wave en-
ergy within a waveguide. As a fluid stratum embedded within
a stratification, the vertical extent of the waveguide must
itself be determined. Scorer’s criterion (Scorer, 1949) for
the trapping of wave energy essentially identifies the waveg-
uide for which the boundary conditions (10) are a plausi-
ble model. The frequent recurrence of the halfwidth of ob-
served solitary waves in agreement with the Scorer parameter
(Rees and Rottman, 1994) is a consequence of the longevity
of large amplitude solitary waves in highRi waveguides.
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Fig. 7. Plot of λ3ν
2/Ri vs. Ri. If the Scorer wavenumberL is

inversely proportional to the halfwidthλ of the solitary wave, then
the quantity plotted on the ordinate should be constant withRi. It
apparently approaches a constant at highRi.

The theory presented here predicts this occurrence in high
Ri waveguides. Curiously, although the NEE derived here
nonlinearizes about finitek harmonic wave packets, this re-
sult about wavenumber selection is not sensitive to the ba-
sic wavenumberk, and holds in thek=0 limit. Thus, this
prediction should be available from the theory derived from
the infinitely long wave limit by either Benney or Benjamin.
Nevertheless, in this paper, a new NEE which can be limited
to finite wavenumber disturbances has been derived, so its
properties should be characterized. In the next subsection,
localized analytic solutions are presented. In the following
section, numerical simulations explore the soliton-like colli-
sion properties of solitary wave solutions to the NEE.

4.2 Analytic solutions of the nonlinear evolution equation

Since the solitary wave form (34) fits solutions to the KdV
equation and the BBM-KdV Eq. (33), it is reasonable to
search for solutions of this form to the the full NEE (22). Sur-
prisingly, the extra nonlinearity in this equation does not de-
stroy the existence of an analytic solution of the homoclinic
type, without recourse to further approximations. Imposing
Eq. (34) as solution to the full nonlinear evolution Eq. (22)
yields the following constraints on3 andC:

C =
−20+ k23+ 23ελ3− 18ελ4

3λ1− 20λ2

3 =
8− 8Cλ2+ 6ελ4

k2− Cλ1+ ελ3
(45)

These constraints can be analytically solved for two
solutions; only the following is physically meaningful:
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Table 2. Characterization of the solitary solutions (34) to the hybrid BBM-KdV Eq. (35), whereλ4=0, and ZR (22) equations forRi=10
and variousk, ε pairs.

k ε C BBM-KdV 32 BBM-KdV C ZR 32 ZR

0.05 -1 0.570442 0.725191 0.5336 0.972316

0.05 -6 3.42446 0.120865 2.72698 0.312483

0.05 -12 6.84866 0.0604326 4.82226 0.215112

C =
−3k2 (1+ ελ4)+ ελ3 (4+ 3ελ4)

D

+

(
k2
+ 2ελ3

)
λ1D

(
λ2

(
3k2
+ ελ3

))
+

(
k2
+ 2ελ3

)
λ1D

×

√
−6ε2λ1λ2λ3λ4+

(
λ2
(
3k2+ ελ3

)
− 3λ1 (1+ ελ4)

)2
32
=
−2λ2

(
3k2
+ ελ3

)
ελ1λ3

+
3(1+ ελ4)

ελ3
+

2

ελ1λ3

×

√
−6ε2λ1λ2λ3λ4+

(
λ2
(
3k2+ ελ3

)
− 3λ1 (1+ ελ4)

)2
where

D = −λ2

(
3k2
+ 11ελ3

)
+ 3λ1 (1+ ελ4) (46)

+

√
−6ε2λ1λ2λ3λ4+

(
λ2
(
3k2+ ελ3

)
− 3λ1 (1+ ελ4)

)2
ForRi=10 and smallk andε, the asymptotic expansion

of Eq. (46) yields

C = 0.1035k2
+

(
−0.5705− 0.09778k2

)
ε + O (k4, ε2)

32
= 0.2734+ k2

(
−0.1061+

0.1269

ε

)
−

0.7257

ε
+ O (k4, ε)(47)

This is closely comparable with the approximation ofλ4=0
of the last subsection. As it has just been shown that there
is a new, analytic solution of the solitary wave form to a
newly derived inviscid NEE, it is conventional to explore by
numerical simulations along the lines of the seminal paper
by Zabusky and Kruskal (1965) whether the solutions are
soliton-like in character.
Table 2 demonstrates the distinctly different solitary wave
features for the two different solitary wave equations ex-
plored here – the ZR solitary wave is always broader and
slower propagating due to the presence of the hypernonlin-
earity with coefficientλ4.

