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Abstract. A continuum theory is developed for a geophysi-
cal fluid consisting of two species. Balance laws are given
for the individual components of the mixture, modeled as
micropolar viscous fluids. The continua allow independent
rotational degrees of freedom, so that the fluids can exhibit
couple stresses and a non-symmetric stress tensor. The sec-
ond law of thermodynamics is used to develop constitutive
equations. Linear constitutive equations are constituted for
a heat conducting mixture, each species possessing sepa-
rate viscosities. Field equations are obtained and boundary
and initial conditions are stated. This theory is relevant to
an atmospheric mixture consisting of any two species from
rain, snow and/or sand. Also, this is a continuum theory for
oceanic mixtures, such as water and silt, or water and oil
spills, etc.

1 Introduction

In the atmosphere, many complex physical phenomena can
occur. For example, simultaneously, it may be raining and
snowing. Tornadoes or hurricanes may lift sands, mixing
with rain or snow. In these cases, we have a mixture of two
different fluids. We consider snow, sand and rain as fluids.
Although ice and sand grains are solids by themselves, we
must treat each species as a liquid, since there is no cohesion
among the grains as in a solid. The friction between rain,
snow or sand, falling through the saturated air, attributes vis-
cosities to the species. We do not consider the air as a third
species, but rather as an agent that allows the fluid assump-
tion for the species to be plausible. Alternatively, air, and
either rain, snow or sand, may be considered to constitute a
binary mixture of two fluids.

In the case of oceanography, the mixture of water and silt
may compose the two species of the mixture. When oil spills
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occur in a region of ocean, oil and water may be considered
as the members of the mixture, in that region.

Most studies in geophysical fluid dynamics are based on
the Navier-Stokes (N-S) equations, with the inclusion of the
Coriolis acceleration. The Navier-Stokes equations assume
the atmosphere as a single fluid. Moreover, in the N-S equa-
tions, the effects of couple stresses and intrinsic rotations are
ignored. These effects may become important in some in-
stances, e.g. tornadoes, hurricanes, tumbling ice or sand.

Kirwan and Chang (1976) have demonstrated the influence
of couple stress in the Ekman problem, in the case of a single
micropolar fluid.

Literature is extensive on the mixture theories. Some
of the early references are quoted by Bowen (1976), up to
1976, and more recent ones by Eringen (1994). However,
these are concerned with nonpolar materials. Twiss and
Eringen (1971, 1972) gave a theory of mixtures for micro-
morphic materials and investigated propagation of waves in
two-constituent micropolar elastic solids. Several new elas-
tic wave branches predicted by this theory are in accordance
with the phonon dispersion experiments. These branches are
not predicted by the mixture models based on the classical
elastic solids. Consequently, the present theory, too, is ex-
pected to exhibit some new physical phenomena that are not
in the domain of a mixture theory based on the N-S equa-
tions.

1. The raison d’̂etre of the present paper stems from these
observations.

In Sect. 2, we discuss briefly, the kinematics of a mixture.
Balance laws are given in Sect. 3. Section 4 is concerned
with the development of the constitutive equations and the
thermodynamic restrictions required on the viscosity moduli.
In Sect. 5, we obtain the field equations and state the bound-
ary and initial conditions. Here, we also give the restrictions
when fluids are incompressible. In Sect. 6, as a special case,
we derive the field equations of a binary mixture of classical
fluids.
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2 Kinematics

We consider a binary mixture of two continuous fluent bodies
Bα, α = 1, 2. In the case of atmospheric activities, B1 may
represent the rain, and B2 the snow or sand. In an ocean at-
mosphere, they may represent water and silt. We consider
that, continuous bodies Bα, occupy a region of the three-
dimensional space. A material point, in theαth species, at
the natural state, is denoted byXα,in Cartesian coordinates.
The motion ofXα, at timet , is represented by a mapping of
Xα, to a spatial pointx:

x = χα(Xα, t), (1)

which is assumed to possess the unique inverse

Xα
= χ−1α(x, t). (2)

The velocity and the acceleration ofXα, at time t , are
given by

vα = x′α
=
∂χα(Xα, t)

∂t
,

aα = x′′α
=
∂2χα(Xα, t)

∂t2
. (3)

As usual, the material time derivative of a functionψ(x, t)
is denoted by

ψ̇ =
∂ψ

∂t
|X =

∂ψ(x, t)

∂t
+ ψ,k ẋk(x, t), (4)

where and henceforth, we employ the summation convention
on repeated Latin indices, and an index following a comma
for a partial derivative with respect toxk, e.g.

