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Abstract

Submicron ambient aerosol was characterized in summer 2005 at an urban back-

ground site in Zurich, Switzerland, during a three-week measurement campaign.

Highly time-resolved samples of non-refractory aerosol components were analyzed

with an Aerodyne aerosol mass spectrometer (AMS). Positive matrix factorization5

(PMF) was used for the first time for AMS data to identify the main components of

the total organic aerosol and their sources. The PMF retrieved factors were com-

pared to measured reference mass spectra and were correlated with tracer species

of the aerosol and gas phase measurements from collocated instruments. Six factors

were found to explain virtually all variance in the data and could be assigned either10

to sources or to aerosol components such as oxygenated organic aerosol (OOA). Our

analysis suggests that at the measurement site only a small (<10%) fraction of organic

PM1 originates from freshly emitted fossil fuel combustion. Other primary sources iden-

tified to be of similar or even higher importance are charbroiling (10–15%) and wood

burning (∼10%), along with a minor source interpreted to be influenced by food cooking15

(6%). The fraction of all identified primary sources is considered as primary organic

aerosol (POA). This interpretation is supported by calculated ratios of the modelled

POA and measured primary pollutants such as elemental carbon (EC), NOx, and CO,

which are in good agreement to literature values. A high fraction (60–69%) of the mea-

sured organic aerosol mass is OOA which is interpreted mostly as secondary organic20

aerosol (SOA). This oxygenated organic aerosol can be separated into a highly aged

fraction, OOA I, (40–50%) with low volatility and a mass spectrum similar to fulvic acid,

and a more volatile and probably less processed fraction, OOA II (on average 20%).

This is the first publication of a multiple component analysis technique to AMS organic

spectral data and also the first report of the OOA II component.25
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1 Introduction

Ambient aerosols have several adverse effects on human health (Nel, 2005), atmo-

spheric visibility (Horvath, 1993) and a more uncertain impact on climate forcing

(Lohmann and Feichter, 2005; Kanakidou et al., 2005). The organic component of

atmospheric aerosols plays an important role mainly concerning small particles: at Eu-5

ropean continental mid-latitudes, a fraction of 20–50% of the total fine aerosol mass

can be attributed to organic matter (Putaud et al., 2004), and about 70% of the organic

carbon mass (suburban summer) is found in particles with an aerodynamic diameter

of less than 1µm (Jaffrezo et al., 2005).

Particles in the atmosphere are often divided into two categories, depending on10

whether they are directly emitted into the atmosphere or formed there by condensation

(Fuzzi et al., 2006). Primary organic aerosol (POA) particles are generally understood

to be those that are released directly from various sources. Secondary organic aerosol

(SOA) is formed in the atmosphere by condensation of low vapour pressure products

from the oxidation of organic gases. The quantification of different types of aerosols15

such as SOA and POA (or more classes if possible) is important as source identifi-

cation is the first step in all mitigation activities. Furthermore, SOA and POA may be

associated with different sizes, chemical composition and physical properties and thus

may have different effects on climate or health.

Different classes of aerosols also exhibit different local abundances. SOA is a sig-20

nificant contributor to the total ambient aerosol loading on a global and regional level.

The SOA contribution to organic aerosol (OA) is highly variable, according to mod-

elling results ranging from 10% in Eastern Europe to 70% in Canada (Kanakidou et al.,

2005). There is an ongoing debate about how much SOA is present in the urban tropo-

sphere, where fresh emissions and aged air masses meet. As an example, Cabada et25

al. (2004) advocate that in Pittsburgh 35% of the organic carbon is secondary in July,

while one can deduce from another study that about 52% (calculated from Zhang et

al., 2005b) of the organic aerosol mass was secondary in the same city in September.
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Established approaches for SOA estimates are either based on VOC emission data

(e.g. Jenkin et al., 2003), on the organic to elemental carbon (OC/EC) ratio in primary

emissions (Turpin and Huntzicker, 1995; Cabada et al., 2004), or on mass spectral

tracer deconvolution technique to separate hydrocarbon-like organic aerosol and oxy-

genated organic aerosol (HOA and OOA) (Zhang et al., 2005a). “Algorithm 2” refers to5

this latter technique and represents the first multivariate analysis of Aerodyne aerosol

mass spectrometer (AMS) data.

