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Abstract. The question of which length scale equation to length scale is suitably prescribed (Prandtl, 1945). However,
use in models of turbulence has long been controversial anét was Kolmogoroff, who was the first to propose the use of
several approaches have been suggested and used in the pasi-equation models in which equations for both the TKE
In this paper, we demonstrate that all these approaches a@nd a quantity involving the length scale are solved (Kol-
equivalent and the inconsistencies in the use of some ofmogoroff, 1942). Since then, considerable progress has been
these approaches arise from improper modeling of the dif-made in modeling turbulence, culminating in the currently
fusion term in the length scale equation. We formulate apopular second moment closure models involving differen-
general length scale equation, which encompasses all curretial equations for TKE and a quantity involvirigalong with
approaches. This equation is devoid of inconsistencies andlgebraic expressions for the second moment quantities, de-
should prove useful in its general form, or one of its subsetsyived by appropriate simplification of the full set of 10 par-

in turbulence closure modeling. tial differential equations for the second moment turbulence
quantities Reynolds stress, turbulent heat flux;; and the

temperature variana#?. These models are called algebraic
1 Introduction stress models (Level 2.5 in Mellor and Yamada 1974 termi-

nology). We will not discuss algebraic stress models here,
The weakest link in second moment turbulence closure hagut instead concentrate on the length scale equation. Inter-
always been the specification of the turbulence macroscalested readers are referred to Cheng et al. (2002), Kantha and
£. If one accepts the second moment closure methodologylayson (1994), Galperin et al. (1988), Rodi (1987), Mellor
as one of the currently available methods of some practicahnd Yamada (1974, 1982), and Hanjalic and Launder (1974).
utility, if not conceptual elegance or physical unassailabilty, Mellor and Herring (1973), a dated but still insightful survey
then it is natural to ask what its strengths and weaknessesf turbulence closure, touches upon some of the issues dis-
are, and how one can remedy the latter. In this sense, theussed in this paper. The reader is also referred to Kantha
question of the turbulence length scale and how to model i{2003) for the latest update of the second moment closure
properly are still outstanding issues in second moment clo-constants that removes some of the problems that were ev-
sure. Here, we look at the many approaches that have beetient in the original Mellor and Yamada (1982) closure. In
proposed and ascertain why certain approaches are problemarticular, a better agreement with the observed wind veloc-
atic. We derive an equation for a generalized quantity involv-ity profile in the atmospheric surface layer is obtained from
ing the length scale that in turn encompasses all the currente use of the updated constants.
approaches properly, and hence can be used for whatever ap-1yare is no ambiguity in the proper form of the TKE equa-

proach one ch_opses. L ) tion (Mellor and Yamada, 1982; Galperin et al., 1988; Kan-
The bare minimum description of turbulence requires WO 4 and Clayson, 1994; Baumert and Peters, 2000), which
quantities: 1. The intensity of turbulence indicated by theCan be readily derived from the equations for the Reynolds

kinetic energy in the turbulent fluctuations, or equivalently, stresses. We write down The TKE equation here for future
the turbulence velocity scalg, and 2. The scale around reference:

which this energy is concentrated, represented by the peak

in the turbulence spectrum, or equivalently the turbulence

length scale?. It was Ludwig Prandtl who pioneered the

use of one-equation turbulence models in which an equap;, 3 [Vt 9k

tion for the turbulence kinetic energy (TKE) is solved but the Dr E o ox;
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84 L. H. Kantha: The length scale equation in turbulence models

where P is the shear productionB is the buoyancy pro- transport terms. We follow the same practice here, since our
duction ande is the dissipation rate of TKE]. The quan-  objective is to show how the various length scale models can
tity v,:CMkZ/e is the turbulent viscosity ang; is the TKE  be reconciled within the current framework of second mo-
Prandtl number. Dt is the substantial derivative and the ment closure models.

second term on the left hand side is the turbulent diffusion

term, modeled as down-the-gradient transport of TKE. The

traditional value fow; is 1.0. Almost allk—e modelers have 2 1he length scale models

usedC,=0.09. .
For thin horizontal shear layers, this equation becomes: There are many ways to prescribe the turbulence macroscale
' " ¢£. The simplest and the most arbitrary method has been
Dk 9 [ 9k to simply prescribe it arbitrarily by an algebraic equation
o ol | =P tB-e or some other means. In doing so, one makes use of the
Dt 0z | o 0z
U L well-known and the widely accepted fact that the turbulence
= —Wa— + Bgwb — ¢ (2) macroscale in a boundary layer on a solid surface is simply
z

proportional to the distance from the surface (some believe
wheredU/dz is the shearis in the vertical direction and that this proportionality extends to the viscous sublayer on a
perpendicular to the shear flow). This can also be written assmooth wall). Use is also made of the fact that as the edge of
the boundary layer is reached, the eddy size tends to be pro-

R(qz) _ i [qlSqi(qz)} —2(P+B—¢) portional to and a fraction of the thickness of the boundary
Dr 0z 0z layer. Thus:
AU — .4
=-2uw— +2 0—2— 3
ww 72 + 2Bgw Bil 3) 0(z) = £0< i ) (5)
kz +£o

_.3 i
yvhere l\;vel ha\;le pLH;qd_/(BlZ)_maklng_use O; thﬁ fact that_ wherex is the von Karman constant (equal to 0.4)s the
In a turbulent flow, the dissipation rate Is set by the prOpert'e:Fistance from the surface a#igis the asymptotic value of

of the energy containing eddies and is therefore proportion owards the edge of the boundary layer. This expression was

3 . .
to ‘é./.ﬁ (Klolmlogorfoff 1942)'1?'1 IS aglosuredconstar;t. with ?\ first proposed by Blackadar (1962), but in the context of a
traditional value of 16.6 (Mellor and Yamada, 1982; Kantha .,jsin o length approach. The asymptotic value is either arbi-

and Clayson, 1994) and is relateddp by trarily prescribed as some fraction of the turbulent boundary

B:C 1 layer thickness or calculated by the use of a formula such as
—4/3, 1Cu : :
Co=4B "7 8= =3 (4)  (Mellor and Durbin, 1975; Martin, 1985, 1986):
4oy ox B
o
The only controversy surrounding the TKE equation is the a [ qzdz
manner in which the diffusion term is modeled. It has long ¢ — _o (6)
been known that down-the-gradient approximation for tur- ?qdz
bulent diffusion is not always applicable, and this approx- 0

imation has been severely criticized by turbulence purists

(for example, Corrsin, 1979), since large scale eddies ar%vhereta IS an etmpt;ncal C(lnnstant..tlln r‘?any ((:jasets, thﬁ result§
indeed capable of transporting properties against the gradi_-0 not appear 1o be overly Sensiive o moderate changes in
its value, although there appears to be a fundamental differ-

ent (Townsend, 1980). Still the practice persists, and is of- . .
ten justified by the fact that the diffusion terms are gener_ence (Galperin and Hassid, 1986) between the values that are

ally less important compared to the production and dissi a_suitab_le for non-rotating boundary layers frequent_ly encoun-
y P b P P ered in the laboratory~0.55) and those for rotating ones

tion terms in the equations for the Reynolds stresses. Thi e .
g y characteristic of geophysical flows-Q.2).