ψ,k ẋk =
∂ψ

∂x1
ẋ1 +

∂ψ

∂x2
ẋ2 +

∂ψ

∂x3
ẋ3.

The material derivative of a functionψ[χα(Xα, t), t], fol-
lowing the motion of the constituent Bα, is defined by

ψ ′α
=
∂ψ[χα(Xα, t), t]

∂t
|Xα=

∂ψ(x, t)

∂t
+ ψ,kx

′α
k . (5)

From Eq. (4) and Eq. (5), it follows that

ψ ′α
− ψ̇ = (∇ψ) · (ẋ′α

− ẋα). (6)

The mass density of the constituent Bα is denoted by
ρα(x, t). The densityρ(x, t) and the velocityv(x, t) of the
mixture are given by

ρ(x, t) =

∑
α

ρα(x, t), ẋ = v =
1

ρ

∑
α

ραvα. (7)

The barycentric velocity is defined by

v̄α = vα − v (8)

The mass concentrationcα of the constituent Bα, at (x, t)
is

cα(x, t) = ρα/ρ. (9)

From Eq.7 and Eq.9, it follows that∑
α

cα = 1. (10)

Since rain drops, snow and sand undergo translations and
rotations, the mixture continua must possess rotational de-
grees of freedom. This suggests that we consider each
species as a micropolar continuum. In a micropolar contin-
uum, a material point is endowed with a director, so that rota-
tional degrees of freedom arise from the rotation of the direc-
tor. For micropolar fluids, this is represented by gyration vec-
tor νk. Micropolar fluid continua possess two deformation-
rate tensors (c.f. Eringen, 2001):

akl = vl,k + εlkmνm, bkl = νk,l . (11)

Consequently, each species of the mixture is endowed with
two deformation tensors

aαkl = vαl,k + εlkmν
α
m, bαkl = ναk,l . (12)

3 Balance laws

We assume that no chemical reactions take place between the
two constituents of the mixture.

The balance laws for each constituent Bα, consist of: con-
servation of mass, balance of momentum, balance of moment
of momentum, and conservation of energy.

Conservation of Mass

∂ρα

∂t
+ ∇ · (ραvα) = 0 or ρα | detF α

|= ρα0 , (13)

whereρα0 is the mass density in the natural state, andF α is
the deformation gradient, defined by

F α
= ∇χα(Xα, t) or F αkK =

∂xk

∂XαK
. (14)

Summing Eq. (13) overα, we obtain the equation of con-
servation of mass for the mixture:

∂ρ

∂t
+ ∇ · (ρv) = 0. (15)

Another useful form of Eq. (13) follows upon using Eq. (7)
and Eq. (8):

ρċα + ∇ · (ρα v̄α) = 0. (16)

Balance of Momentum

ραx′′α
= ∇ · tα + ραf α + p̂α, (17)∑

α

p̂α = 0, (18)

where,tαkl, f
α
k andp̂αk are, respectively, the stress tensor, the

body force density, and the force exerted on theαth con-
stituent from the other constituent.

Balance of Moment of Momentum

ραjαν′α
l = mαkl,k + εlmnt

α
mn + ραlαl + m̂αl , (19)
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α

m̂αl = 0, (20)

where,ραjα, ναl, m
α
kl, ρ

αlαl andm̂l are, respectively, microin-
ertia density, microrotation-rate (gyration), body couple den-
sity, and the couple exerted onαth constituent from the other
constituent.εlmn is the alternating tensor. Note that, when
jα, mαkl andlαl vanish, Eq. (19) reduces to the classical form

εlmnt
α
mn + m̂αl = 0. (21)

If we sum this overα, we arrive at the symmetry of the
mixture stress tensortkl=tlk. Thus, Eq. (19) expresses the
balance of spin inertia.

