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Abstract. The question of which length scale equation to
use in models of turbulence has long been controversial and
several approaches have been suggested and used in the past.
In this paper, we demonstrate that all these approaches are
equivalent and the inconsistencies in the use of some of
these approaches arise from improper modeling of the dif-
fusion term in the length scale equation. We formulate a
general length scale equation, which encompasses all current
approaches. This equation is devoid of inconsistencies and
should prove useful in its general form, or one of its subsets,
in turbulence closure modeling.

1 Introduction

The weakest link in second moment turbulence closure has
always been the specification of the turbulence macroscale
`. If one accepts the second moment closure methodology
as one of the currently available methods of some practical
utility, if not conceptual elegance or physical unassailabilty,
then it is natural to ask what its strengths and weaknesses
are, and how one can remedy the latter. In this sense, the
question of the turbulence length scale and how to model it
properly are still outstanding issues in second moment clo-
sure. Here, we look at the many approaches that have been
proposed and ascertain why certain approaches are problem-
atic. We derive an equation for a generalized quantity involv-
ing the length scale that in turn encompasses all the current
approaches properly, and hence can be used for whatever ap-
proach one chooses.

The bare minimum description of turbulence requires two
quantities: 1. The intensity of turbulence indicated by the
kinetic energy in the turbulent fluctuations, or equivalently,
the turbulence velocity scaleq, and 2. The scale around
which this energy is concentrated, represented by the peak
in the turbulence spectrum, or equivalently the turbulence
length scalè . It was Ludwig Prandtl who pioneered the
use of one-equation turbulence models in which an equa-
tion for the turbulence kinetic energy (TKE) is solved but the
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length scale is suitably prescribed (Prandtl, 1945). However,
it was Kolmogoroff, who was the first to propose the use of
two-equation models in which equations for both the TKE
and a quantity involving the length scale are solved (Kol-
mogoroff, 1942). Since then, considerable progress has been
made in modeling turbulence, culminating in the currently
popular second moment closure models involving differen-
tial equations for TKE and a quantity involving̀, along with
algebraic expressions for the second moment quantities, de-
rived by appropriate simplification of the full set of 10 par-
tial differential equations for the second moment turbulence
quantities Reynolds stressτij , turbulent heat fluxqi and the

temperature varianceθ2. These models are called algebraic
stress models (Level 2.5 in Mellor and Yamada 1974 termi-
nology). We will not discuss algebraic stress models here,
but instead concentrate on the length scale equation. Inter-
ested readers are referred to Cheng et al. (2002), Kantha and
Clayson (1994), Galperin et al. (1988), Rodi (1987), Mellor
and Yamada (1974, 1982), and Hanjalic and Launder (1974).
Mellor and Herring (1973), a dated but still insightful survey
of turbulence closure, touches upon some of the issues dis-
cussed in this paper. The reader is also referred to Kantha
(2003) for the latest update of the second moment closure
constants that removes some of the problems that were ev-
ident in the original Mellor and Yamada (1982) closure. In
particular, a better agreement with the observed wind veloc-
ity profile in the atmospheric surface layer is obtained from
the use of the updated constants.

There is no ambiguity in the proper form of the TKE equa-
tion (Mellor and Yamada, 1982; Galperin et al., 1988; Kan-
tha and Clayson, 1994; Baumert and Peters, 2000), which
can be readily derived from the equations for the Reynolds
stresses. We write down The TKE equation here for future
reference:

Dk

Dt
−

∂

∂xj

[
νt

σk

∂k

∂xj

]
= P + B − ε

= −ujuk

∂Uj

∂xk

− βgjuj θ − ε (1)
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whereP is the shear production,B is the buoyancy pro-
duction andε is the dissipation rate of TKE(k). The quan-
tity νt=Cµk2/ε is the turbulent viscosity andσk is the TKE
Prandtl number. D/Dt is the substantial derivative and the
second term on the left hand side is the turbulent diffusion
term, modeled as down-the-gradient transport of TKE. The
traditional value forσk is 1.0. Almost allk−ε modelers have
usedCµ=0.09.

For thin horizontal shear layers, this equation becomes:

Dk

Dt
−

∂

∂z

[
νt

σk

∂k

∂z

]
= P + B − ε

= −uw
∂U

∂z
+ βgwθ − ε (2)

where∂U/∂z is the shear (z is in the vertical direction and
perpendicular to the shear flow). This can also be written as:

D

Dt

(
q2)

−
∂

∂z

[
qlSq

∂

∂z

(
q2)]

= 2(P + B − ε)

= −2uw
∂U

∂z
+ 2βgwθ − 2

q3

B1l
(3)

where we have putε=q3/(B1`) making use of the fact that
in a turbulent flow, the dissipation rate is set by the properties
of the energy containing eddies and is therefore proportional
to q3/` (Kolmogoroff 1942).B1 is a closure constant with a
traditional value of 16.6 (Mellor and Yamada, 1982; Kantha
and Clayson, 1994) and is related toCµ by

Cµ = 4B
−4/3
1 ; Sq =

B1Cµ

4σk

=
1

σkB
1/3
1

. (4)

The only controversy surrounding the TKE equation is the
manner in which the diffusion term is modeled. It has long
been known that down-the-gradient approximation for tur-
bulent diffusion is not always applicable, and this approx-
imation has been severely criticized by turbulence purists
(for example, Corrsin, 1979), since large scale eddies are
indeed capable of transporting properties against the gradi-
ent (Townsend, 1980). Still the practice persists, and is of-
ten justified by the fact that the diffusion terms are gener-
ally less important compared to the production and dissipa-
tion terms in the equations for the Reynolds stresses. This
is the primary reason that the results of second moment clo-
sure are relatively insensitive to the exact model for turbulent
diffusion of TKE or the exact value for the diffusion coeffi-
cient. This is also why it is possible to obtain reasonable
results even though diffusion terms are modeled as down-
the-gradient transport terms, as almost all second moment
closure models do. In fact, in many cases, local equilibrium
prevails, and the turbulence production is balanced almost
exactly by dissipation, and diffusion is nearly zero.

However, the same is not true for the length scale equa-
tion. The diffusion terms are not negligible except in the spe-
cial case of spatially homogeneous turbulence. Nevertheless,
tradition prevails, and the diffusion terms in all length scale
equations to-date have been modeled as down-the-gradient

transport terms. We follow the same practice here, since our
objective is to show how the various length scale models can
be reconciled within the current framework of second mo-
ment closure models.

2 The length scale models

There are many ways to prescribe the turbulence macroscale
`. The simplest and the most arbitrary method has been
to simply prescribe it arbitrarily by an algebraic equation
or some other means. In doing so, one makes use of the
well-known and the widely accepted fact that the turbulence
macroscale in a boundary layer on a solid surface is simply
proportional to the distance from the surface (some believe
that this proportionality extends to the viscous sublayer on a
smooth wall). Use is also made of the fact that as the edge of
the boundary layer is reached, the eddy size tends to be pro-
portional to and a fraction of the thickness of the boundary
layer. Thus:

`(z) = `0

(
κz

κz + `0

)
(5)

whereκ is the von Karman constant (equal to 0.4),z is the
distance from the surface and`0 is the asymptotic value of̀
towards the edge of the boundary layer. This expression was
first proposed by Blackadar (1962), but in the context of a
mixing length approach. The asymptotic value is either arbi-
trarily prescribed as some fraction of the turbulent boundary
layer thickness or calculated by the use of a formula such as
(Mellor and Durbin, 1975; Martin, 1985, 1986):

`0 =

α
∞∫
0

qzdz

∞∫
0

qdz

(6)

whereα is an empirical constant. In many cases, the results
do not appear to be overly sensitive to moderate changes in
its value, although there appears to be a fundamental differ-
ence (Galperin and Hassid, 1986) between the values that are
suitable for non-rotating boundary layers frequently encoun-
tered in the laboratory (∼0.55) and those for rotating ones
characteristic of geophysical flows (∼0.2).