In Algorithm 2, a priori knowledge of mass spectral data is incorporated into an alter-

nating regression-like procedure (Paatero, 1994), when spectral markers m/z (mass-to-

charge ratio) 44 and m/z 57 are set as first-guess principal components (in version 1.110

other mass tracers are suggested along with 44 and 57: http://www.asrc.cestm.albany.

edu/qz/; in the future, a 4-factorial algorithm will be presented; Zhang et al., personal

communication). Marker m/z 44 (a signal mainly from di- and poly-carboxylic acids

functional groups, CO
+

2 ) represents oxygenated organic aerosol components, while

m/z 57 (butyl, C4H
+

9 ) is a tracer for hydrocarbon-like combustion aerosol (e.g. diesel15

exhaust). All reconstructed organic mass can be expressed as functions of m/z 44 and

m/z 57, which implies that all information of the 270-dimensional data (number of mass

fragments that contain information on organics out of a total of 300) can by explained

by these two m/z. Algorithm 2 has been proven to reconstruct measured organics very

well with OOA and HOA at three urban locations. Under carefully selected conditions,20

OOA and HOA seem to be accurate estimates for SOA and POA, respectively (Zhang

et al., 2005b; Volkamer, 2006). However, the presence of more than two active sources

(likely in the urban troposphere) might limit the use of 2-factorial approaches.

In this paper, a method that allows the identification and attribution of more than two

organic aerosol sources and components is presented. The apportionment of more25

distinctive aerosol types and source classes allows for a more accurate modelling of

SOA and POA. Our approach does not rely on chemical assumptions and is based on

positive matrix factorization (PMF; Paatero and Tapper, 1994; Paatero, 1997). PMF

has several advantages over common versions of factor analytical approaches based
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on the correlation matrix as it will be discussed later. In atmospheric aerosol science,

PMF has been successfully applied to deduce either sources of PM10, the mass con-

centration of particles with an aerodynamic diameter less than 10µm (Hedberg et al.,

2005; Yuan et al., 2006) or finer fractions of particulate matter such as PM2.5 – (Polissar

et al., 1998, 1999; Maykut et al., 2003; Kim et al., 2004; Kim and Hopke, 2005; Zhao5

and Hopke, 2006; Pekney et al., 2006) or both (Kim et al, 2003; Begum et al., 2004;

Chung et al., 2005). To our knowledge, no attempts have been made so far to apply

PMF on submicron organic aerosol data. In most PMF studies, inorganic chemical

species (mostly SO
2−
4

and NO
−
3

) as well as trace elements were measured to describe

the particulate composition of the aerosol phase. Organic components were studied10

in less detail. Some PMF studies include EC and OC (Ramadan et al., 2000; Song

et al., 2001; Liu et al., 2003). Zhao and Hopke (2006) distinguished four different OC

and three different EC fractions depending on the thermal stability, as well as organic

pyrolized carbon.

In the present study, 270 highly time-resolved organic fragments (mass-to-charge15

ratios, m/z) retrieved from an Aerodyne AMS (Jayne et al., 2000; Jimenez et al., 2003)

were analyzed with PMF. When the factors and scores that result from PMF calcula-

tions are interpreted as aerosol sources and source strengths, respectively, it is nec-

essary to verify these interpretations. Thus, the resulting scores were correlated with

species that are indicative of primary (e.g. CO, NOx) and secondary (e.g. gaseous ox-20

idants, particulate nitrate and sulphate) components in the troposphere. It was further

examined whether the calculated scores are capable to reproduce emission events of

dominant aerosol sources that were observed during the sampling period. Moreover,

the spectral similarity of the PMF calculated factors and AMS reference spectra was

evaluated. Finally, the variances in generally accepted marker m/z ’s (e.g. m/z 44 for25

oxidized aerosol spectra) that can be explained by the resulting factor, EV(F) (Paatero,

2000), were inspected.
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2 Measurements

The site of Zurich-Kaserne represents an urban background location in the centre of

a metropolitan area of about one million inhabitants. The sampling site is at a public

backyard, adjacent to a district with a high density of restaurants (West) and about 500

m from the main train station (Northeast). An Aerodyne AMS with a quadrupole mass5

spectrometer was deployed during three weeks in summer 2005 (from 14 July to 4 Au-

gust). A detailed description of the AMS measurement principles (Jayne et al., 2000)

its modes of operation (Jimenez et al., 2003) and data analysis (Alfarra et al., 2004;

Allan et al., 2003, 2004) are provided elsewhere. Meteorological parameters and trace

gases were measured with conventional instruments by the Swiss National Air Pollution10