Conservation of Energy

ρα έα = tαkla
α
kl +mαklb

α
lk + qαk,k + ραhα + ε̂α, (22)

Subject to∑
α

(ε̂α + p̂α · v̄α + m̂α
· ν̄α) = 0, (23)

where

v̄α = vα − v, ν̄α = να − ν . (24)

Here,εα, qα andhα are, respectively, the internal energy
density, the heat vector, and the energy source ofαth species.
ε̂α denotes the transfer of energy toα th species from the
other species.For the derivation of these equations, we re-
fer the reader to Twist and Eringen (1994), Eringen (2001),
Eringen and Ingram (1965) and Bowen (1976).

We consider that both species have the same temperature.
Certainly this is not true for the rain and ice mixture, except
perhaps at the melting point. But, for a mixture consisting of
rain and sand, it can be valid. In this case, we need only a
single energy equation, namely that of the mixture. To this
end, we sum Eq. (22) overα, use Eq. (23) and

q =

∑
α

(qα − ραεα v̄α), ρh =

∑
α

ραhα. (25)

Using the expression

∑
α

ραψ́α = ρψ̇ +

∑
α

∇ · (ραψα v̄α),

ρψ =

∑
α

ραψα, (26)

we obtain

ρε̇ = ∇ · q + ρh

+

∑
α

(tαkla
α
kl +mαklb

α
lk − p̂α · v̄α − m̂α

· ν̄α). (27)

Using Eq. (18) and Eq. (20), we have

2∑
α=1

p̂α · v̄α = p̂1
· v̄12,

2∑
α=1

m̂α
· ν̄α = m̂1

· ν̄12, (28)

where

v̄12
= v1

− v2, ν̄12
= ν1

− ν2. (29)

With this, Eq. (27) becomes

ρε̇ = ∇ · q + ρh

+

∑
α

(tαkla
α
kl +mαklb

α
lk)− p̂1

· v̄12
− m̂1

· ν̄12. (30)

We introduce Helmholtz’s free energyψ by

ε = ψ + θη , (31)

where, θ>0 (inf θ=0) is the absolute temperature, andη
is the entropy density. With this, the energy balance law
Eq. (30) takes the form

ρψ̇ + ρθη̇ + ρθ̇η − ∇ · q − ρh−

∑
α

(tαkla
α
kl +mαklb

α
lk)

+ p̂1
· v̄12

+ m̂1
· ν̄12

= 0. (32)

To the balance laws, we adjoin the second law of thermody-
namics,

ρη̇ − ∇ · (
q

θ
)−

ρh

θ
≥ 0. (33)

By means of Eq. (32), we eliminateρh/θ from Eq. (33),
to obtain

−ρ(ψ̇ + ηθ̇)+

∑
α

(tαkla
α
kl +mαklb

α
lk)− p̂1

· v̄12

− m̂1
· ν̄12

+
q · ∇θ

θ
≥ 0. (34)

This is the generalized Clausius-Duhem inequality. It is
fundamental to the development of the constitutive equa-
tions.

4 Constitutive equations

According to the causality hypothesis, Eringen (1980), the
independent variables are

Y = (θ, ρα, aαkl, b
α
kl, v̄

12, ν̄12, θ,k), α = 1,2 (35)

where,

v̄12
= v1

− v2, ν̄12
= ν1

− ν2. (36)

Dependent variables

Z = (ψ, η, tαkl,m
α
kl,−p̂1,−m̂1, q) (37)

are considered to be functions ofY.
We observe that, all independent variables are frame-

independent, except for̄v12 and ν̄12. Generally, these latter
quantities are not admissible to form a constitutive equa-
tion in nonlinear continuum mechanics. However, it ap-
pears in classical Darcy’s law, and is well accepted in porous
media theories. The admissibility of this term, as a lin-
ear approximation in continuum mechanics, was noted by
Wilmanski (2003). The same argument readily applies to the
variableν̄12.
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Static variables areθ andρα, so that