While this prescription works well, especially in regions
adjacent to a solid surface, no doubt due to the robustness
of the assumption near the wall, the method is highly em-
pirical, requires a priori knowledge of the length scale be-
havior in that particular flow situation. While it is still pos-
sible to derive an equivalent length scale in complex flow
situations by empirical means, where such empirical data are
lacking or are untenable, it is of little practical use. Also in a
planetary boundary layer capped by an inversion, contrary to
the Blackadar formulation, the length scale variation in the
boundary layer must be non-monotonic as the inversion is
approached (Cheng and Canuto, 1994).
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It is therefore desirable to write a transport equation for
the turbulence length scale or equivalently, a quantity involv-
ing it, which is devoid of such arbitrariness and therefore
of universal applicability. The various quantities involving
the length scale that have physical interpretations are:q3/`,
q/`, `/q, q`, andq2`. The first is proportional to the dis-
sipation rate of TKE,ε. The second and third can be inter-
preted as being proportional to the turbulence frequencyω

(equivalentlyε/k) and the turbulence time scaleτ (equiva-
lently k/ε), respectively. The fourth one is proportional to
the turbulent viscosityνT (equivalentlyk2/ε). The last one
represents a spherical average of two-point turbulent corre-
lations integrated over the separation distance (see Sect. 4)
and does not have as clear a physical meaning. It appears
that Kolmogoroff (1942) was the first to suggest the use of a
length scale equation (for turbulence frequency) and since
then many such equations have been proposed. However
most approaches have had one problem or another, and de-
spite claims to the contrary by various proponents, no one
approach is superior to the others, and it is likely that all of
these approaches are equivalent.

It is in fact possible to write down a transport equation for
the general quantityqm`n wherem and n are integer val-
ues. The various length scale equations then become sub-
sets. A major problem persists however: unlike the TKE

equation, all the turbulent correlation terms that appear in
any length scale equation must be modeled, that too in the
absence of empirical wisdom about the nature or behavior of
these quantities. The most favored approach has been to sim-
ply mimic the TKE equation so that no matter which quan-
tity is modeled, the equation consists of a shear production
term, a buoyancy production term, a dissipation term and a
diffusion term, whose forms are similar to those of the cor-
responding terms in the TKE equation and related to them
by simple dimensional considerations. Here we will develop
a transport equation forqm`n and using its subsets, demon-
strate that it is the way the diffusional term is modeled that
introduces well-known difficulties in some of the traditional
approaches. But first we will describe how the different equa-
tions are formulated so as to have a better understanding of
the inter-relationships between the various approaches.

3 The ε (or q3/l) equation

An exact equation for the isotropic dissipation rate of TKE
can be derived by differentiating the Navier-Stokes equation
for the turbulent velocity componentui w.r.t. xk, multiplying
by ν∂ui/∂xk and ensemble averaging to obtain a transport
equation for the isotropic dissipation rateεI=ν(∂ui/∂xk)2

(Harlow and Nakayama, 1967; Hanjalic and Launder, 1972):

DεI

Dt
= −2ν

∂Uj
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∂uj

∂xl
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)
− 2ν
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− ν
∂

∂xk

(
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∂uj
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∂uj

∂xk
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− ν

∂

∂xj

(
1

ρ

∂p

∂xl

∂uj

∂xl

)
(7)

The next step is to invoke asymptoticity at high turbu-
lence Reynolds numbers and equateεI to the dissipation rate
ε=q3/(B1`). Thus the equation, though derived for a pro-
cess representative of the small universal Kolmogoroff vis-
cous scales of turbulence, involves a quantity that is never-
theless a function solely of the large energy containing scales
and is therefore a meaningful and legitimate equation for the
turbulence macroscalè. This is because of the remarkable
property of turbulence that the dissipation rate of TKE is
not a function, asymptotically, of the Kolmogoroff viscous
dissipation scales, which merely adjust to accommodate the
energy cascade from large scales to small scales across the
wavenumber spectrum.

This equation is in more extensive use today than any other
length scale equation. Its proponents claim that it is more
meaningful and useful than others because it pertains to a
physically meaningful and rather fundamental property of
turbulence, namely the dissipation rateε. On the other hand,
Mellor (1985) shows that Eq. (7) can also be derived from
an equation for two-point correlation of the turbulence ve-
locity component by taking the limit of zero separation dis-
tance. He argues that therefore the equation is really an equa-

tion for dissipation scales of turbulence and not a macroscale,
and besides contains little new information than the original
two-point correlation equation from which it can be derived.
Interpreted this way, there would appear to be a major flaw
in this approach. But if we invoke the fact that the dissipa-
tion rate is really a function of large scales, then Eq. (7) is
a pseudo equation forq3/` and in this sense an acceptable
equation for̀ .

The next task is to model the terms on the right hand side
of Eq. (7). Unfortunately, all the terms have to be modeled
and herein lies the problem. The first term can be identified
as the production term, and the last two terms as diffusional
terms, while the third term is the dissipation rate (of the dis-
sipation rate!). The second term is interpreted as the genera-
tion rate of vorticity fluctuations and modeled together with
the dissipation term (Hanjalic and Launder, 1972). Without
going into details (but see, Hanjalic and Launder, 1972, for
example), the modeled equation can be written as:

Dε

Dt
−

∂

∂xk

[
Cµ

k

ε

(
−ukul

∂ε

∂xl

)]
= Pε + Bε − εε

=
ε

k

[
Cε1

(
−ujuk

∂Uj

∂xk

)
+ Cε3(βgwθ) − Cε2ε

]
(8)
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wherePε, Bε andεε are the shear production, the buoyancy
production and the dissipation of the dissipation rateε, re-
spectively. For thin horizontal shear layers, this equation re-
duces to:

Dε

Dt
−

∂

∂z

[
νt

σε

∂ε

∂z

]
= Pε + Bε − εε

=
ε

k

[
Cε1

(
−uw

∂U

∂z

)
+ Cε3(βgwθ) − Cε2ε

]
(9)

where∂U/∂z is the shear as before in Eq. (2), andσε is the
dissipation Prandtl number.