Monitoring Network, NABEL (Empa, 2005): ten minute mean values of nitrogen oxides

(NOx) were measured using chemiluminescence instruments with molybdenum con-

verters (APNA 360, Horiba, Kyoto, Japan), a non-dispersive infrared (NDIR) technique

was used to determine carbon monoxide (CO) (APMA 360, Horiba, Kyoto, Japan), and

ozone was determined by UV absorption (TEI 49C, Thermo Electron Corp., Waltham,15

MA). Hourly organic carbon (OC) and elemental carbon (EC) data was retrieved from

a semi-continuous EC/OC analyser (Sunset Laboratory Inc., Tigard, OR).

The sampling period is characterized by two phases of elevated photochemical ac-

tivity – indicated by high temperatures – each followed by rainfall (Fig. 1). Fireworks on

the Swiss national holiday (night of 1 August) are included. Nearby log-fires, charbroil-20

ing events and delivery vans caused other isolated peaks of organic aerosol (Fig. 1).

A total number of about 15 000 mass spectra (MS) were acquired (averaging time

= 2 min). These MS are defined by vectors of 300 elements (m/z ’s). 270 elements

contain reliable information about the organic aerosol phase (m/z 12–13, 15–20, 24–

27, 29–31, 37–38, 41–45, 48–148, 150–181, 185, and 187–300). The other m/z’s25

were excluded due to dominant contributions of the air signals (e.g. m/z 28, 32 and

40 for N2, O2 and Ar, respectively), inorganic species (e.g. m/z 39 and 46 for K and

nitrate, respectively), high background levels (e.g. m/z 186) or lack of plausible organic
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fragments (e.g. m/z<12). For more details on the interpretation of organic fragments

see Allan et al. (2004) and Zhang et al. (2005a).

A collection efficiency (CE) value is required for the estimation of aerosol mass con-

centration measured by the AMS (Alfarra et al., 2004). For the results reported in this

study, a CE value of unity has been used. This CE value was validated for the total5

AMS measured mass using data from a collocated beta-gauge instrument measuring

a total PM10 concentration. In addition, OC data was used to validate the CE value for

the organic mass concentration.

3 Data analysis

Statistical analyses were carried out with the statistical software R version 2.1.1 (http:10

//www.r-project.org, GNU GENERAL PUBLIC LICENSE Version 2, June 1991) and

IGOR PRO 5.02 (Wavemetrics Inc., Lake Oswego, OR). Vectors (and matrices) are

represented by (uppercase) bold letters. Single matrix elements as well as equations

are written in lowercase italic letters.

3.1 Positive matrix factorization (PMF)15

PMF is a well-established functional mixing model based on the work of Paatero and

Tapper (1994) and Paatero (1997). The associated software “PMF2” (version 4.2) was

used in this study. PMF is a receptor-only model and is most useful when source

profiles are unknown. The fundamental principle of receptor modelling is that mass

conservation can be assumed and a mass balance analysis can be used to identify and20

apportion sources of airborne particulate matter in the atmosphere (Hopke, 2003). The

most important advantages of PMF compared to common receptor models are that it is

a least-squares algorithm taking data uncertainty into account and that its solutions are

restricted to the non-negative subspace. Both features lay the foundation of making the

link between the mathematical solution and the processes of the real world possible. In25
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practice, sources are better separated and positive scores and loadings are physically

meaningful (Huang et al., 1999).

PMF is a factor analytical algorithm for linear un-mixing of data measured at a re-

ceptor site. In PMF, the mass balance equation

X = GF (1)5

is solved, with the measured data matrix, X, that combines t measurements (in time)

of i variables (t×i matrix). The p rows of the F matrix (p×i matrix) are called factors

(or loadings), the columns of the t×p matrix G are called scores. The factors can

often be interpreted as emission source profiles, the corresponding source activity is

then represented by the scores. However, the number of sources, p, that have an10

impact on the data is typically unknown. Moreover, for a certain number of factors p,

there is an infinite number of mathematically correct solutions to (1) given by rotated

matrices G
′
=G T and F

′
=T

−1
F (where the rotation matrix, T, multiplied by its inverse,

T
−1

, equals the identity matrix). Most of these solutions are physically meaningless

due to negativity. Therefore, PMF imposes non-negativity constraints to the unmixed15

matrix elements. In this study, data matrix X consists of i measured organic m/z ’s at t
samples in time samples, ORGti . The matrix product of scores, Gtp, and factors, Fpi ,

defines the modelled organics, OR̂Gti .