4.3 Numerical simulations of the nonlinear evolution
equation

It is well known that NEEs that are modified KdV equations
are difficult to simulate numerically. For instance the KdV-
KSV equation with both instability and hyperdiffusion terms
required treatment by the method of variational embedding

(Christov and Velarde, 1995), as standard finite difference
approximations were found to be inherently unstable.

One technique that has demonstrated robust stability prop-
erties is the method of lines (MOL). Schiesser (2001) de-
scribes the salient features that the spatial discretization is
established permanently in the simulation, but the temporal
solution is adaptive, using local error estimates to adapt the
time step to within the desired error tolerance. We coded the
method of lines, using Runge-Kutta-Fehlberg (a 4–5 method)
in time, and up to seven point differences to accomodate the
Aξξξ term. Figure 8 shows the evolution of a single local-
ized disturbance under the approximate KdV dynamics and
of the ad hoc removal of the “BBM term”Aξξ t , which has
only the extra nonlinearity in addition to the KdV terms. Al-
though this method proved adequate for the approximations
attempted in Fig. 8, demonstrating the known analytic form
of solution Eq. (34), it was not possible to include either the
BBM term nor to resolve overtaking collisions of two ini-
tial disturbances. With the method of lines technique, the
BBM term,Aξξ t , can only be included consistently by finite
difference approximations at the last time step. This delay
contributes to numerical instability, which manifests as the
inability to adapt the time step to the error tolerance. The
collision simulation with MOL performs adequately with the
KdV equation, with nonlinearity treated by delayed differ-
ences. However, the additional nonlinear terms form a shock
wave upon collision which cannot be resolved by the tech-
nique.

Since the difficulty lies within the delayed difference treat-
ment of some terms, the prescribed solution is to use semi-
implicit integration schemes. The workhorse method is the
Crank-Nicholson scheme, which uses spatial centered differ-
ences arithmetically averaged between the current time and
the future time step. These must be simultaneously solved.
In the method adopted here, the linear terms are treated in
the Crank-Nicholson fashion. The nonlinear terms are ap-
proximated by delays. The BBM term is treated by an Euler
step in time, centered difference at both the current and fu-
ture time. IfA(ξ = jh, τ = n1t)=Anj , whereh is the spatial
resolution, then a banded matrix equation results:

a1A
n+1
j+2+ a2A

n+1
j+1+ a3A

n+1
j + a4A

n+1
j−1+ a5A

n+1
j−2

= b1A
n
j+2+ b2A

n
j+1+ b3A

n
j + b4A

n
j−1+ b5A

n
j−2

+N
(
A,Aξ , Aξξ , Aξξξ

)
(48)
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Fig. 8. (a) Simulation of only the KdV terms in Eq. (35) and(b) Simulation of the all terms in Eq. (35) except the BBMAξξ t term; for
Ri=10 andk=0.05, with an initial conditions of Eq. (34) with (a)ε=−6; (b) ε=−1 with origin shifted tox0=10. Time is scaled
arbitrarily so as to graphically separate successive time steps. In (a)t ∈ [0, 20]. In (b), t ∈ [0,40]. Both simulations have spatial resolution
h=0.1 horizontally.

The scheme is first order in time, second order in space.
For the purposes of discussion, it is necessary to note
only that a1= 1/2h3 and a3= λ1/1t − λ2/1th

2. Crank-
Nicholson methods are absolutely stable (see e.g. Ganzha
and Vorozhtsov (1996) for the von Neumann criterion).
However, the sparse solver method becomes poorly condi-
tioned if the matrix is not diagonally dominant, leading to
spurious oscillations. Typically, for third order pdes, the con-
dition for diagonal parity is that1t ≈h3, i.e. the first term
of a3 is of the same order asa1. This necessitates ridicu-
lously small times steps1t for any common choice of res-
olution in ξ , say 10−2. In this case, however, diagonal par-
ity is achieved by balancing the second term ofa3 with a1,
yielding1t ≈h. This is apparently a desirable situation from
the standpoint of stability. Curiously, however, the system
is poorly conditioned at achieving accuracy with decreasing
1t andh. As the second term ina3, which originates from
the BBM term, always dominates the first term ash↓, it is
found that the linear terms in Eq. (48) approximate an iden-
tity operator on any signalA(ξ) at a given time. (b3 has a
similar structure, which leads to the mappingAn+1

j ←Anj as
h↓. Thus, only sinceλ1 is naturally larger in modulus than
λ2 (see Table 1) is there a window in simulation parameter
space(h,1t) which is reasonably accurate and numerically
stable.