For future reference, we will also write this equation in
terms ofq and` by puttingε=q3/(B1`):

D

Dt

(
q3

`

)
−

∂

∂z

[
q`S`ε

∂

∂z

(
q3

`

)]
= Pq3/` + Bq3/` − εq3/`

=
q

`

[
Eε1

(
−uw

∂U

∂z

)
+ Eε3(βgwθ) − Eε2

q3

B1`

]
(10)

The constantsCε1, Cε2, Cε3 andσε andEε1, Eε2, Eε3, and
S`εare related:

Eε1 = 2Cε1, Eε2 = 2Cε2, Eε3 = 2Cε3

S`ε =
B1Cµ

4σε

=
1

σεB
1/3
1

(11)

While a range of values have been used for the closure con-
stants (Rodi, 1987; Tennekes, 1989; Speziale et al., 1990;
Burchard and Bolding, 2001), the traditional values for these
constants are:

Cε1 = 1.46, Cε2 = 1.92, Cε3 = 0.2 andσε = 1.159 (12)

Of these, there is the least general agreement on the value
of σε, with the values ranging from 1.11 (Rodi, 1987) to
0.8 (Zeierman and Wolfshtein, 1986) and that ofCε3 whose
value ranges from−1.4 to +1.45 (see Table 4 in Baumert

and Peters, 2000). However, theoretical considerations, as
pointed out below suggest that:

Cε1 = 3/2, Cε2 = 2, (13)

Therefore,

Eε1 = 3, Eε2 = 4, (14)

Speziale et al. (1990) point out a major problem associated
with thek−ε two-equation turbulence model. It is associated
with the fact that a lack of natural boundary conditions for
the dissipation rateε makes it difficult to derive and apply a
boundary condition that is consistent asymptotically or is not
numerically stiff to integrate the equations all the way to a
solid boundary. Accurate and robust low Reynolds number
near-wall corrections needed to integrate down to the wall
have therefore been hard to derive. But where integration to
the boundary is not needed, the model is well behaved and in
extensive use.

4 The q2l equation

This the next most popular approach, used extensively in
geophysical applications. It is also one of the most contro-
versial.

Rotta (1951, see also 1972) appealed to the two-point cor-
relation equations that can be derived from the Navier-Stokes
equation by multiplying the equation forui(x) by ui(x+r)

and adding to the equation forui(x+r) multiplied byui(x)

and taking an ensemble average. The quantityq2` can then
be defined as a volume integral of the two-point correlation:

q2` = α

∫∫∫
V

uj (x)uj (x + r)
dv

r2
(15)

and the corresponding equation forq2` is (Wolfstein et al.,
1974; Naot et al., 1973; see also Lewellen, 1977):

D
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1
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∂
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∂
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∂2
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uj (x)uj (x + r) − 2ν
∂2

∂xk∂rk
uj (x)uj (x + r) + 2ν

∂2

∂rk∂rk
uj (x)uj (x + r)

}
dv

r2
(16)

without the body force terms. It is readily apparent that all
the terms on the right hand side must be modeled. The physi-
cal interpretation of various terms is difficult at best, although

viscous and diffusion terms can be identified. Nevertheless,
the various terms can be modeled in the traditional manner
to yield for a horizontal thin shear layer, after the inclusion



L. H. Kantha: The length scale equation in turbulence models 87

of the buoyancy term in the derivation (Mellor and Yamada, 1982):

D

Dt

(
q2`

)
−

∂

∂z

[
q`S`L

∂

∂z

(
q2`

)]
= Pq2` + Bq2` − εq2`

= `

{
EL1

(
−uw

∂U

∂z

)
+ EL3

(
βgwθ

)
− EL2

q2

B1`

[
1 + EL4

(
`

κL

)2
]}

(17)

where the dissipation term contains an additional near-wall
correction term that has been tacked on;L is the distance
from a solid surface. This wall-term is absolutely essential
to force the model to be consistent with the length scale vari-
ation in the constant flux region adjacent to a boundary in a
neutrally stratified flow. This has been cited as a major flaw
in this approach (Rodi, 1987). Nevertheless, this equation
has been used extensively in geophysical applications (Mel-
lor and Yamada, 1982; Kantha and Clayson, 1994; Rosati
and Miyakoda, 1988). Note that such a correction term was
not necessary in theε equation.

The traditional values for the constants in this equation are:

EL1 = 1.8, EL2 = 1.0, EL3 = 1.8,

EL4 = 1.33, S`L = 0.2 (18)

where the non-zero value ofEL4 is forced upon by the con-
straint on the length scale behavior in the constant flux re-
gion:

EL1 = EL2(1 + EL4) − κ2B1S`L (19)

It has also become clear in recent years that the constantEL3
must be higher under stable stratification (Kantha, 1988; Bur-

chard, 2001; Baumert and Peters, 2000). We will show that
theoretical considerations dictate:

EL1 = 2, EL2 = 1 (20)

and proper modeling of the diffusion term leads toEL4=0,
thus removing a major objection to the use of theq2` equa-
tion.

5 The kT(ql) equation

Zeierman and Wolfshtein (1986) have derived an equation
for what they call the time scale of turbulence rather rigor-
ously, starting from an equation for the autocorrelation of the
turbulence velocity

Rij (x, t, τ ) = uj (x, t)uj (x, t + τ) (21)

obtained by multiplying the Navier-Stokes equation for the
turbulence componentuj by uj (t+τ ) and adding the re-
sult to the product of the equation foruj (t+τ) and uj (t)

and ensemble-averaging. Under the assumption of quasi-
stationarity, one obtains

D

Dt
Rii = −

(
Rij + Rji

) ∂Ui

∂xj

−
1

2

∂

∂xj

(
Sij,i + Si,ij

)
−

1

ρ

(
∂Kp,j

∂xj

+
∂Kj,p

∂xj

)
+ ν

∂2Rii

∂xj∂xj

− 2ν

(
∂uj (t)

∂xj

∂uj (t + τ)

∂xj

)
(22)

where

Sij,k = ui(t)uj (t)uk(t + τ),

Kp,j = p(t)uj (t + τ), Kj,p = uj (t)p(t + τ) (23)

are triple velocity and pressure-velocity correlations. Both
the TKE equation and the time-scale equation can be derived
from Eq. (22), the first by taking the limitτ=0, and the sec-
ond by integration with respect toτ , since the TKE and the
time scale are given by:

k(x) =
1

2
Rii(x, τ = 0) =

1

2
uiui

T (x) =
1

2k

∞∫
0

Rii(x, τ )dτ (24)

Eqation (22) after some closure assumptions can be written
for a thin horizontal shear layer, after the inclusion of the

buoyancy term, as an equation forkT as

D

Dt
(kT ) −

∂

∂z

[
νt

σν

∂

∂z
(kT )

]
= Pν + Bν − εν

= T

{
Cν1

(
−uw

∂U

∂z

)
+ Cν3

(
βgwθ

)
− Cν2ε

}
(25)

whereT =Cµk2/ε. Zeierman and Wolfshtein (1986) chose

Cν1 = 0.173, Cν2 = 0.225,

σν = 10.8 and σk = 1.46 (26)

They did not include the buoyancy term and therefore the
value ofCν3 is not known. Also the value of theσν they
chose based on the analysis of a high pressure gradient flow is
too high. They also chose a traditional value forCµ of 0.09.