is the primary reason that the results of second moment clo ) . L . . .
While this prescription works well, especially in regions

sure are relatively insensitive to the exact model for turbulent .
diffusion of TKE or the exact value for the diffusion coeffi- adjacent to a solid surface, no doubt due to the robustness

cient. This is also why it is possible to obtain reasonableof the assumption near the wall, the method is highly em-

results even though diffusion terms are modeled as downpirical’ requires a priori knowledge of the length scale be-

the-gradient transport terms, as almost all second mome avior in that particular flow situation. While it is still pos-
closure models do. In fact, in many cases, local equilibriumSible to derive an equivalent length scale in complex flow

prevails, and the turbulence production is balanced f:llmosfitu""tionS by empirical means, where such empirical data are

exactly é)y dissipation, and diffusion is nearly zero acking or are untenable, it is of little practical use. Also in a
However, the samé is not true for the length scale equaplanetary boundary Iay_er capped by an inversior_l, (_:ont_rary o

tion. The diffusion terms are not negligible except in the S’pe_the Blackadar formulation, the length scale variation in the

cial case of spatially homogeneous turbulence. Nevertheles?,oundarz Igy((a:rhmust bg gon-Torlcgg‘r:lc as the inversion is
tradition prevails, and the diffusion terms in all length scale approached (Cheng and Canuto, )-
equations to-date have been modeled as down-the-gradient
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It is therefore desirable to write a transport equation forequation, all the turbulent correlation terms that appear in
the turbulence length scale or equivalently, a quantity involv-any length scale equation must be modeled, that too in the
ing it, which is devoid of such arbitrariness and therefore absence of empirical wisdom about the nature or behavior of
of universal applicability. The various quantities involving these quantities. The most favored approach has been to sim-
the length scale that have physical interpretations @tg¢, ply mimic the TKE equation so that no matter which quan-
q/t, £/q, qt, andg?¢. The first is proportional to the dis- tity is modeled, the equation consists of a shear production
sipation rate of TKEg. The second and third can be inter- term, a buoyancy production term, a dissipation term and a
preted as being proportional to the turbulence frequency diffusion term, whose forms are similar to those of the cor-
(equivalentlye/k) and the turbulence time scate(equiva-  responding terms in the TKE equation and related to them
lently k/¢), respectively. The fourth one is proportional to by simple dimensional considerations. Here we will develop
the turbulent viscosityr (equivalentlyk?/¢). The last one a transport equation far™¢” and using its subsets, demon-
represents a spherical average of two-point turbulent correstrate that it is the way the diffusional term is modeled that
lations integrated over the separation distance (see Sect. dtroduces well-known difficulties in some of the traditional
and does not have as clear a physical meaning. It appeargpproaches. But first we will describe how the different equa-
that Kolmogoroff (1942) was the first to suggest the use of ations are formulated so as to have a better understanding of
length scale equation (for turbulence frequency) and sincehe inter-relationships between the various approaches.
then many such equations have been proposed. However
most approaches have had one problem or another, and de-
spite claims to the contrary by various proponents, no one3 1hee (or g
approach is superior to the others, and it is likely that all of
these approaches are equivalent.

3/1) equation

An exact equation for the isotropic dissipation rate of TKE

can be derived by differentiating the Navier-Stokes equation
It is in fact possible to write down a transport equation for for the turbulent velocity component w.r.t. x;, multiplying

the general quantity”¢” wherem andn are integer val- by vdu;/dx; and ensemble averaging to obtain a transport

ues. The various length scale equations then become sulequation for the isotropic dissipation ragg=v(du; /dx;)>2

sets. A major problem persists however: unlike the TKE (Harlow and Nakayama, 1967; Hanjalic and Launder, 1972):

De; 2\18Uj ouj duy ou; ouy > ouj ouj dug
Dt 0xk

8xk 3)61 8)61
a ou; ou d 19p du;
[ e 0wy 9 (1 9P duy @
8xk 8xk Bxk ax]‘ 1% 3)61 Bxl

The next step is to invoke asymptoticity at high turbu- tion for dissipation scales of turbulence and not a macroscale,
lence Reynolds numbers and equatéo the dissipation rate  and besides contains little new information than the original
e=¢3/(B1¢). Thus the equation, though derived for a pro- two-point correlation equation from which it can be derived.
cess representative of the small universal Kolmogoroff vis-Interpreted this way, there would appear to be a major flaw
cous scales of turbulence, involves a quantity that is neverin this approach. But if we invoke the fact that the dissipa-
theless a function solely of the large energy containing scalesion rate is really a function of large scales, then Eq. (7) is
and is therefore a meaningful and legitimate equation for thea pseudo equation far®/¢ and in this sense an acceptable
turbulence macroscale This is because of the remarkable equation fort.
property of turbulence that the dissipation rate of TKE is The next task is to model the terms on the right hand side
not a function, asymptotically, of the Kolmogoroff viscous of Eq. (7). Unfortunately, all the terms have to be modeled
dissipation scales, which merely adjust to accommodate thand herein lies the problem. The first term can be identified
energy cascade from large scales to small scales across tlas the production term, and the last two terms as diffusional
wavenumber spectrum. terms, while the third term is the dissipation rate (of the dis-

Thi tionis i tensi today th h sipation rate!). The second term is interpreted as the genera-
IS equation Is In more extensive use today than any 0thefi,, rate of vorticity fluctuations and modeled together with
length scale equation. Its proponents claim that it is mor

. ) ) €the dissipation term (Hanjalic and Launder, 1972). Without
meaningful and useful than others because it pertains to

. . aoing into details (but see, Hanjalic and Launder, 1972, for
physically meaningful and rather fundamental property of

turbulence, namely the dissipation rateOn the other hand, example), the modeled equation can be written as:
Mellor (1985) shows that Eq. (7) can also be derived from % 9 [ ’j (_Wa_‘?)} —P.+B —¢

an equation for two-point correlation of the turbulence ve- Dt dxx “e ¢ lam ‘ £
locity component by taking the limit of zero separation dis- 3 Uj _

tance. He argues that therefore the equation is really an equa- = % [C’?l (_”/”kg) + Cea(Bgwt) — CSZE} (®)