ψ = ψ(θ, ρ1, ρ2). (38)

We calculate

ψ̇ =
∂ψ

∂θ
θ̇ −

∑
α

∂ψ

∂ρα
(ραvαk,k), (39)

where, we used Eq. (13) to replaceρ̇α. Substituting Eq. (39)
into Eq. (34), we have

−ρ

(
∂ψ

∂θ
+ η

)
θ̇

+

∑
α

[(
tαkl + ρρα

∂ψ

∂ρα
δkl

)
aαkl +mαklb

α
lk

]
− p̂1

· v̄12
− m̂1

· ν̃12
+ q ·

∇θ

θ
≥ 0. (40)

This inequality cannot be maintained in one sign, for all
independent variations oḟθ unless

η = −
∂ψ

∂θ
, (41)

and∑
α

(Dt
α
kla

α
kl +mαklb

α
lk)− p̂1

· v̄12
− m̂1

· ν̄12

+ q ·
∇θ

θ
≥ 0, (42)

where,

Dt
α
kl = tαkl + παδkl, πα = ρρα

∂ψ

∂ρα
. (43)

Here,πα is the partial pressure inαth species.
We recognize the thermodynamic forcesY by

Y = (aαkl, b
α
lk, v̄

12
k , ν̄

12
k , θ,k/θ), (44)

and thermodynamic fluxesJ , by

J = (Dt
α
kl, m

α
kl,−p̂

1
k ,−m̂

1
k, qk). (45)

The inequality Eq. (42) may be abbreviated by

0 = Y · J ≥ 0. (46)

The dissipation (dynamic) part of constitutive equations may
be expressed in the form

J = J(Y ; θ). (47)

Edelen (1993) gave a general solution of Eq. (46), in the
form

J(Y ; θ) = ∇Y8(Y ; θ)+ W (Y ; θ), (48)

where,W is restricted by

W · Y = 0, (49)

and the dissipation potential,8(Y ; θ) is given by

8(Y ; θ) =

∫ 1

0
Y · J(τY , θ)

dτ

τ
. (50)

Equation (49) indicates thatW do not contribute to the
dissipation of energy. In fact, for the linear constitutive equa-
tions,W vanish, and we obtain

Dtα =
∂8

∂aα
, mα

=
∂8

∂bαT
, p̂1

= −p̂2
= −

∂8

∂ v̄12
,

m̂1
= −m̂2

= −
∂8

∂ ν̄12
, q =

∂8

∂(∇θ/θ)
, (51)

where, a superscriptT denotes the transpose, e.g.bαTkl =bαlk.

The dissipation potential8 depends on the invariants ofY

andθ . We distinguish pseudo-tensorsbα and ν̄12 from the
absolute tensorsaα, v̄12 and∇θ/θ . For first degree consti-
tutive equations, we need the second degree invariants only.
These can be read from a table, Eringen (1980 p. 577):

traα, tr(aα)2, tr(aαaαT ), tr(a1a2T ), (trbα)2,

trbα, tr(bαbαT ) tr(b1b2T ), v̄12
· v̄12,

ν̄12
· ν̄12, v̄12

· ∇θ/θ, K
∇θ · ∇θ

θ2
, α = 1, 2 (52)

The dissipation function8 may be expressed as

8 = 81 +82, (53)

where,

281 =

∑
α

[
λα(tra

α)2 + µα tr(a
α)2 + (µα + κα) tr(a

αaαT )
]

+ 2σ tr(a1a2T )+ ξ v̄12
· v̄12

+ 2ς v̄12
·
∇θ

θ

+K
∇θ · ∇θ

θ2
,

282 =

∑
α

[
αα (trb

α)2 + βα tr(b
α)2 + γα tr(b

αbαT )
]