By substitutingT ∼`/q, Eq. (25) can be converted to an
equation forq`, a quantity proportional to the turbulent
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viscosity:

D

Dt
(q`) −

∂

∂z

[
q`S`ν

∂

∂z
(q`)

]
= Pq` + Bq` − εq`

=
`

q

{
Eν1

(
−uw

∂U

∂z

)
+ Eν3

(
βgwθ

)
− Eν2

q3

B1`

}
(27)

Closure constantsEν1, Eν2, Eν3, andS`ν are related toCν1,
Cν2, Cν3 andσν by:

Eν1 = 2Cν1, Eν2 = 2Cν2, Eν3 = 2Cν3,

S`ν =
1

σT B
1/3
1

(28)

so that

Eν1 = 0.346, Eν2 = 0.45 (29)

We will show that from theoretical consideration,Eν1=1,
Eν2=0. We will also show that the diffusion term, modeled
as in Eqs. (25) and (27) leads to difficulties.

It should be noted that Nee and Kovasznay (1969) were
the first to propose an equation for turbulent viscosity. Their
approach was however purely empirical and they did not use
it as an equation for the turbulence length scale.

6 Theω (q/l) equation

Spalding (1969), Daly and Harlow (1970) and Saffman
(1970) independently proposed a transport equation for mean
vorticity fluctuations, which is proportional toq2/`2, and
Ilegbusi and Spalding (1985) tried to improve it by remov-
ing the wall correction term. An appealing aspect of this
equation is that it deals with a rather fundamental property
of turbulence; it is the vorticity fluctuations resulting from
the breakdown of vortex sheets and filaments into less or-
dered structures that give turbulence its characteristic chaotic
structure. By dealing with such a fundamental property, one
hopes to put more physical meaning into the model. The
major drawback is however that the vorticity fluctuations are
concerned with the property of small scales of turbulence.
Although vortex stretching is a fundamental characteristic of
turbulence, it is hard to see how an equation for a quantity
dominated by small scales (which are asymptotically far re-
moved from energy containing scales in the turbulence spec-
trum and therefore do not feel the large scales directly) can be
used to describe the turbulence macroscale. Mellor’s (1985)
objection to the use of the dissipation equation is perhaps
more valid here.

However if one interpretsq/` as an equation for turbu-
lence frequency, as Kolmogoroff (1942) did, then a trans-
port equation for this quantity is meaningful as a length
scale equation. This approach has been developed further
by Wilcox (1984, 1988a, 1988b, see also Wilcox and Traci,
1976). An acknowledged advantage of thek−ω model, com-
pared to other models is that it can be integrated right through
the viscous sublayer to the solid wall, without the need for
wall functions. This has made it the workhorse of industrial

applications. However, while this model has been known
to perform well in adverse pressure gradients, it does suf-
fer from a major disadvantage, namely its high sensitivity to
the value of the free stream vorticity prescribed.

An equation forω can be written for a thin horizontal shear
layer as:

D

Dt
(ω) −

∂

∂z

[
νt

σω

∂

∂z
(ω)

]
= Pω + Bω − εω

=
ω

k

{
Cω1

(
−uw

∂U

∂z

)
+ Cω3

(
βgwθ

)
− Cω2ε

}
(30)

Wilcox (1988) usesCω1=5/9, Cω2=5/6, σω=2 andσk=2.
He has not considered buoyancy terms and so the value of
Cω3 is unknown. Equation (30) can be converted readily to
an equation forq/`:

D

Dt
(
q

`
) −

∂

∂z

[
q`S`ω

∂

∂z
(
q

`
)

]
= Pq/` + Bq/` − εq/`

=
1

q`

{
Eω1

(
−uw

∂U

∂z

)
+ Eω3

(
βgwθ

)
− Eω2

q3

B1`

}
(31)

Closure constantsEω1, Eω2, Eω3 andS`ω are related toCω1,
Cω2, Cω3 andσkT by:

Eω1 = 2Cω1, Eω2 = 2Cω2, Eω3 = 2Cω3

S`ω =
1

σωB
1/3
1

(32)

We will show that from theoretical considerations,Eω1=1,
Eω2=2.

7 The T(l/q) equation

Speziale et al. (1990) argue that whilek−ω model is com-
putationally more robust than thek−ε model for integration
through the viscous layer to the solid boundary, it yields re-
sults for the TKE that are asymptotically inconsistent with
theoretical results near a solid boundary. They show that
this stems from the absence of a viscous cross-diffusion term
in theω equation. They suggest an alternative equation for
the turbulence time scaleT =Cµk2/ε (instead of frequency),
which has the correct asymptotic behavior near the solid
boundary. The form is similar to other length scale equa-
tions:
DT

Dt
−

∂

∂z

[
νt

σT

∂

∂z
(T )

]
= PT + BT − εT

=
T

k

{
CT 1

(
−uw

∂U

∂z

)
+ CT 3

(
βgwθ

)
− CT 2ε

}
(33)

with CT 1=−0.44 andCT 2=−0.83. Speziale et al. (1990) ig-
nore the buoyancy term and so the value ofCT 3 is unknown.
The asymptotic values for these constants should be−0.5
and−1.0 as shown in Sect. 8.

Finally, it should be pointed out that an equation can also
be written for the length scalèitself that has a similar struc-
ture to the length scale equations detailed above, namely an
equation involving shear and buoyancy production terms as
well as the dissipation and diffusion terms.
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8 The general length scale(qmln) equation

Since the structure of all the length scale equations is the
same, it is tempting to form an equation for a general quan-

tity qm`n from which the various length scale equations can
be derived as subsets. Doing so, we get:

D

Dt
(qm`n) −

∂

∂z

[
q`S`g

∂

∂z
(qm`n)

]
= Pg + Bg − εg

= qm−2`n

{
E1

(
−uw

∂U

∂z

)
+ E3

(
βgwθ

)
− E2

q3

B1`

[
1 + E4

(
`

κL

)2
]}

(34)

This equation must provide consistent length scale behav-
ior in the constant flux region of a neutrally stratified flow
near a solid wall. It can be shown (see Sect. 9) that this com-
patibility relation for Eq. (34) becomes

− B1κ
2S`gn

2
= E1 − E2[1 + E4] (35)

To assure positive-definiteness of the diffusion coefficient,
S`g, the model constantsE1 and E2 must be chosen such
that the term on the right hand side is negative. For models
with E4=0, this meansE2>E1. All the models discussed
above satisfy this constraint, except theq2` model (Mellor
and Yamada, 1982; Kantha and Clayson, 1994) and this is
the reasonq2` model cannot function without a non-zero
value forE4. In theq` equation of Zeierman and Wolfshtein

(1986),E1 andE2 are too close and the resulting value for
the diffusion coefficient is too small (0.039), or equivalently
the value of the Prandtl numberσν is too large. We will show
shortly that the asymptotically correct value forE2 is 0 in the
q` model, and consequently, the diffusion coefficientS`g is
always negative. Hence this model is physically untenable.
Both theε andω equations have sufficiently large values for
S`g with E4=0 and have enjoyed considerable success.

The problems with theq2` and q` equations therefore
stem from the diffusion term. This can be corrected as fol-
lows. Since theε equation performs well, combining the
TKE Eq. (3) and theq3/` Eq. (10), we can derive an equation
for qm`n:

D
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)
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{
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}
(36)

where the form of the diffusion termDg is given by
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If we rewrite Eq. (37) as
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where the first term is similar to the diffusion term in
Eq. (34), it is clear that this term is not adequate to model
diffusion correctly. The use of Eq. (37) eliminates the incon-
sistencies with the earlier length scale models and holds for
any integer values ofm andn.