0x; 0xy 0x; dx

k
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whereP,, B, andg, are the shear production, the buoyancy and Peters, 2000). However, theoretical considerations, as
production and the dissipation of the dissipation ratee- pointed out below suggest that:
spectively. For thin horizontal shear layers, this equation re—

duces to: Ce1=3/2, Ce2=2, (13)
D a d
26 _ 9 MO b g e, Therefore,
Dt 09z |o: 3z
e aU E&‘l = 37 E&‘Z = 41 (14)
== [Cel (_uw_> + Cs3(ﬁgw9) CsZS] (9) . . . .
k 0 Speziale et al. (1990) point out a major problem associated

wheredU /32 is the shear as before in Eq. (2), andis the with thek—e two-equation turbulence model. It is associated
dissipation Prandtl number. ’ with the fact that a lack of natural boundary conditions for

For future reference, we will also write this equation in the dissipation rate makes it difficult to derive and apply a

terms ofg and¢ by puttinge=¢3/(B1¢): boundary con(.jition.that is consistent a§ymptotically or is not

numerically stiff to integrate the equations all the way to a
D (4° d 3 (¢ solid boundary. Accurate and robust low Reynolds number
Dr\¢ ] oz 4 o\ near-wall corrections needed to integrate down to the wall

have therefore been hard to derive. But where integration to
the boundary is not needed, the model is well behaved and in

3U 3 extensive use.
= g |:E81 (—uwa—> + Es3(,8gw9) SZ;I_M:| (10)

= Pq?./g + BqB/E _8q3/g

14

The constants,1, C.z, C.3 ando, andE,1, E.2, E.3,and 4 The ¢?l equation

Seeare related: . . .
This the next most popular approach, used extensively in

Ec1 =2Cc1, Eg=2Ce, Eg3=2Ce3 geophysical applications. It is also one of the most contro-
S, — BiC, 1 1 versial.
te = 4o, 4 1/3 11) Rotta (1951, see also 1972) appealed to the two-point cor-
€

relation equations that can be derived from the Navier-Stokes
While a range of values have been used for the closure conequation by multiplying the equation fag (x) by u; (x+r)
stants (Rodi, 1987; Tennekes, 1989; Speziale et al., 1990and adding to the equation faf(x+r) multiplied by u; (x)
Burchard and Bolding, 2001), the traditional values for theseand taking an ensemble average. The quagtitycan then
constants are: be defined as a volume integral of the two-point correlation:

C.1 =146, C.2 =192 C.3=0.2 ando, = 1.159 (12)
///uj(x)uj(x r)

Of these, there is the least general agreement on the value

of o, with the values ranging from 1.11 (Rodi, 1987) to

0.8 (Zeierman and Wolfshtein, 1986) and thatg whose  and the corresponding equation fpf¢ is (Wolfstein et al.,
value ranges from-1.4 to +1.45 (see Table 4 in Baumert 1974; Naot et al., 1973; see also Lewellen, 1977):

o (+70)~

9 .
///{ Uk(x) Uk(x+r)] (uj(x)uj(x—i-r))—uj(x)uk(x-i-r)a—kaj(x—i—r)—i-uj(x)uk(x—i-r)@Uj(x)

(15)

— %(%xkuk(x)uj(x)uj(x +r)+ airkuj(x)uk(x +ruj(x +r)+ airkuj(x)uk(x)uj(x + r))

1,0 0 ol
= o (G PO G 7) 4 S p G P ) — 5 pCou (e 1)

op \ox
R L — e A
_vmuj(x)u](x+r)—2vmu](x)u](x r)+2\) kakuj(x)uj(x r)}r—z (16)

without the body force terms. It is readily apparent that all viscous and diffusion terms can be identified. Nevertheless,
the terms on the right hand side must be modeled. The physithe various terms can be modeled in the traditional manner
cal interpretation of various terms is difficult at best, althoughto yield for a horizontal thin shear layer, after the inclusion
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of the buoyancy term in the derivation (Mellor and Yamada, 1982):

D d 9
— (q26> ~ % I:qZSgL—Z (qzé)i| = P2y + B2y — €42

144 — 2 ¢ \?
=/ {ELl (—W8—2> + Er3(Bgwo) — ELZI;]_lﬁ [1+ Erq (K_L> ]} (17)

where the dissipation term contains an additional near-walchard, 2001; Baumert and Peters, 2000). We will show that
correction term that has been tacked @njs the distance theoretical considerations dictate:

from a solid surface. This wall-term is absolutely essential

to force the model to be consistent with the length scale varifr1=2, Erx2=1 (20)

ation in the constant flux region adjacent to a boundary in a;q proper modeling of the diffusion term leadsfgs—0
neutrally stratified flow. This has been cited as a major flawy, ;s removing a major objection to the use of i3& equai-
in this approach (Rodi, 1987). Nevertheless, this equation;gp,

has been used extensively in geophysical applications (Mel-

lor and Yamada, 1982; Kantha and Clayson, 1994; Rosati

and Miyakoda, 1988). Note that such a correction term wass The kT(gl) equation
not necessary in theequation.

The traditional values for the constants in this equation areZeierman and Wolfshtein (1986) have derived an equation
for what they call the time scale of turbulence rather rigor-

E;1=18 E;2=10 E;3=18 ously, starting from an equation for the autocorrelation of the

Epg=133 S =02 (18)  turbulence velocity

whe_re the non-zero value &4 is f_orc_ed upon by the con- Rij(x.t,7) = u;(x, Du; (X, 1 + 1) (21)

straint on the length scale behavior in the constant flux re-

gion: obtained by multiplying the Navier-Stokes equation for the
turbulence component; by u (¢ and adding the re-

Ep1= Ero(1+ Era) — k2B1Se (19) ponent; by u;(ti) g

sult to the product of the equation far; (r+7) andu;(r)
It has also become clear in recent years that the conBtant and ensemble-averaging. Under the assumption of quasi-
must be higher under stable stratification (Kantha, 1988; Burstationarity, one obtains

D v, 19 1/0K,; 0K, 92R;; du ;i (t) duj(t + 1)

— R = —(R:: R:: — (S S ) — — iz > -2 . 22
Dt " ( " + ]l) 8)6]' 28xj ( ot + l"lj) 1Y < 3XJ‘ + 8Xj + Uax]'f)x]' Y 3Xj 8Xj ( )
where buoyancy term, as an equation fdf as

Sijk = ui(@Ouj(Our(t + 1),

D 3 9
A o —(kT)——[i—(kT)} —P,+B, —e¢,
Kpi=pOujt+1), Kjp,=uj®)pt+r1) (23) Dt dz | oy 0z

__dU _
are triple velocity and pressure-velocity correlations. Both =T {Cvl <_”wa_z) + Cig (Bgwh) — Cv25} (25)
the TKE equation and the time-scale equation can be derived

from Eq. (22), the first by taking the limit=0, and the sec- \ yar07_c 12/¢. Zeierman and Wolfshtein (1986) chose
ond by integration with respect tg since the TKE and the a

time scale are given by: Co1=0173 C,p = 0.225
1 1 =108 and =146 26
k(x) = S Ra(x. 7 = 0) = Sy 7 o (20)
1 00 They did not include the buoyancy term and therefore the
T(x)=— / Rii(x, T)dT (24) value of C,3 is not known. Also the value of the, they
2k chose based on the analysis of a high pressure gradient flow is

0 too high. They also chose a traditional value ¢y of 0.09.