+ 2τ tr(b1b2T )+$ ν̄12
· ν̄12, (54)

where,λα, µα, κα, αα, βα, γα, ξ ,$ , ς , σ , τ andK are material moduli.
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Substituting Eq. (54) into Eq. (51), we obtain the constitutive equations

Dtα = λαtra
α1 + µαa

αT
+ (µα + κα)a

α
+ σ(a1δα2 + a2δα1),

mα
= ααtrb

α1 + βαb
α

+ γαb
αT

+ τ(b1T δα1 + b2T δα1), α = 1,2

−p̂1
= p̂2

= ξ v̄12
+ ς∇θ/θ,

−m̂1
= m̂2

= $ν̄12,

q = ς v̄12
+K∇θ/θ. (55)

The dissipation potentials81 and82 must be nonnegative
for all independent variations of the independent variable set.
Foraα=0, 281 reduces to

ξ v̄12
· v̄12

+ 2ς v̄12
·
∇θ

θ
+K

∇θ · ∇θ

θ2
≥ 0.

This will be nonnegative, if and only if

ξ ≥ 0, ξK − ς2
≥ 0. (56)

From Eq. (54) (with bα=0),8 ≥ 0 leads to

$ ≥ 0. (57)

For v̄12
=ν̄12

=0, 81 and 82 acquire similar quadratic
forms. Thus, we need to study only one of them. We ex-

press82, in terms of symmetric and antisymmetric tensors

cα =
bα + bαT

2
, dα =

bα − bαT

2
. (58)

Then, we have

bα = cα + dα, bαT = cα − dα. (59)

With this, 282 may be expressed in terms of the principal
values cα, i.e.

82 = 821 +822, (60)

where,

2821 = Aijcj ,

822 = (γ1 − β1)(d
2
1 + d2

2 + d2
3)+ (γ2 − β2)(d

2
4 + d2

5 + d2
6)+ 4τ(d1d4 + d2d5 + d3d6), (61)

A1 = A11 = A22 = A33 = α1 + β1 + γ1, A2 = A44 + A55 + A66 = α2 + β2 + γ2,

A12 = A23 = A31 = α1, A14 = A25 = A36 = τ, A45 = A36 = A64 = α2,

c1
11 = c1, c1

22 = c2, c1
33 = c3, c2

11 = c4, c2
22 = c5, c2

33 = c6

d1
12 = d1, d1

23 = d2, d1
31 = d3, d2

12 = d4, d2
23 = d5, d2

31 = d6. (62)

From822≥0, expressed by Eq. (61), it follows that

γ1 − β1 ≥ 0, (γ1 − β1)(γ2 − β2)− 4τ2
≥ 0. (63)

821 will be nonnegative, when the eigenvalues are non-
negative. Alternatively, all sub-determinants based on the di-
agonals of the following matrix are nonnegative:

A1 α1 α1 τ 0 0
α1 A1 α1 0 τ 0
α1 α1 A1 0 0 τ

τ 0 0 A2 α2 α2
0 τ 0 α2 A2 α2
0 0 τ α2 α2 A2

(64)

Hence, we obtain

α1 + β1 + γ1 ≥ 0, β1 + γ1 ≥ 0, 2α1 + β1 + γ1 ≥ 0,

(3α1 + β1 + γ1)(3α2 + β2 + γ2)− τ2
≥ 0,

(β1 + γ1)(3α1 + β1 + γ1)(α2 + β2 + γ2)

− (2α1 + β1 + γ1)τ
2

≥ 0,

(β1 + γ1)
2(3α1 + β1 + γ1)(β2 + γ2)(2α2 + β2 + γ2)

− 2(β1 + γ1)[(β1 + γ1)(α2 + β2 + γ2)

+ α1(3α2 + 2β2 + 2γ2)]τ
2

+ (α1 + β1 + γ1)τ
4

≥ 0. (65)

In the case of81 ≥ 0, in Eq. (65), we replaceαα by λα,
βα byµα, γα byµα+κα, andτ by σ .

With the inequalities Eqs. (56), (57), (63), (65), and these
replacements, we will have8≥0.