Umlauf and Burchard (2002) have also attempted to
present a general length scale model, but with traditional
form of the diffusion term as in Eq. (34). Consequently, their

model works only whenn is a negative integer. This, among
other things prompted them to suggest that a non-integer val-
ues be used forn. It is worth noting that while mathemati-
cally feasible, this approach is fraught with conceptual diffi-
culties related to the physical meaning of the quantityqm`n

whenm andn are not integers. For future reference, we will
rewrite Eq. (36) in the form:

D

Dt

(
qm`n

)
+ Dg = Pg + Bg − εg
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{
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)
+ E3

(
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− E2

q3
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}
(38)
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where

E1 = m + (3 − Eε1)n, E2 = m + (3 − Eε2)n

E3 = m + (3 − Eε3)n (39)

Closure constants in all previous length scale models can be
obtained from Eq. (39) by a suitable choice for the integers
m and n.

9 Closure constants in q2 − qm`n model

We now appeal to well-known turbulent flows to evaluate the
closure constants in this model.

9.1 Tennekes hypothesis

To determine the value ofEε1, we follow Baumert and Pe-
ters (2000) and derive an equation for∂`/∂t using Eqs. (3)
and (36). For a homogeneous shear flow far away from a
solid surface, the diffusion term can be neglected and since

1

qm`n

∂

∂t

(
qm`n

)
= n

(
1

`

∂`

∂t

)
+

m

2

(
1

q2

∂q2

∂t

)
(40)

we get(
1

`

∂`

∂t

)
=

1

q2

[
(3 − Eε1)P + (3 − Eε3)B − (3 − Eε2)ε

]
(41)

Tennekes (1989) noted that in a homogeneous shear flow,
since the shear is homogeneous, it cannot impose a length
scale and therefore, the shear term must drop out of the equa-
tion for the rate of change of turbulence length scale. This
dictates thatEε1=3.

9.2 Homogeneous, isotropic turbulence behind a grid

To determine the value ofEε2, we appeal to homogeneous,
isotropic turbulence in a neutrally stratified flow behind a
grid in a wind tunnel. In this case, the diffusion and pro-
duction terms can be neglected and Eqs. (3) and (36) reduce
to:

∂q2

∂t
= −2ε;

∂

∂t

(
qm`n

)
= −qm−2`n

[
m + (3 − Eε2)n

]
ε (42)

By assumingq∼t−p, it can be shown that̀ ∼t1−p and
Eε2=(2p+1)/p from Eq. (42). While experiments in large
wind tunnels (Gad-el-Hak and Corrsin, 1974; Comte-Bellot
and Corrsin, 1966) show that the value of p is between
0.5 and 0.65, it must be noted that it is quite difficult to
achieve the condition of homogeneity and isotropy accu-
rately and large enough Reynolds numbers in the labora-
tory. Domaradzki and Mellor (1984) explain these departures
from thet−1 behavior that results from theoretical consider-
ations which suggest thatp must be 1/2 (precisely the value
chosen by Mellor and Yamada, 1982). Choosing this value
for p, we getEε2=4.

9.3 Constant flux region in neutrally stratified flows

In the constant flux region of a steady neutrally stratified
boundary layer, buoyancy terms are zero and simple dimen-
sional reasoning leads to

q = B1/3u∗, ` = κz,
∂U

∂z
=

u∗

κz
(43)

whereu∗ is the friction velocity. Also∂q/∂z=0; ∂/∂t≡0.
Neglecting tendency and buoyancy terms, and substituting
these values, it can be shown thatq2 Eq. (3) is identically
satisfied, irrespective of the value ofSq or B1 since the dif-
fusion terms are identically zero and local equilibrium pre-
vails with production balancing dissipation. Substitution in
theqm`n Eq. (36) gives:

B1κ
2S`ε = Eε2 − Eε1 (44)

irrespective of the value ofm or n. Substituting the asymp-
totic values on the right hand side, we getS`ε=0.377. This
corresponds to a value forσε=1.041 ink−ε models, a value
close to unity.

9.4 Turbulence generated by a stirring grid in a neutrally
stratified fluid

Turbulence generated by an oscillating grid has been stud-
ied extensively in the laboratory both in neutrally and sta-
bly stratified fluids by turbulence researchers (Thompson and
Turner, 1975; Hopfinger and Toly, 1976; Turner, 1981; E
and Hopfinger, 1986; Nokes, 1988; Hannoun et al., 1988).
These experiments provide considerable empirical knowl-
edge on the behavior of turbulence in a particularly unique
situation, when the only source of turbulence in regions far
away from the grid is the turbulent diffusion. Thus these ex-
periments provide a particularly useful and interesting data
set for evaluating the modeling of diffusion terms in second
moment closure models as suggested by Sonin (1983). Al-
though it was feared that earlier such experiments (for ex-
ample, Thompson and Turner, 1975) might have been con-
taminated by unwanted secondary circulations due to un-
avoidable asymmetries in the grid, it appears that these fears
were greatly exaggerated. More recent experiments (E and
Hopfinger, 1986, see also Hopfinger, 1987), with consider-
able attention given to eliminating secondary circulations,
have in general confirmed earlier results. The experiments
do suffer from a variety of problems, including wall effects,
finite Reynolds numbers and finite oscillation amplitude, and
the power law for the decay of TKE with distance from the
source is not known precisely.

Dimensional considerations dictate that the turbulence
length scale must scale as the distance from the grid mid-
planez(`=bz), but the value ofp in q2

∼z−2p is quite un-
certain (between 1 and 1.5). The situation here is somewhat
analogous to decaying turbulence behind a grid in a wind
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tunnel, where theory dictatesq2
∼t−1 in the ideal situation

of infinite Reynolds number turbulence, while experimental
values suggest a non-unity exponent in the necessarily non-
ideal experimental setups. Nevertheless, there are indications
thatq∼z−1 so that the dissipation rateε∼z−4 and turbulent
viscosityνt∼ constant.

E and Hopfinger (1986) foundb=0.24 at sufficiently large
values of grid stroke (and hence large Reynolds numbers) in
agreement with Hopfinger and Linden (1982), although it is
substantially less at lower values of grid strokes, between 0.1
and 0.2. Note that there is no apriori reason to assume thatb

must be equal toκ (in factκ is defined as the proportionality
constant in thè∼z relationship in the logarithmic region of
a neutrally-stratified boundary layer adjacent to a solid sur-
face, and this has nothing to do with decaying turbulence
behind a grid or for that matter turbulence generated by wave
breaking).

Neglecting the tendency and buoyancy terms (production
term is identically zero) and puttingq=az−p and `=bz,
Eq. (3) gives:

3B1b
2Sq =

1

p2
(45)

whereas Eq. (36) gives

3B1b
2S`ε =

(m + 3n)(3B1b
2Sq) − [m + (3 − Eε2)n]

n(3p + 1)(4p + 1)
(46)

Using Eq. (45), Eq. (46) becomes

3B1b
2S`ε =

Eε2

(3p + 1)(4p + 1)
(47)

independent of the values ofm andn. Dividing Eq. (47) by
Eq. (45), we get

S`ε

Sq

=
3p2Eε2

(3p + 1)(4p + 1)
(48)

independent of the value ofb. Forp=1,S`ε/Sq=0.6 (and for
p=1.5,S`ε/Sq=0.538). Using the asymptotic value ofp=1,
sinceS`ε=0.377,Sq=0.628. This is the value we choose; it
corresponds toσk of 0.624, much lower than the traditional
value of 1.0 ink−ε models. Note also thatσε=1.04 and
S`ε/Sq is not unity.