Eqation (22) after some closure assumptions can be written By substitutingT~¢/q, Eq. (25) can be converted to an
for a thin horizontal shear layer, after the inclusion of the equation forg¢, a quantity proportional to the turbulent
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viscosity:

D( 0) 9 LS 9 q0)| = + B g
D1 q 9z qtoey 92 q = Fqe ql ql
¢ __U 3
= g {EU]_ (—uwa—z> + Ey3 (,nge - EUZ;I_]_K} (27)

Closure constantB,;, E,2, E,3, andS,, are related t@,1,
C,2, C,3ando, by:

Ev1=2Cy1, En=2Cy2, Ez3=2Cy;,

S = —13 (28)
orB]

so that

Evi=0346 E, =045 (29)

We will show that from theoretical consideratiof,1=1,

L. H. Kantha: The length scale equation in turbulence models

applications. However, while this model has been known
to perform well in adverse pressure gradients, it does suf-
fer from a major disadvantage, namely its high sensitivity to
the value of the free stream vorticity prescribed.

An equation forw can be written for a thin horizontal shear
layer as:

J— —_— [ — — — &
th 0z owazw @ @ @

w

X {Cwl (_W({;_(Zj> + Co3 (:Bgm - CwZS} (30)

Wilcox (1988) use<,1=5/9, C,2=5/6, 0,=2 ando;=2.

He has not considered buoyancy terms and so the value of
C,3 is unknown. Equation (30) can be converted readily to
an equation fog /¢:

Day 31 us.24) +B
—_— p— — — — — f— _8
Die’ oz |15 g/t P/t T Sq/t

as in Egs. (25) and (27) leads to difficulties. ql

It should be noted that Nee and Kovasznay (1969) were
the first to propose an equation for turbulent viscosity. TheirClosure constantBoy, Evz, Eog andSy, are related i@,
approach was however purely empirical and they did not usé-o2: Co3 andoyr by:

B¢

E,2=0. We will also show that the diffusion term, modeled 1 {E 1( __aUu
ol —
Z

uwa—> + E3 (ﬂgw@) - sz—} (31)

it as an equation for the turbulence length scale. E,1 =2Cy1, Eu2=2C,2, Eu3=2C,3
1
. Stw = ——3 32
6 Thew (q/l) equation tw 0uBY? (32)

Spalding (1969), Daly and Harlow (1970) and Saffman We will show that from theoretical consideration,1=1,
(1970) independently proposed a transport equation for meatw2=2-

vorticity fluctuations, which is proportional t92/¢2, and

llegbusi and Spalding (1985) tried to improve it by remov- 7 he T(1/g) equation

ing the wall correction term. An appealing aspect of this

equation is that it deals with a rather fundamental propertySpeziale et al. (1990) argue that while w model is com-

of turbulence; it is the vorticity fluctuations resulting from putationally more robust than tite-¢ model for integration
the breakdown of vortex sheets and filaments into less orthrough the viscous layer to the solid boundary, it yields re-
dered structures that give turbulence its characteristic chaotigults for the TKE that are asymptotically inconsistent with
structure. By dealing with such a fundamental property, onetheoretical results near a solid boundary. They show that
hopes to put more physical meaning into the model. Thethis stems from the absence of a viscous cross-diffusion term
major drawback is however that the vorticity fluctuations arein the o equation. They suggest an alternative equation for
concerned with the property of small scales of turbulencethe turbulence time Scaﬁzcukz/g (instead of frequency),
Although vortex stretching is a fundamental characteristic ofwhich has the correct asymptotic behavior near the solid

turbulence, it is hard to see how an equation for a quantitypoundary. The form is similar to other length scale equa-
dominated by small scales (which are asymptotically far re-tions:

moved from energy containing scales in the turbulence specpr 3 [v 8
trum and therefore do not feel the large scales directly) can beE % [;a—Z(T)] = Pr+ Br —e¢r
used to describe the turbulence macroscale. Mellor’s (1985)
objection to the use of the dissipation equation is perhaps — — {CTl <_mﬂ> +Cr3 (,Bg@) _ Cng} (33)
more valid here. k 9z

However if one interpretg /¢ as an equation for turbu- with Cy1=—0.44 andC7>,=-—0.83. Speziale et al. (1990) ig-
lence frequency, as Kolmogoroff (1942) did, then a trans-nore the buoyancy term and so the valu€gg is unknown.
port equation for this quantity is meaningful as a length The asymptotic values for these constants should-De5
scale equation. This approach has been developed furthemd—1.0 as shown in Sect. 8.
by Wilcox (1984, 1988a, 1988b, see also Wilcox and Traci, Finally, it should be pointed out that an equation can also
1976). An acknowledged advantage of khew model, com-  be written for the length scakeitself that has a similar struc-
pared to other models is that it can be integrated right throughure to the length scale equations detailed above, namely an
the viscous sublayer to the solid wall, without the need forequation involving shear and buoyancy production terms as
wall functions. This has made it the workhorse of industrial well as the dissipation and diffusion terms.
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8 The general length scalég™I™) equation tity ¢ ¢" from which the various length scale equations can

be derived as subsets. Doing so, we get:
Since the structure of all the length scale equations is the

same, it is tempting to form an equation for a general quan-

D 0 0
Ht(qu" [Cleséga_z(qm”)} = Py + By — &

R
=q" 20" 1 E <—m%) + E3 (Bgw) — PR PO (£>2 (34)
9z Byt kL

This equation must provide consistent length scale behav(1986), 1 and E» are too close and the resulting value for
ior in the constant flux region of a neutrally stratified flow the diffusion coefficient is too small (0.039), or equivalently
near a solid wall. It can be shown (see Sect. 9) that this comthe value of the Prandtl numbey is too large. We will show
patibility relation for Eq. (34) becomes shortly that the asymptotically correct value #5 is O in the

2 2 _ g¢ model, and consequently, the diffusion coefficidpt is
— Buc"Segn® = E1 = Eall+ Eal (35) always negative. Hence this model is physically uf\%enable.
To assure positive—definiteness of the diffusion CoefﬁCient,Both thee andw equa’[ions have sufﬁcient]y |arge values for