For simplicity and practical reasons, often two-
dimensional problems are treated. In this case, Eqs. (56),
(57) and (63) are not changed. But the matrix (64) is reduced
to

A1 α1 τ 0
α1 A1 0 τ

τ 0 A2 α2
0 τ α2 A2

(66)
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In this case, we obtain the inequalities

α1 + β1 + γ1 ≥ 0, β1 + γ1 ≥ 0,

2α1 + β1 + γ1 ≥ 0, (β1 + γ1)(β2 + γ2)− τ2
≥ 0,

2α1 + β1 + γ1)(2α2 + β2 + γ2)− τ2
≥ 0. (67)

5 Field equations

Substituting the constitutive Eqs. (41), (43) and (55) into bal-
ance laws (17), (19) and (32), and assuming that all material

moduli are constants, we obtain the field equations

∂ρ1

∂t
+ ∇ · (ρ1v1) = 0, (68)

∂ρ2

∂t
+ ∇ · (ρ2v2) = 0, (69)

−∇π1
+ (λ1 + µ1)∇∇ · v1

+ (µ1 + κ1)∇
2v1

+ κ1∇ × ν1

+ σ(∇2v2
+ ∇ × ν2)− ξ(v1

− v2)− ς
∇θ

θ
+ ρ1(f 1

− v̇1) = 0, (70)

−∇π2
+ (λ2 + µ2)∇∇ · v2

+ (µ2 + κ2)∇
2v2

+ κ2∇ × ν2

+ σ(∇2v1
+ ∇ × ν1)+ ξ(v1

− v2)+ ς
∇θ

θ
+ ρ2(f 2

− v̇2) = 0, (71)

(α1 + β1)∇∇ · ν1
+ γ1∇

2ν1
+ τ∇∇ · ν2

+ κ1(∇ × v1
− 2ν1)

+ σ(∇ × v2
− 2ν2)−$(ν1

− ν2)+ ρ1(l1
− j1ν̇1) = 0 (72)

(α2 + β2)∇∇ · ν2
+ γ2∇

2ν2
+ τ∇∇ · ν1

+ κ2(∇ × v2
− 2ν2)

+ σ(∇ × v1
− 2ν1)+$(ν1

− ν2)+ ρ2(l2
− j1ν̇2) = 0 (73)

ρθ
∂2ψ

∂θ2
θ̇ − (ρ)2θ

∂2ψ

∂θ∂ρ
∇ · v +

∑
α

(Dt
α
kla

α
kl +mαklb

α
lk)+

[
ξ(v1

− v2)+ ς
∇θ

θ

]
·

(v1
− v2)+$(ν1

− ν2) · (ν1
− ν2)+ ∇ ·

[
ς(v1

− v2)+K
∇θ

θ

]
+ ρh = 0. (74)

For small variations of temperature from a constant ambi-
ent temperatureT0, we can substitute

θ = T0 + T , |T | � T0, (75)

so that, we may replace∇θ/θ by ∇T/T0, and take

− ρθ
∂2ψ

∂θ2
' −ρ0T0

(
∂2ψ

∂T 2

)
0

= cv, (76)

(ρ)2θ
∂2ψ

∂θ∂ρ
' ρ0T0

(
∂2ψ

∂T ∂ρ

)
0

= δ. (77)

In the case of atmospheric fluid dynamics, we need to take
into account the Coriolis acceleration. This is accomplished

by replacingv̇1, v̇2, ν̇1 andν̇2 as follows

v̇1
→ v̇1

− 2� × v1,

v̇2
→ v̇2

− 2� × v2,

ν̇1
→ ν̇1

− � × ν1,

ν̇2
→ ν̇2

− � × ν2, (78)

where,� is the rotation vector of Earth.
Field Eqs. (68) to (74) are expressed in rectangular coordi-

nates. We expressed them in terms of vector operators, which
are valid in orthogonal curvilinear coordinates.