If we now substitute the value ofSq in Eq. (45), we get a
value forb equal to 0.18, well within the experimental range
of values.

Lele (1985) was the first to argue that the diffusion coef-
ficients in the TKE and the dissipation rate equations must
not have the same value if there is to be a single turbulence
front when a patch of turbulence spreads and diffuses into
a quiescent fluid. This means that theq2 andε fronts must
propagate at the same speed. This relates the two diffusion
coefficients (Lele 1985):

S`ε

Sq

= 6

{[
1 +

(
Eε2

)2]1/2
− Eε2

}
(49)

For Eε2 = 4, this yieldsS`ε/Sq=0.739, not far from the
value given by Eq. (48) forp=1.

It should however be pointed out that Cazalbou et
al. (1994) question Lele’s analysis and have derived in-
stead alternative constraints onσk andσε: 4>2σk>σε and
2σk=1+σε. The values we have chosen forσk andσε do
satisfy these constraints.

It is also worth noting that Umlauf and Burchard (2002)
show that for traditional values of the closure constants, the
k−ε two-equation model cannot reproduce stirring grid data,
predicting an excessive decay rate for TKE. This problem
can be traced directly to the traditional value ofσk of around
1.0 used in their analysis. If the lower value derived above is
used, this problem is eliminated.

9.5 Turbulence generated by a grid in a stably stratified
fluid

The buoyancy term in the length scale equation is of great
importance in geophysical flows, because of the ubiqui-
tous presence and prominence of gravitational stratification.
There is considerable uncertainty as to the value of the clo-
sure constant related to this term. For example, Rodi (1987)
recommended a value of 0.2 forCε3. It can be shown (see be-
low) thatCε3 must assume negative values under stable strat-
ification (or equivalently the constantEL3 in the q2` equa-
tion must be larger thanEL1). Baumert and Peters (2000)
indicate excellent agreement with observational results for a
value of−1.4 forCε3.

There exist a suite of experiments on the decay of grid-
generated turbulence in stably stratified fluids, starting from
the pioneering experiments of Dickey and Mellor (1980), that
show that there is an upper bound on the parameterτ=N`/q,
beyond which the decay of turbulence changes due to more
efficient conversion of TKE into internal wave energy (Still-
inger, Helland and Van Atta, 1983; Itsweire, Helland and Van
Atta, 1986; see also Hopfinger, 1987; Browand, Guyomar
and Yoon, 1987; and Rohr and Van Atta, 1987).

This upper bound on the length scale can also be derived
from energetics arguments. If we assume that an eddy con-
verts all its vertical kinetic energyw2/2 during overturning,
the resulting gain in potential energy cannot exceed the ver-
tical kinetic energy, or equivalentlyN2`2<w2. The value of
w2/q2 ranges from about 0.22 under neutral stratification to
about 0.13, when the flux Richardson number reaches its crit-
ical value for extinction of turbulence by stable stratification.
This means that the upper bound onτ is between 0.47 and
0.36. Whatever its precise value, the physical interpretation
is clear.

The parameterτ is also the ratio of buoyancy frequencyN

to the turbulence frequency (term coined by none other than
Kolmogoroff, 1942)q/`. This means that as turbulence fre-
quency approaches N, efficient generation of internal waves
by turbulent eddies becomes more and more feasible, so that
energy in turbulence can be drained away rapidly by stable
stratification. Clearly this ratio cannot exceed unity, since
the frequency of internal waves is bounded by the buoyancy
frequency. In practice, the turbulence frequency does not
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drop below about twice the buoyancy frequency, or equiv-
alently the turbulence length scale does not exceed 1.4 times
the Ozmidov length scale according to the observations of
Stillinger et al. (1983) and Itsweire et al. (1986). Therefore,
`<1.4LO , whereLO=(ε/N3)1/2 is the Ozmidov scale. This
leads to an upper bound onτ of 1.4(B1)

1/2 or 0.49 since
B1=16.6 (Mellor and Yamada, 1982; Kantha and Clayson,
1994).

The upper bound on the turbulence length scale under sta-
ble stratification has been invoked in turbulence modeling by
imposing an auxiliary condition on the model solutions that
limits the length scale to values below that given byτ=c1
(Deardorff, 1973; Lewellen and Teske, 1973; Kantha, 1988;
Galperin et al., 1988; Kantha and Clayson, 1994). The value
of c1 chosen by modelers to-date ranges between 0.2 and 0.6;
Kantha and Clayson (1994) used a value of 0.53. However,
it is possible to avoid imposing this auxiliary condition by
choosing a proper value forEL3 (Kantha, 1988; Burchard,
2001).

To do so, we appeal to the experiments of Dickey and Mel-
lor (1980), who raised a grid in a stably stratified fluid in a
tank and measured the decay of turbulent fluctuations with
time after the passage of the grid. They found that imme-
diately after the passage of the grid, turbulence decayed as
if there were no stratification, yielding the classical asymp-
totic decay law of turbulence behind a grid in neutrally strat-
ified flows (q∼t−1/2). However, as time progressed, the rate
of decay of turbulence changed, presumably because of the
conversion of TKE into internal waves. They found that as
the TKE decreased, the upper bound on the parameterτ was
about 0.6.

Following Kantha (1988), Baumert and Peters (2000),
and Burchard and Deleersnijder (2001) the value ofEε3 in
Eq. (36) under stable stratification can be determined as fol-
lows. Consider the case of a homogeneous shear-free turbu-
lence in a stably stratified flow, so that the production and
diffusion terms can be neglected. This situation corresponds
to the experiments of Mellor and Dickey (1980). Since
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∂

∂t

(
qm`n

)
=

1

n

(
1

T

∂T

∂t

)
−

m + n

2n

(
1

q2

∂q2

∂t

)
(50)

whereT = `/q, an equation can be derived for the turbu-
lence time scaleT using Eqs. (3) and (36):

1

T

∂T

∂t
=

1

q2

[
(2 − Eε3)B − (2 − Eε2)ε

]
(51)

Invoking the condition of equilibrium and setting∂T /∂t=0
whenT hits the upper boundτu,

Eε3 − 2

Eε2 − 2
=

ε

B
(52)

The quasi-equilibrium second moment closure of Kantha and
Clayson (1994) yields

SH =

A2

[
1 − (6A1/B1)

]
1 + 3A2

[
6A1 + B2(1 − C3)

]
τ2
u

(53)

for the stability coefficientSH in the equation for buoyancy
productionB=−q`N2SH . Therefore Eq. (52) can be written
as

Eε3 = 2 − (Eε2 − 2){
1 + 3A2

[
6A1 + B2(1 − C3)

]
τ2
u

A2(B1 − 6A1)τ2
u

}
(54)

Using Kantha and Clayson (1994) values ofA1=0.92,
A2=0.74,B1=16.6, B2=10.1, andC3=0.2, andEε2=4, we
getEε3=−6 for τu=0.6 (Dickey and Mellor, 1980).Eε3 is
relatively insensitive to the exact value ofτu as long as it is
around 0.5.