As an aside, it is possible to evade the whole issue of sim-
ulating the BBMAξξτ term via applying the perturbation as-
sumption. Peregrine (1966), in deriving the equation for an
undular bore, noted that up to the order of the error in the per-
turbation scheme,Axxt ∼Axxx . In this case, the fundamental
assumption of a harmonic wave to leading order Eq. (18), al-
lows the approximationλ2Aξξτ ∼−k

2λ2Aτ , which is a mi-
nor modification to the accumulation term. However, this is
formally only valid forε� 1. Indeed, although the NEE de-
rived here Eq. (35), is formally only valid for smallε, in the
case of highRi (see Table 1), the coefficients of the nonlin-

ear terms are naturally small, implying that large amplitude
is possible before the practical requirement that the neglected
terms are appreciable comes into force. Consequently, a ro-
bust simulation for largeε has practical value.

Figure 9 demonstrates the Crank-Nicholson simulation of
the full NEE Eq. (35) for single and double localized distur-
bance initial conditions of the form Eq. (34) appropriate to
the analytic solution forC and3. In contrast to the MOL
solutions, here the solitary wave amplitude is taken as intrin-
sically positive, even thoughε=−1. So these frames both
represent waves of temperature and streamfunction depres-
sion. Frame (a) agrees roughly with the expected analyt-
ically predicted phase velocityC for the given conditions.
Frame (b) demonstrates a clear phase shift – a boost to the
larger, overtaking wave and a delay to the slower wave – due
to the collision. The waves themselves appear unchanged
at this resolution. These features establish the soliton-like
character of the solutions (34) as originally established by
Zabusky and Kruskal (1965).

Contemporary connotations of soliton character imply that
the equation is integrable (e.g. Cervero and Zurron, 1996),
and thus an inverse scattering transform exists (for instance,
Gardner et al., 1967) which permits the characterization of
the time asymptotic state. Whether or not the NEE (35)
is integrable is not addressed here. There is greater likeli-
hood that it is integrable if it conserves wave energy, which
is tested below. Multiplying the NEE byA, and integrating
over all space yields:

λ1
d

dt

∞∫
−∞

A2dξ = −λ2I2− k
2

∞∫
−∞

AAξξξdξ

+ ελ3

∞∫
−∞

A2Aξdξ − ελ4I4 (49)
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Fig. 9. Simulation of the full Eq. (35); forRi=10 andk=0.05, with an initial conditions of Eq. (34) withε=−1, with origin shifted to
(a) x0=10 for a single disturbance of unit amplitude and(b) an additional disturbance initially atx1=20 with half unit amplitude. In both
figures, integer times and unit amplitudes are displayed. Both simulations haveh=0.025 horizontally and1t =0.001.

Terms two and three on the RHS of Eq. (49) are well known
from the KdV equation to identically vanish with boundary
conditions thatA and all its derivatives vanish atξ→±∞.
The other two terms will be considered individually, by in-
tegration by parts. Only the first contribution toI4 need be
considered, as one integration by parts yields the same form
as the other term, which is constructively reinforced:

I4 =

∞∫
−∞

[
A2Aξξξ − AAξAξξ

]
dξ

= −3

∞∫
−∞

A
(
AξAξξ

)
dξ

= −
3

2

∞∫
−∞

A
∂A2

ξ

∂ξ
dξ =

3

2

∞∫
−∞

A3
ξdξ (50)

The second term is readily evaluated as

I2 =
d

dτ

∞∫
−∞

AAξξdξ = −
d

dτ

∞∫
−∞

A2
ξdξ . (51)

The latter, combined with Eq. (49) leads to the conclusion
that wave energy and momentum are not conserved, but
rather are interchanged and can be created or destroyed, ac-
cording to the sign ofAξ as seen below.

d

dτ

∞∫
−∞

(
λ1A

2
+ λ2A

2
ξ

)
dξ = −

3

2
ελ4

∞∫
−∞

A3
ξdξ . (52)