∂ρ1

∂t
+ ∇ · (ρ1v1) = 0, (79)

∂ρ2

∂t
+ ∇ · (ρ2v2) = 0, (80)
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−∇π1
+ (λ1 + 2µ1 + κ1)∇∇ · v1

− (µ1 + κ1)∇ × ∇ × v1
+ κ1∇ × ν1

+ σ(∇∇ · v2

− ∇ × ∇ × v2
+ ∇ × ν2)− ξ(v1

− v2)−
ς

T0
∇T + ρ1(f 1

− v̇1
+ 2� × v1) = 0, (81)

−∇π2
+ (λ2 + 2µ2 + κ2)∇∇ · v2

− (µ2 + κ2)∇ × ∇ × v2
+ κ2∇ × ν2

+ σ(∇∇ · v1

− ∇ × ∇ × v1
+ ∇ × ν1)+ ξ(v1

− v2)+
ς

T0
∇T + ρ2(f 2

− v̇2
+ 2� × v2) = 0, (82)

(α1 + β1 + γ1)∇∇ · ν1
− γ1∇ × ∇ × ν1

+ τ∇∇ · ν2
+ κ1(∇ × v1

− 2ν1)

+ σ(∇ × v2
− 2ν2)−$(ν1

− ν2)+ ρ1(l1
− j1ν̇1

+ j1� × ν1) = 0, (83)

(α2 + β2 + γ2)∇∇ · ν2
− γ2∇ × ∇ × ν2

+ τ∇∇ · ν1
+ κ2(∇ × v2

− 2ν2)

+ σ(∇ × v1
− 2ν1)+$(ν1

− ν2)+ ρ2(l2
− j2ν̇2

+ j2� × ν2) = 0, (84)

−cvṪ − δ∇ · (v1
+ v2)+

∑
α

(Dtα · aαT + mα
· bα)+

[
ξ(v1

− v2)+ ς
∇T

T0

]
· (v1

− v2)

+$(ν1
− ν2) · (ν1

− ν2)+ ∇ ·

[
ς(v1

− v2)+
K

T0
∇T

]
+ ρh = 0. (85)

In Eq. (85), Dtα, aα,mα, bα, vα andνα denote the physi-
cal components of tensors.

Field Eqs. (79) to (85) constitute a system of fifteen partial
differential equations to determine the fifteen unknown func-
tions ρ1, ρ2, v

1, v2, ν1, ν2 and T , given the external loads
f 1,f 2, l1, l2 andh. Note that partial pressuresπ1, π2 and
cv andδ, given by Eqs. (43), (76) and (77), are determined
when the the free energy functionψ is specified. Thus, the
system (79) to (85) is closed. Under appropriate boundary
and initial conditions, the field equations may be solved to
determine the unknown functions.

Boundary Conditions
Let V̄ denote a regular region of the Euclidean space, oc-

cupied by the mixture, whose boundary is∂V . The interior
of V̄ is denoted byV, and the exterior unit normal to∂V
is denoted byn. Let Si (i=1, 2..., 6) denote subsets of∂V ,
such that

S̄1 ∪ S2 = S̄3 ∪ S4 = S̄5 ∪ S6 = ∂V,

S1 ∩ S2 = S3 ∩ S4 = S5 ∩ S6 = 0. (86)

A mixed set of boundary conditions on the surfaces, at
timeT +

=[0,∞), may be expressed as:

vα = vα0 on S̄1 × T +, tαkln
α
k = tα0l on S2 × T +,

να = να0 on S̄3 × T +, mαkln
α
k = mα0l onS4 × T +,

T = T0 on S̄5 × T +, qkn
α
k = qα0 on S6 × T +, (87)

where,vα0, να0, t
α
0l , m

α
0l, T0 and qα0 are prescribed. When

any one of the surfaces is absent, the accompanying bound-
ary conditions are extended to cover∂V . For example, when
S2=0, S̄1, becomes∂V, and whenS4=0, S̄3 becomes∂V,
so that

vα = vα0, να = να0 on ∂V . (88)

These conditions implystrict adherenceon the boundary.
Initial Conditions
The initial conditions usually consist of Cauchy data, ex-

pressed by

ρ(x,0) = ρ0(x), vα(x, 0) = vα0(x),

να(x, 0) = να0(x), T (x, 0) = T 0(x) in V, (89)

where, quantities carrying a superscript (0) are prescribed
throughout the body, at timet=0.