Using the values ofA1=0.58, A2=0.62, B1=16.6,
B2=12.0, andC3=0.2 as recently updated by Kantha (2003),
we get Eε3=−4.66 for τu=0.6. This corresponds to
Cε3=−2.33, close to the value of−2.1 indicated by Bur-
chard and Baumert (1995) and Baumert and Peters (2000) to
yield excellent agreement with observational results on mix-
ing in the North Sea. We therefore chooseEε3=−4.7.

Burchard (2001) uses a slightly different approach to fix-
ing the value ofCε3. By assuming local equilibrium and
therefore neglecting tendency and diffusion terms in Eqs. (3)
and (36), and substituting for the shear production termP in
Eq. (36) from Eq. (3), it can be shown that instead of Eq. (52),
one gets

Eε3 − Eε1

Eε2 − Eε1
=

ε

B
(55)

so that Eq. (54) becomes

Eε3 = Eε1

− (Eε2 − Eε1)

{
1 + 3A2

[
6A1 + B2(1 − C3)

]
τ2
u

A2(B1 − 6A1)τ2
u

}
(56)

For the Dickey and Mellor (1980) value ofτu=0.6, using the
Kantha and Clayson (1994) values, we getEε3=−1. But the
updated Kantha (2003) values giveEε3=−0.33. This corre-
sponds toCε3=−0.17, andEε3=5.17, close to theEε3 value
of 5.09 used by Burchard (2001).

However, there is a fundamental problem in using the Bur-
chard (2001) approach. The experiment of Dickey and Mel-
lor (1980) involved no shear and hence shear productionP

was identically zero. The experiment never reached a steady
state, but TKE continued to decrease after stable stratifica-
tion asserted itself and put an upper bound onτ . Therefore
their experimental value ofτu cannot be used to ascertain the
value ofEε3 in this manner.

It is also worth noting that the TKE Eq. (3) under local
equilibrium conditions can be rewritten as:

ε

B
= 1 −

1

Rf
(57)

whereRf is the flux Richardson number. For the maximum
possible value of 1/4 forRf , beyond which turbulence is
quenched,ε/B=−3. This value givesEε3=0 using Eq. (55)!
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This is untenable. Using Eq. (52), one getsEε3=−4 or
equivalentlyCε3=−2.0, close to the value derived above as
well as the value−2.1 cited by Burchard and Baumert (1995)
and Baumert and Peters (2000). It could be argued thatEε3
should be selected this way. However, the value of -4 forEε3
obtained this way is quite close to the value of−4.7 we have
chosen.

9.6 Turbulence at the center of a duct in a neutrally
stratified fluid

Zeierman and Wolfshtein (1986) cite and use data from a
channel (Clark, 1968; Laufer, 1950) to suggest a value for
σk. For completeness, we cite these data, even though we
suspect that it underestimates the value ofSq or equivalently
overestimates the value ofσk. At the center of a channel,
various turbulence quantities must be even functions of the
distancey from the axis. Experimental data suggest that the
mean velocity and the TKE obey:

U

U0
= 1 − 0.242

( z

h

)2
;

k

k0
= 1 + 6.67

( z

h

)2
(58)

where 2h is the width of the channel. The shear stress at the
wall is

τw = 0.048k1/2
0 U0 (59)

By expandingk andε as even functions of(z/h) and making
use of the fact that the shear stress varies linearly:

τ = νt

∂U

∂z
= −τw

( z

h

)
(60)

it is possible to show that
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τwε0h

2Cµk2
0U0
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;

k

k0
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(
σkε0h

2

2Cµk3
0

)( z

h

)2
(61)

Equating quantities in Eqs. (58) and (61) and making use
of Eq. (59): we getCµσk=0.13, thus leading to a value of
σk=1.46 andSq of 0.269.

Since it is difficult to guess the likely values of the exper-
imental constants in the channel in the asymptotic limit of
infinite Reynolds numbers, we cannot guess the asymptotic
values forσk andSq . We therefore reluctantly ignore this set
of experiments.

Zeierman and Wolfshtein (1986) cite and use data from a
high pressure gradient boundary layer to derive a value for
σε. It can be shown that for this flow(

S`ε −
3

2
Eε1Sq

)(
S`ε −

3

2
Eε2Sq

)
=

4(Eε2 − Eε1)
2

B2
1K4

0

(62)

whereK0 has an observed value of 0.48 (Townsend, 1961).
Using the values of other constants,Sq=0.174, once again
a small value consistent with the very high value derived by
Zeierman and Wolfshtein (1986) forσε of 10.8. Since, once

again it is hard to guess the asymptotic value forK0, we re-
luctantly ignore this experimental data also.

With the values of closure constants determined as above
for the general length scale equation, it is possible to evalu-
ate their corresponding values for its various subsets, namely
different closures, using Eq. (39):

k−ε(q3/`;m = 3, n = −1) : Eε1 = 3, Eε2 = 4, Eε3 = −4.7

k−ω(q/`; m = 1, n = −1) : Eω1 = 1, Eω2 = 2, Eω3 = −6.7

q − q2`(m = 2, n = 1) : EL1 = 2, EL2 = 1, EL3 = 9.7

k − kT (q`; m = 1, n = 1) : Eν1 = 1, Eν2 = 0, Eν3 = 8.7

k − T (`/q; m = −1, n = 1) : ET 1 = −1, ET 2 = −2, ET 3 = 6.7

q − `(m = 0, n = 1) : E`1 = 0, E`2 = −1, E`3 = 7.7 (63)

These values along with the values ofSq andS`ε enable
any length scale model to be used consistently and equiva-
lently to others.

The closure constants can also be used to show why the
k−ε andk−ω have enjoyed a degree of success thatq−q2`

and k-kT have not. The constant flux region compatibility
relationship Eq. (35) for the traditional form of the diffusion
term can be rewritten as:

−B1κ
2S`gn

2
=
[
m + (3 − Eε1)n

]
−
[
m + (3 − Eε2)n

]
(1 + E4) (64)

WhenE4=0, this becomesB1κ
2S`g=−1/n, independent of

the value ofm, so that to avoid a physically absurd negative
value forS`g, n must be negative. Only thek−ε andk−ω

models satisfy this requirement. Mellor and Yamada (1982)
overcome this problem by using a nonzero positive value for
E4. Since the second term in Eq. (64) vanishes for the k-kT
model, no value ofE4 can assure a positive value forS`g.