Stg, the model constant&; and E> must be chosen such g, with £4=0 and have enjoyed considerable success.
that the term on the right hand side is negative. For models

with E4=0, this meanst>>E1. All the models discussed The problems with thej2¢ and ¢¢ equations therefore
above satisfy this constraint, except & model (Mellor  stem from the diffusion term. This can be corrected as fol-
and Yamada, 1982; Kantha and Clayson, 1994) and this isows. Since thes equation performs well, combining the
the reasony?¢ model cannot function without a non-zero TKE Eq. (3) and the3/¢ Eq. (10), we can derive an equation
value for E4. In theg equation of Zeierman and Wolfshtein for g™ ¢":

D
o (4"0") + Dy = Py + By — &g
3

U
= qm—Zg"{ [m + 3= Econ] (=) ==+ [m + 3= Eca)n] (Bgw) — [m + (3= Ec2)n] 1;]_113} (36)

where the form of the diffusion ter®, is given by

0 1 ol m + 3n 0 0 £ 9 d
D, = — m—3£n+1_ Sy — (a™e™) | — m—ZZn i S — 2y _ =9 ZS v 2 37
& 1 dz Lgm—%en te 0z (q ) 2 1 9z 1524 0z q 0z 4ot qu 37

If we rewrite Eq. (37) as

a a a a
D, = —— | gtSy.— (g™e" m—2£n+2S ( 3—m£—n—1> m pn
§ =352 [q ey, 4 )] q ey (4 5. @)

_ e | 2 (ges, Zq?) = £ L (425,
( 2 >q |:Bz (q 190 ) T gaz \9 e

where the first term is similar to the diffusion term in model works only whem is a negative integer. This, among
Eq. (34), it is clear that this term is not adequate to modelother things prompted them to suggest that a non-integer val-
diffusion correctly. The use of Eq. (37) eliminates the incon- ues be used fot. It is worth noting that while mathemati-
sistencies with the earlier length scale models and holds focally feasible, this approach is fraught with conceptual diffi-
any integer values ofi andn. culties related to the physical meaning of the quangity”
Umlauf and Burchard (2002) have also attempted towhenm andn are not integers. For future reference, we will
present a general length scale model, but with traditionalrewrite Eq. (36) in the form:
form of the diffusion term as in Eq. (34). Consequently, their

D
o (¢"€") + Dg = Py + By — &

=q" 20" | Eq —ma—U + E3(Bgwo) — qu—3 (38)
9z B1t
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where 9.3 Constant flux region in neutrally stratified flows
E1=m+ @B—Ex)n, Ex=m+ 38— Ex2)n H I , q I fiod
Es=m+ (3— E.an (39) In the constant flux region of a steady neutrally stratifie

. . boundary layer, buoyancy terms are zero and simple dimen-
Closure constants in all previous length scale models can bgjonal reasoning leads to

obtained from Eq. (39) by a suitable choice for the integers

m and n. U
q= Bl/3u*, =Kz, — = e (43)
0z KZ

9 Closure constants in § — q™¢" model ] o ,
whereu, is the friction velocity. Alsodq/dz=0; 3/3r=0.

We now appeal to well-known turbulent flows to evaluate the Neglecting tendency and buoyancy terms, and substituting

closure constants in this model. these values, it can be shown tlet Eq. (3) is identically
satisfied, irrespective of the value §f or B since the dif-
9.1 Tennekes hypothesis fusion terms are identically zero and local equilibrium pre-

) vails with production balancing dissipation. Substitution in
To determine the value of1, we follow Baumert and Pe-  he mn Eq. (36) gives:

ters (2000) and derive an equation fat/dr using Egs. (3)
and (36). For a homogeneous shear flow far away from a, 2¢, —Fn_E 44
solid surface, the diffusion term can be neglected and since ~ + ¢ "#2 7 Fel (44)

1 9 (¢"¢") = 19e\  m(13q° (40) irrespective of the value ofi or n. Substituting the asymp-
q™en ot T\ o 2 \ g2 ot totic values on the right hand side, we ¢et=0.377. This
we get corresponds to a value fet=1.041 ink—e models, a value

180 close to unity.
<£ 8t> 9.4 Turbulence generated by a stirring grid in a neutrally

— ? [(3 —E)P+(B3—Ex»3)B—(3— EsZ)g] (41) stratified fluid

Tennekes (1989) noted that in a homogeneous shear flowfurbulence generated by an oscillating grid has been stud-
since the shear is homogeneous, it cannot impose a lengtied extensively in the laboratory both in neutrally and sta-
scale and therefore, the shear term must drop out of the equaly stratified fluids by turbulence researchers (Thompson and
tion for the rate of change of turbulence length scale. ThisTurner, 1975; Hopfinger and Toly, 1976; Turner, 1981; E
dictates that,1=3. and Hopfinger, 1986; Nokes, 1988; Hannoun et al., 1988).
. ) ) . These experiments provide considerable empirical knowl-
9.2 Homogeneous, isotropic turbulence behind a grid edge on the behavior of turbulence in a particularly unique
situation, when the only source of turbulence in regions far
. ; : - : away from the grid is the turbulent diffusion. Thus these ex-
|sqtr9p|c tu.rbulence n a ngutrally stratlflgd ﬂ(.)W behind a periments provide a particularly useful and interesting data
grid ina wind tunnel. In this case, the diffusion and pro- set for evaluating the modeling of diffusion terms in second
duction terms can be neglected and Eqgs. (3) and (36) reducr%oment closure models as suggested by Sonin (1983). Al-

To determine the value df,,, we appeal to homogeneous,

to:2 though it was feared that earlier such experiments (for ex-
9q° — D¢ ample, Thompson and Turner, 1975) might have been con-
ot ’ taminated by unwanted secondary circulations due to un-
a - . . . -

9 (qmg”) = _gm 2 [m +@3- Egz)n]s (42) avoidable asymmetries in the grid, it appears that these fears
ot were greatly exaggerated. More recent experiments (E and

By assuminngtfl), it can be shown that~t1—? and Hopfinger, 1986, see also Hopfinger, 1987), with consider-
E.»=(2p+1)/p from Eq. (42). While experiments in large able attention given to eliminating secondary circulations,
wind tunnels (Gad-el-Hak and Corrsin, 1974; Comte-Bellot have in general confirmed earlier results. The experiments
and Corrsin, 1966) show that the value of p is betweendo suffer from a variety of problems, including wall effects,
0.5 and 0.65, it must be noted that it is quite difficult to finite Reynolds numbers and finite oscillation amplitude, and
achieve the condition of homogeneity and isotropy accu-the power law for the decay of TKE with distance from the
rately and large enough Reynolds numbers in the laborasource is not known precisely.