Incompressible fluids
In incompressible fluids,ρα=ρα0 =const. and we have

∇ · vα = 0, ∇ · να = 0. (90)

The pressuresπα are now replaced by an unknown pres-
surepα(x, t) and the field equations are simplified by using
(5.23).

6 Mixtures of two Newtonian fluids

When the constituent fluids can be approximated by New-
tonian fluids, basic equations are greatly simplified. In this
case, the field equations follow, by settingκ1=κ2=ν1

=ν2
=

0, and ignoring the remainder of the Eqs. (83) and (84), since
these equations arise from the nonsymmetry of the stress ten-
sor and the existence of the couple stress.

∂ρ1

∂t
+ ∇ · (ρ1v1) = 0, (91)

∂ρ2

∂t
+ ∇ · (ρ2v2) = 0, (92)
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−∇π1
+ (λ1 + 2µ1)∇∇ · v1

− µ1∇ × ∇ × v1
+ σ(∇∇ · v2

− ∇ × ∇ × v2)

− ξ(v1
− v2)−

ς

T0
∇T + ρ1(f 1

− v̇1
+ 2� × v1) = 0, (93)

−∇π2
+ (λ2 + 2µ2)∇∇ · v2

− µ2∇ × ∇ × v2
+ σ(∇∇ · v1

− ∇ × ∇ × v1)

+ ξ(v1
− v2)+

ς

T0
∇T + ρ2(f 2

− v̇2
+ 2� × v2) = 0, (94)

−cvṪ − δ∇ · (v1
+ v2)+D t1

· d1T
+D t2

· d2T
+

[
ξ(v1

− v2)+ ς
∇T

T0

]
· (v1

− v2)

+ ∇ ·

[
ς(v1

− v2)+
K

T0
∇T

]
+ ρh = 0, (95)

where,

tα = −πα1 + λα∇ · vα + 2µαd
α, (96)

dαkl =
1

2
(vαk,l + vαl,k). (97)

Boundary Conditions
The boundary conditions follow from Eq. (87), by drop-

ping conditions onνα, andmαkl .

vα = vα0 on S̄1 × T +, tαkln
α
k = tα0l on S2 × T +,

T = T0 on S̄3 × T +, qkn
α
k = qα0 on S4 × T +, (98)

where,S̄1 ∪ S2 = S̄3 ∪ S4=∂V , S1 ∩ S2=S3 ∩ S4=0.
Initial Conditions

ρ(x, 0) = ρ0(x), vα(x, 0) = vα0(x),

T (x, 0) = T 0(x) in V . (99)

7 Conclusion

We have introduced a continuum theory of atmospheric flu-
ids. Any binary combinations of rain, snow, sand and ice are
considered a mixture of two micropolar fluids at one average
temperature. The balance laws are given, and thermodynam-
ically admissible constitutive equations are constructed for
a mixture of two micropolar fluids. Thermodynamic restric-
tions on the material moduli are investigated. Field equations
are obtained and boundary and initial conditions are stated.
As a special case of the micropolar mixture, we obtained the
field equations of a mixture of two Newtonian fluids.

The field equations can be used to predict atmospheric
phenomena. These include the predictions of densities, ve-
locities, intrinsic rotations, diffusions of species and the
mean temperature of atmospheric mixtures. The theory is ap-
plicable to oceanic boundary-initial value problems as well.

From the field Eqs. (81) to (85), it is clear that strong cou-
plings exist among the velocities and gyrations of species.
Consequently, the gyrations will alter the velocities and vice
versa. The constituent fluids display couple stress and a non-
symmetric stress tensor.

As compared to the binary mixtures of Newtonian fluids
(Eqs.93 to 95), here, we encounter an additional physical
phenomena, diffusion due to the difference of gyrations.
This effect also guides the conduction of heat in the mixture.

Edited by: S. Wiggins
Reviewed by: two referees
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