10 Influence of rotation on the length scale

While the influence of the rotation of the reference frame on
small scale turbulence is negligible in geophysical flow situa-
tions, this is not true for many engineering devices (Johnston
et al. 1972, Watmuff et al. 1985). Also, it is not clear that
rotation does not influence the large scale eddies. In fact,
the maximum eddy size appears to be much smaller in rotat-
ing boundary layers such as the neutral atmospheric bound-
ary layer (ABL) compared to nonrotating boundary layers
in the laboratory. The length scalèis about 0.09 times
the boundary layer thickness in laboratory boundary layers
(Mellor 1985), while a more appropriate value is 0.03 for
the neutral ABL (recall the value ofα in Eq. 6). The lack
of rotational influence on dissipation and therefore on the
length scale was cited at the 1980–1981 Stanford Confer-
ence on Complex Turbulent Flows as a major drawback of all
second-moment closure models. Without explicit rotational
terms in the length scale equation, it is impossible to repro-
duce the experimentally observed effect of rotation on turbu-
lence decay. Wigeland and Nagib (1978) observed that when
the turbulence behind a grid in a wind-tunnel is subjected to
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strong rotation, its dissipation rate altered substantially. Sim-
ilar effects were also observed by Bardina et al. (1985) in
their large eddy simulations of turbulence decay, which led
them to suggest a modification for theε equation to account
for the effect of rotation on grid-generated turbulence behind
a grid, by the addition of a rotational term:

dε

dt
= Cε4f ε −

ε

k
(Cε2ε) (65)

wheref =2� and� is the angular velocity of rotation. Solv-
ing this along with the corresponding TKE equation (note
that reference frame rotation cannot affect the energy equa-
tion)
dk

dt
= −2ε (66)

we get

k = k0

{
1 +

ε0

k0

(Cε2 − 1)

Cε4f

[
1 − exp(−Cε4f t)

]}1/(Cε2−1)

(67)

ε = ε0e
−Cε4t{
1 +

ε0

k0

(Cε2 − 1)

Cε4f

[
1 − exp(−Cε4f t)

]}1/(Cε2−1)

(68)

where subscript 0 refers to initial values. The classical decay
law for grid-generated turbulence becomesq`=q0`0e

Cε4f t

instead ofq`=constant.

Bardina et al. (1985) choseCε2=11/6 and found that
Cε4=0.075 reproduced experimental results and also agreed
with their own LES results. However choosing the asymp-
totic value forCε2 of 2 givesCε4=0.04 and also yields the
classical asymptotic decay lawk∼t−1 whenf =0.

While geophysical applications have seldom considered
the explicit rotational terms, for completeness, we write
down the form of Eq. (36) resulting when the rotational ef-
fects are incorporated:

D

Dt

(
qm`n

)
+ Dg = Pg + Bg − εg

= qm−2`n

{
[m + (3 − Eε1)n]

(
−uw

∂U

∂z

)
+ Eε4n |f | q2

+ [m + (3 − Eε3)n]
(
βgwθ

)
− [m + (3 − Eε2)n]

q3

B1`

}
(69)

whereEε4=Cε4=0.04, |f |=
√

fifi=2�E , �E being the an-
gular rotation rate of the planet. This equation is also useful
in the simulation of turbulence in engineering devices with
high rotation rates. Note that only the effect of rotation on
small scales of turbulence is taken into account in Eq. (69).

11 Wall damping functions

In many applications, it may be necessary to carry out cal-
culations on mixing all the way to the boundary. Sediment
transport in an oceanic bottom boundary layer is a typical
example. In the calculation of turbulent flows involving sep-
aration, it is also necessary to integrate to the wall. To enable
this, the eddy viscosityνt , and the dissipation term in the
k−ε equations must be multiplied by wall damping functions
(Speziale et al. 1990), or equivalentlyCµ must be multiplied
by fν , andCε2 by fε, wherefν andfε are wall damping

functions. Speziale et al. (1990) recommend:

fν =

[
1 + 3.45(Ret )

−1/2
]

tanh(y+/70)

fε =

{
1 −

2

9
exp

[
−

(
Ret

6

)2
]}[

1 − exp

(
−y+

4.9

)]2

(70)

whereRet=k2/(νε) is the turbulence Reynolds number and
y+

=yu∗/ν. Functionsfν andfε have the correct asymptotic
behavior needed near the wall:fν∼O(1/y); fε∼O(y2). Far
from the wall, bothfν , fε→1.

In addition, viscous terms must be retained so that Eq. (3)
becomes:

D

Dt

(
q2
)

−
∂

∂z

[
(ν + q`Sqfν)

∂

∂z

(
q2
)]

= 2(p + B − ε)

= −2uw
∂U

∂z
+ 2βgwθ − 2

q3

B1`
+ ν

∂2

∂z2

(
q2
)

(71)

Equation (36) assumes the form:

D

Dt

(
qm`n

)
+ Dg = Pg + Bg − εg + Vg

= qm−2`n

{
[m + (3 − Eε1)n]

(
−uw

∂U

∂z

)
+ [m + (3 − Eε3)n] βgwθ − [m + (3 − Eε2)n] fε

q3

B1`

}
+ νqm−2`n

{
(m + 3n)

n

1
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) ∂
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q2
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−
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4n
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1

q2
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(n + 1)

n
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1
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∂
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(
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+ ν

∂2
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(
qm`n

)
(72)
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where

Dg = −qm−3`n+1 ∂

∂z

[(
ν +

fν

qm−4`n
S`ε

)
∂

∂z

(
qm`n

)]
−

(
m + 3n

2
qm−2`n

){
∂

∂z

[(
ν + q f̀νSq

) ∂

∂z
q2
]

−
`

q

∂

∂z

[(
ν + q2fνS`ε

) ∂

∂z
q2
]}

(73)

Note the presence of viscous cross-diffusion terms in
Eq. (72). The absence of such a cross- diffusion term in
the conventionalk−ω model of Wilcox (1988) makes it
yield asymptotically inconsistent solutions for near wall tur-
bulence as indicated by Speziale et al. (1990). The cross-
diffusion terms are absent ink−ε model and it has the cor-
rect asymptotic behavior near the wall. The k-T model of
Speziale et al. (1990) includes two nonzero cross diffusion
terms to yield the correct asymptotic behavior. In any case,
the presence of cross-diffusion terms and the damping func-
tions makes the generalqm`n model have the correct asymp-
totic near-wall behavior for all values ofm andn. However,
as Speziale et al. (1990) noted, the need to specify the bound-
ary condition for the quantity being computed makes the k-T
model more attractive than thek−ω model, sinceT ∼1/ω is
not singular at the wall. Thek−ε model suffers from diffi-
culties in deriving a proper value forε at the wall (the Neu-
mann boundary condition of vanishing∂ε/∂z is incorrect).
Therefore, it may be preferable to use the k-T model when
integrating down to the boundary.

12 Concluding remarks

We have shown that the traditional model for the diffusion
term in the length scale equation is responsible for the ne-
cessity in the Mellor and Yamada (1982)q2

−q2` model for
the arbitrary wall correction term and the inconsistent behav-
ior of k-kT models. We have derived a general length scale
equation that is devoid of such difficulties and from which
any current length scale model can be derived as a subset. We
have also derived the closure constants in this equation and
indicated the forms of this equation under the influence of ro-
tation and for near-wall turbulence calculations. We believe
that the use of this general length scale equation (Eqs. 36
and 37) or one of its subsets (see Eq. 63) in two-equation
models of turbulence will therefore be worthwhile in the fu-
ture. We also recommend the use of the updated values for
the second moment closure constants that occur in the sta-
bility functions of momentum and temperature,SM andSH ,
as indicated by Kantha (2003), since they appear to over-
come some of the deficiencies of earlier values used in Mel-
lor and Yamada (1982), Kantha and Clayson (1994) and sim-
ilar Mellor-Yamada type second moment closure models, as
was shown first by Cheng et al. (2002).
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