tory. Domaradzki and Mellor (1984) explain these departures Dimensional considerations dictate that the turbulence
from ther 1 behavior that results from theoretical consider- length scale must scale as the distance from the grid mid-
ations which suggest thatmust be 1/2 (precisely the value planez(¢=bz), but the value ofp in ¢g°~z 2P is quite un-
chosen by Mellor and Yamada, 1982). Choosing this valuecertain (between 1 and 1.5). The situation here is somewhat
for p, we getE o=4. analogous to decaying turbulence behind a grid in a wind
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tunnel, where theory dictateg~¢~1 in the ideal situation

It should however be pointed out that Cazalbou et

of infinite Reynolds number turbulence, while experimentalal. (1994) question Lele’s analysis and have derived in-
values suggest a non-unity exponent in the necessarily norstead alternative constraints ep ando,: 4>20;>0, and
ideal experimental setups. Nevertheless, there are indicatiorr;=1+0,. The values we have chosen fef ando, do

thatg~z~1 so that the dissipation rate-z— and turbulent
viscosityv;~ constant.
E and Hopfinger (1986) foung@=0.24 at sufficiently large

satisfy these constraints.

It is also worth noting that Umlauf and Burchard (2002)
show that for traditional values of the closure constants, the

values of grid stroke (and hence large Reynolds numbers) i —¢ two-equation model cannot reproduce stirring grid data,
agreement with Hopfinger and Linden (1982), although it ispredicting an excessive decay rate for TKE. This problem
substantially less at lower values of grid strokes, between 0.kan be traced directly to the traditional valuespfof around

and 0.2. Note that there is no apriori reason to assumethat 1.0 used in their analysis. If the lower value derived above is
must be equal te (in fact« is defined as the proportionality ysed, this problem is eliminated.

constant in thé~z relationship in the logarithmic region of

a neutrally-stratified boundary layer adjacent to a solid sur-g 5 Turbulence generated by a grid in a stably stratified
face, and this has nothing to do with decaying turbulence fluid

behind a grid or for that matter turbulence generated by wave

breaking).

Neglecting the tendency and buoyancy terms (productio

term is identically zero) and putting=az~? and ¢=bz,
Eq. (3) gives:

1
3B1b%S, = = (45)
p
whereas Eq. (36) gives
(m + 3n)(3B1b%S,) — [m + (3 — E.o)n]
3B1b%Sy = d 46
175 n(3p +1@p + 1) (46)
Using Eq. (45), Eq. (46) becomes
3BleSgg = Ee2 47)

Gp+DbHUp+1)
independent of the values of andn. Dividing Eq. (47) by
Eq. (45), we get
% o 3p2E82
S;  GBp+D@p+1)

independent of the value 6f For p=1, S, /S,=0.6 (and for
p=15,5¢./5,=0.538). Using the asymptotic value pt=1,

(48)

sinceS,,=0.377,5,=0.628. This is the value we choose; it
corresponds te; of 0.624, much lower than the traditional

value of 1.0 ink—e models. Note also that,=1.04 and
See/Sq is not unity.
If we now substitute the value &, in Eq. (45), we get a

value forb equal to 0.18, well within the experimental range

of values.

n

The buoyancy term in the length scale equation is of great
importance in geophysical flows, because of the ubiqui-
tous presence and prominence of gravitational stratification.
There is considerable uncertainty as to the value of the clo-
sure constant related to this term. For example, Rodi (1987)
recommended a value of 0.2 f6g3. It can be shown (see be-
low) thatC.3 must assume negative values under stable strat-
ification (or equivalently the constatt; 3 in the g2¢ equa-
tion must be larger that; ). Baumert and Peters (2000)
indicate excellent agreement with observational results for a
value of—1.4 for C3.

There exist a suite of experiments on the decay of grid-
generated turbulence in stably stratified fluids, starting from
the pioneering experiments of Dickey and Mellor (1980), that
show that there is an upper bound on the parameté¥¢/q,
beyond which the decay of turbulence changes due to more
efficient conversion of TKE into internal wave energy (Still-
inger, Helland and Van Atta, 1983; Itsweire, Helland and Van
Atta, 1986; see also Hopfinger, 1987; Browand, Guyomar
and Yoon, 1987; and Rohr and Van Atta, 1987).

This upper bound on the length scale can also be derived
from energetics arguments. If we assume that an eddy con-
verts all its vertical kinetic energy?/2 during overturning,
the resulting gain in potential energy cannot exceed the ver-
tical kinetic energy, or equivalently?¢2<w?. The value of
w?/q? ranges from about 0.22 under neutral stratification to
about 0.13, when the flux Richardson number reaches its crit-
ical value for extinction of turbulence by stable stratification.

Lele (1985) was the first to argue that the diffusion coef- This means that the upper bound oiis between 0.47 and
ficients in the TKE and the dissipation rate equations must0-36. Whatever its precise value, the physical interpretation
not have the same value if there is to be a single turbulencés clear.
front when a patch of turbulence spreads and diffuses into The parameter is also the ratio of buoyancy frequendy

a quiescent fluid. This means that #i¢ande fronts must

to the turbulence frequency (term coined by none other than

propagate at the same speed. This relates the two diffusioKolmogoroff, 1942)q/¢. This means that as turbulence fre-

coefficients (Lele 1985):

Ste 211/2
S—q—6“:1+(E52) :I _E&‘Z}

For E;» = 4, this yieldsS;./S,=0.739, not far from the
value given by Eq. (48) fop=1.

(49)

quency approaches N, efficient generation of internal waves
by turbulent eddies becomes more and more feasible, so that
energy in turbulence can be drained away rapidly by stable
stratification. Clearly this ratio cannot exceed unity, since
the frequency of internal waves is bounded by the buoyancy
frequency. In practice, the turbulence frequency does not
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drop below about twice the buoyancy frequency, or equiv-for the stability coefficientSy in the equation for buoyancy
alently the turbulence length scale does not exceed 1.4 timegroductionB=—g¢N2Sy. Therefore Eq. (52) can be written
the Ozmidov length scale according to the observations ofas

Stillinger et al. (1983) and Itsweire et al. (1986). Therefore,

¢<1.4L ¢, whereL o=(¢/N3)Y/2 is the Ozmidov scale. This Ee3 =2—(E:2—2)

leads to an upper bound anof 1.4(B1)Y? or 0.49 since 1+ 3A45[641 + Bo(1— C3)]7?
B1=16.6 (Mellor and Yamada, 1982; Kantha and Clayson, Ay(By — 6A1)7T2 (54)
1994). “

The upper bound on the turbulence length scale under sta- Using Kantha and Clayson (1994) values 4f=0.92,
ble stratification has been invoked in turbulence modeling bys,=0.74, B1=16.6, B,=10.1, andC3=0.2, andE,>=4, we
imposing an auxiliary condition on the model solutions that get £,3=—6 for 7,=0.6 (Dickey and Mellor, 1980) E,3 is

limits the length scale to values below that givendyc1  relatively insensitive to the exact value of as long as it is
(Deardorff, 1973; Lewellen and Teske, 1973; Kantha, 1988;3round 0.5.