Although it should be noted that the RHS Eq. (52) has a small
constant of proportionality, for steep waveforms the NEE
lacks any mechanism to oppose shock formation. Thus, dis-
sipative mechanisms that were neglected in the model (vis-
cous friction, thermal or solutal diffusivity) would play a

necessary role in preventing the formation of a discontinu-
ity through feedback from wave steepening through the RHS
of Eq. (52). Otherwise, ifλ4 is negligible, it can be seen that
the weighted combination of wave energy and wave momen-

tum
〈
λ1A

2
+ λ2A

2
ξ

〉
is conserved. The angle brackets refer

to the integral over all space. The NEE can be differenti-
ated with respect toξ , multiplied byA, and integrated over
all space, which by analogy with the above Eq. (49), should

yield a conservation of
〈
λ1A

2
ξ + λ2A

2
ξξ

〉
. Iterating this pro-

cess will lead to an infinity of conserved quantities. Whether
this is sufficient to demonstrate that this system is integrable
is an open question. If so, then there is likely to be an in-
verse scattering transformation, which would theoretically
specify the time asymptotic state. Zimmerman and Haarlem-
mer (1999a) have demonstrated some utility in the discrete
periodic inverse scattering transform (DPIST) for analysis of
wave propagation in a stratified fluid. The DPIST analysis
identified the “soliton” component of a wave passing the sen-
sor that was unchanged at a second sensor downstream in a
stratified wave tank. Osborne and coworkers (see Osborne
and Petti, 1994, and references therein) have pioneered the
use of DPIST as a data analysis tool for surface water wave
data sets.

It should be noted that the NEE can be formally mod-
ified by application of the original separation condition
that to leading order, the waveform should be a har-
monic wave. This permits the formal substitution that
Aξξτ =− k

2Aτ +O(ε). This alters the conserved quantity
to
〈(
λ1− k

2λ2
)
A2
〉
. It also reduces the NEE, with the as-

sumption|λ4|� 1, to the KdV equation. Thus, the NEE is a
“nearly integrable” system, for which DPIST may prove suf-
ficiently accurate for long waves of nearly permanent form.
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5 Conclusions

In this paper, the important role of the Scorer parameter in
defining a waveguide that traps wave energy in a stratum
embedded in a deeper fluid is argued. In particular, it is
noted that infinitely long waves are not trapped horizontally
in such a waveguide. Atmospheric observations illustrated
the remarkable fact that in waveguides so defined, and char-
acterized by a highRi, the halfwidth of observed large am-
plitude disturbances coincides with the wavenumber of the
Scorer parameter. It is remarkable that an intrinsic feature
of a nonlinear wave is dependent on a feature of the linear
theory, especially since canonical KdV theory would predict
that key features of a solitary wave, halfwidth and phase ve-
locity, are amplitude dependent. Thus a new theory, not lim-
ited to infinitely long waves as the basic state, is derived.
For stably stratified fluid layers under Couette shear embed-
ded in a deeper fluid, an expansion procedure is presented
for weakly nonlinear, planar shallow water waves. Nonlinear
wave equations are derived for basic states–travelling waves
admitted by the linearized system–internal gravity waves
modified by shear. Under the common approximation that
buoyancy affects little the inertia of the wave, the coefficients
of the evolution equations are uniquely determined as func-
tionals of the shear and stratification profiles, for allRi and
k. Limiting cases are analyzed, demonstrating that in high
Ri waveguides, solitary waves of permanent form do have
halfwidths inversely proportional to the Scorer parameter. A
localized analytic solution to the NEE for finite wavenum-
ber basic disturbances is found.Numerical simulations ex-
plore the soliton-like collision behaviour of two such waves
engaged in an overtaking collision. For values of the coeffi-
cients appropriate forRi=10 in linear shear, the initial states
recur with a “phase shift”. Whether this is a consequence
of the “near integrability” of the NEE for these coefficients
is discussed by energy arguments. If the smallest nonlinear
terms are neglected, the NEE has an infinite number of con-
served quantitities, so it may be integrable itself. Arguments
consistent with its original derivation would make this ap-
proximate form for the NEE equivalent to the KdV equation,
which is structurally “near integrable” if not integrable in its
own right. The integrability is an important concern if an in-
verse scattering transform analysis, improving on the DPIST
methodology applied by Osborne and coworkers (Osborne
and Petti, 1994), among others, is to be developed based on
this NEE.
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