Galperin et al., 1988; Kantha and Clayson, 1994). The value yUsing the values ofA1=0.58, A,=0.62, B1=16.6,

of c1 chosen by modelers to-date ranges between 0.2 and 0.63,=12.0, andC3=0.2 as recently updated by Kantha (2003),

Kantha and Clayson (1994) used a value of 0.53. Howeverye get E,3=—4.66 for 7,=0.6. This corresponds to

it is possible to avoid imposing this auxiliary condition by ¢,,——233, close to the value of2.1 indicated by Bur-

choosing a proper value fdf,3 (Kantha, 1988; Burchard, chard and Baumert (1995) and Baumert and Peters (2000) to

2001). yield excellent agreement with observational results on mix-
To do so, we appeal to the experiments of Dickey and Mel-ing in the North Sea. We therefore chodsg=—4.7.

lor (1980), who raised a grid in a stably stratified fluid in a  Byrchard (2001) uses a slightly different approach to fix-

tank and measured the decay of turbulent fluctuations withing the value ofC,3. By assuming local equilibrium and

time after the passage of the grid. They found that imme-therefore neglecting tendency and diffusion terms in Egs. (3)

diately after the passage of the grid, turbulence decayed agnd (36), and substituting for the shear production térin

if there were no stratification, yielding the classical asymp-gq. (36) from Eq. (3), it can be shown that instead of Eq. (52),
totic decay law of turbulence behind a grid in neutrally strat- gne gets

ified flows ~7~1/2). However, as time progressed, the rate

of decay of turbulence changed, presumably because of thé&'e3 — Ee1 _ & (55)
conversion of TKE into internal waves. They found thatas E.2 — E.1 B

the TKE decreased, the upper bound on the parametes
about 0.6.

Following Kantha (1988), Baumert and Peters (2000), E.3 = E.q
and Burchard and Deleersnijder (2001) the valugzgf in P
Eq. (36) under stable stratification can be determined as fol- _ (g,, — E,;) 14 342[641 + B2(1 - Ca)]ry (56)
lows. Consider the case of a homogeneous shear-free turbu- Az(By — 6A1)T?2
lence in a stably stratified flow, so that the production and _ .
diffusion terms can be neglected. This situation correspond or the Dickey and Mellor (1980) value 0f=0.6, using the
to the experiments of Mellor and Dickey (1980). Since Kantha and Clayson (1994) values, we gg$=—1. But the

updated Kantha (2003) values gilgs=—0.33. This corre-
1 9 1/10T m+n {1 3q? sponds taC,3=—0.17, andE,3=5.17, close to the&t .3 value
t) = <7§> T 20 \q2ar (50) o 5.09 used by Burchard (2001).
However, there is a fundamental problem in using the Bur-
whereT = ¢/q, an equation can be derived for the turbu- chard (2001) approach. The experiment of Dickey and Mel-

so that Eq. (54) becomes

PR mgn — —
qg™men ot (q ) n

lence time scal@ using Egs. (3) and (36): lor (1980) involved no shear and hence shear produd®ion
19T 1 was identically zero. The experiment never reached a steady
Tar = ?[(2 — E:3)B — (2— Eg2)¢] (51)  state, but TKE continued to decrease after stable stratifica-

_ - o _ tion asserted itself and put an upper boundrorTherefore
Invoking the condition of equilibrium and settit’/0:=0  their experimental value af, cannot be used to ascertain the

whenT hits the upper bound,, value of E.3 in this manner.
Es3—2 ¢ It is also worth noting that the TKE Eg. (3) under local
Eop—2 - B (52) equilibrium conditions can be rewritten as:
The quasi-equilibrium second moment closure of Kanthaande 1_ i (57)
Clayson (1994) yields B Rf
Az[l . (6A1/B1)} whereRf is the flux Richardson number. For the maximum
possible value of 1/4 foRf, beyond which turbulence is

S8 = 14 3A3[6A1+ Bo(1— C3)]72 (53) guencheds/B=-3. This value give%.3=0 using Eq. (55)!
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This is untenable. Using Eq. (52), one gdisz=—4 or
equivalentlyC.3=—2.0, close to the value derived above as
well as the value-2.1 cited by Burchard and Baumert (1995)
and Baumert and Peters (2000). It could be arguedEhat
should be selected this way. However, the value of -4far
obtained this way is quite close to the value-ef.7 we have
chosen.

9.6 Turbulence at the center of a duct in a neutrally
stratified fluid

Zeierman and Wolfshtein (1986) cite and use data from a
channel (Clark, 1968; Laufer, 1950) to suggest a value for
For completeness, we cite these data, even though we

Ok-
suspect that it underestimates the valug pbr equivalently
overestimates the value of,. At the center of a channel,
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again it is hard to guess the asymptotic valueKgr we re-
luctantly ignore this experimental data also.

With the values of closure constants determined as above
for the general length scale equation, it is possible to evalu-
ate their corresponding values for its various subsets, namely
different closures, using Eq. (39):

k—e(g®/t;m=3n=-1):

k—w(g/t;m=1n=-1):
g-qgtm=2n=1):
k—kT(@l;m=Ln=1):
k=TW/gm=-Ln=1):
g—tm=0n=1):

E1=3,E=4,E3=-47

Eja1=1E,np=2E,3=-67
Ej1=2E;p=1E;3=97
En1=1E;,=0E;3=87
Eri=-1Erp=-2,Er3=67
Ei1=0Ep=-1E;3="177 (63)

These values along with the values $f and S, enable

various turbulence quantities must be even functions of theany length scale model to be used consistently and equiva-
distancey from the axis. Experimental data suggest that thelently to others.

mean velocity and the TKE obey:

Uﬂo —1- 0.242(%)2;

kfo —1+ 6.67(%)2

(58)

The closure constants can also be used to show why the
k—e andk—w have enjoyed a degree of success thai2¢
and k-kT have not. The constant flux region compatibility
relationship Eq. (35) for the traditional form of the diffusion

where 2 is the width of the channel. The shear stress at theterm can be rewritten as:

wall is
7, = 0.048¢/°Up (59)

By expandingk ande as even functions at/#) and making
use of the fact that the shear stress varies linearly:

Z
T = U[a—z = —Ty (Z) (60)
it is possible to show that

U g _Tweoh (E)Z.

Uo 2C,k3Uo ) \h/

k O’ksohz Z 2

— =14+ > 61
ko <2Cﬂk8)(h> (61)

Equating quantities in Egs. (58) and (61) and making us
of Eq. (59): we geiC,0,=0.13, thus leading to a value of
or=1.46 andsS, of 0.269.

Since it is difficult to guess the likely values of the exper-

imental constants in the channel in the asymptotic limit of
infinite Reynolds numbers, we cannot guess the asymptoti

values foro;, andsS,. We therefore reluctantly ignore this set
of experiments.
Zeierman and Wolfshtein (1986) cite and use data from

high pressure gradient boundary layer to derive a value fo

o,. It can be shown that for this flow

3 3
See — EEslsq See —

4(Egp — Eg1)?
EEsZSq)_ ( &2 sl)

= (62
24
BlKO

—BllCZS[gnz = [m + @3- Eal)n]

— [m+ @~ Ecn] 1+ Ea)

(64)

When E4=0, this becomesBlKZSggz—l/n, independent of
the value ofmn, so that to avoid a physically absurd negative
value for S¢,, n must be negative. Only the—s andk—w
models satisfy this requirement. Mellor and Yamada (1982)
overcome this problem by using a nonzero positive value for
E4. Since the second term in Eq. (64) vanishes for the k-kT
model, no value of4 can assure a positive value {8y, .

10 Influence of rotation on the length scale

While the influence of the rotation of the reference frame on
small scale turbulence is negligible in geophysical flow situa-

E‘tions, this is not true for many engineering devices (Johnston

et al. 1972, Watmuff et al. 1985). Also, it is not clear that

rotation does not influence the large scale eddies. In fact,
the maximum eddy size appears to be much smaller in rotat-
ing boundary layers such as the neutral atmospheric bound-

%\ry layer (ABL) compared to nonrotating boundary layers

in the laboratory. The length scafeis about 0.09 times
the boundary layer thickness in laboratory boundary layers

a(MeIIor 1985), while a more appropriate value is 0.03 for
the neutral ABL (recall the value af in Eqg. 6). The lack

of rotational influence on dissipation and therefore on the
length scale was cited at the 1980-1981 Stanford Confer-
ence on Complex Turbulent Flows as a major drawback of all
second-moment closure models. Without explicit rotational

where K has an observed value of 0.48 (Townsend, 1961)terms in the length scale equation, it is impossible to repro-

Using the values of other constans;,=0.174, once again

duce the experimentally observed effect of rotation on turbu-

a small value consistent with the very high value derived bylence decay. Wigeland and Nagib (1978) observed that when

Zeierman and Wolfshtein (1986) fot of 10.8. Since, once

the turbulence behind a grid in a wind-tunnel is subjected to
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strong rotation, its dissipation rate altered substantially. Sim-e = sge™ ¢4

ilar effects were also observed by Bardina et al. (1985) in €0 (Cez — 1)
their large eddy simulations of turbulence decay, which led {1 k_ﬁ
them to suggest a modification for theequation to account 0 Ted
for the effect of rotation on grid-generated turbulence behind
agrid, by the addition of a rotational term: where subscript 0 refers to initial values. The classical decay
de law for grid-generated turbulence becomgs=ggloeC4/"!

&
a Ceafe - Z(CSZ‘Q) 65 instead ofy¢=constant

where f=2Q and2 is the angular velocity of rotation. Solv- Bardina et al. (1985) chos€,,=11/6 and found that
ing this along with the corresponding TKE equation (note ¢, ,—0.075 reproduced experimental results and also agreed
that reference frame rotation cannot affect the energy equagith their own LES results. However choosing the asymp-

1/(Ce2-1)

[1- eXp(—Cs4ft)]} (68)

tion) totic value forC,2 of 2 givesC,4=0.04 and also yields the

d_k o (66) classical asymptotic decay law~r—1 when f=0.

dr While geophysical applications have seldom considered

we get the explicit rotational terms, for completeness, we write
€0 (Ce2 — 1) Y(Ce2—1) down the form of Eq. (36) resulting when the rotational ef-

k= ko {1 o [1- eXp(_C€4ft)]} (67 fects are incorporated:

D
o [@"0") + Dg = Py + By —
3

oUu —
= qm_zﬁ"{ [m + (3 — Ec1)n] (—W8—Z> + Ecan | f1q° + [m + (3— Eca)n] (Bgwd) — [m + (3— Ec2)n] g_lﬁ} (69)

whereE 4=C.4=0.04,|f|=4/f; [i=2QF, QF being the an-  functions. Speziale et al. (1990) recommend:
gular rotation rate of the planet. This equation is also useful
in the simulation of turbulence in engineering devices with f, = [l + 3.45(Re;)_1/2] tanh(y™/70)

high rotation rates. Note that only the effect of rotation on 5 A2
small scales of turbulence is taken into account in Eq. (69). ¢, — [1 _ Eexp[— <ﬁ) ]] [1 _ exp<_y )] (70)
9 6 4.9
whereRe,=k?/(ve) is the turbulence Reynolds number and

11 Wall damping functions y*t=yu,/v. Functionsf, and f, have the correct asymptotic
behavior needed near the wafl;~0(1/y); f.~0(y?). Far
from the wall, bothf,,, fe— 1.

In many applications, it may be necessary to carry out cal- o : .
culations on mixing all the way to the boundary. Sedimentbel(?o";l:gslt_'on’ viscous terms must be retained so that Eq. (3)

transport in an oceanic bottom boundary layer is a typical
example. In the calculation of turbulent flows involving sep- D / » ol 9 /5

aration, it is also necessary to integrate to the wall. To enableDs (q ) 9z [(U +ats, f”)a_z (q )} =2p+B-9
this, the eddy viscosity;, and the dissipation term in the U L PE 52

k—e equations must be multiplied by wall damping functions = —zma— + 2Bgwo — ZB_E + vﬁ (q2> (71)
(Speziale et al. 1990), or equivalendy, must be multiplied N 1 <

by f,, andC.2 by f., where f, and f, are wall damping Equation (36) assumes the form:

D
o (¢"€")+ Dy = Py + By — g4+ Vg

3

= quEn{ [m 4+ (3— Ec1)n] (_Wﬂ> +[m + (3— E3)n] ﬂgw —[m+ @B — E)n] fe 1 }
9z B1¢

w243 18D mA3nmtn) ;10 AT

+vg E{ n qmznaz( )3z(q) 4n i |:q281<q>:|

4+ 0 1 8, ., .17 2



L. H. Kantha: The length scale equation in turbulence models 95

where

: £ 3
_ —3,n+1 v
Dy =—¢" """ [(” + qm_—wsfs) Py (qme”)]

m+3n . 5 0 0 5 YA > J 5
—< 54 5){8—Z[(V+qffu54)a—zq}-g&[(v‘i‘q ques)£Q}} (73)
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