X = ORGti = Gtp Fpi + Eti = OR̂Gti + Eti (2)

where p is the number of factors (or remaining dimensions of the original 270-20

dimensional space) and Eti the model error. Choosing the right number of factors

or dimensions is a critical step in PMF. Often interpretability of G and F (along with

diagnostic PMF values) is set as criterion for the optimum p. This step requires a priori

knowledge and is highly subjective. Section 4.1 will be dedicated to this issue.

Factors Gtp and Fpi form an approximate bilinear decomposition of ORGti . This fac-25

tor analysis problem is solved by minimizing the error, Eti , weighted by measurement
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uncertainty, Sti , (weighted least square solved by a Gauss-Newton algorithm):

Q = argmin
G

min
F

∑

t

∑

i

(

ORGti − GtpFpi

Sti

)2

, (3)

meaning that the value of the argument of the uncertainty weighted difference between

the measured (ORGti ) and modelled (Gtp Fpi ) data matrix is at its minimum with re-

spect to both fitting factors, the columns of G as well as the rows of F.5

Thus, accurate uncertainty estimates of measured data are needed. Error estimates

for a given AMS signal in [Hz]

Sti = α

√

(Iio + Iib)

ts
(4)

were calculated from the ion signals m/z i , Iio and Iib (taking into account that the ion

signal at blocked aerosol beam, Iib, is subtracted from the open beam signal, Iio, in10

order to calculate the ultimate AMS signal), sampling time, ts, and a statistical dis-

tribution factor, α, and then transferred into organic-equivalent concentrations (org-

eq. µg m
−3

) using the IGOR PRO 5.02 code based on the work of Allan et al. (2003;

http://cloudbase.phy.umist.ac.uk/people/allan/ja igor.htm). The organics data and un-

certainty matrices, ORGti and Sti , were divided by the column median prior to PMF15

analysis. Thus, similar absolute variances for every orgi are obtained and therefore

also the low intensity m/z ’s can provide important information in this analysis. PMF

was run in the non-robust mode. Other parameters were set to default values and no

data pre-treatment was performed.

3.2 Interpretation of factors and scores20

For interpretation of the factors (rows of F) calculated by PMF, they were normalized

and compared to measured reference spectra (Sects. 3.2.1 and 4.2). The correspond-

ing scores (columns of G) were correlated with indicative marker species of sources
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and atmospheric processes (Sect. 4.4). When factors are interpreted as source pro-

files or aerosol components, they will be labelled with the name of the source or aerosol

component. The corresponding scores are then called source activities.

3.2.1 Spectral similarity and reference spectra

The intensities of all obtained loadings (interpreted as mass spectra, msi ) with5

i=1. . . 300 m/z ’s were first normalized

ms
norm.
i

= msi/
∑

i

msi . (5)

The normalized spectra (ms
norm.
i ) were then correlated with normalized reference

spectra from literature (ms
ref.,norm.
i

) and the coefficient of determination (R2
) was cal-

culated as a measure of spectral similarity. This approach however might have some10

shortcomings when it is applied to AMS spectra, such as the leverage effect of a

few, high intensity masses (e.g. m/z 18, 29, 43, 44) in regression analysis. These

masses are typically small (m/z≤44). Therefore, spectral similarity was also calculated

for m/z>44, R2

m/z>44
, providing additional insight into the similarity of the low intensity

masses only (values in parentheses; Table 1). The use of both values yields a more15

robust assessment of similarity.

Reference spectra used for transformed OA include fulvic acid (Alfarra, 2004) as a

tracer for highly aged particles, secondary organic aerosols from VOC precursors such

as α-pinene, isoprene, 1,3,5-trimethylbenzene, m-xylene, and cyclopentene (Bahreini

et al., 2005; Alfarra et al., 2006a), as well as aged rural and urban aerosol from field20

studies in Pittsburgh (Zhang et al., 2005a), Vancouver (Alfarra et al., 2004) and Manch-

ester (Alfarra, 2004). At these places, spectra of freshly emitted combustion particles

were determined, too. During several evenings of the sampling campaign at Zurich-

Kaserne, charbroiling had been observed. To calculate the charbroiling reference

spectra, the corresponding peaks were isolated and the background was subtracted.25

Background was defined as the samples before and after the barbecue events that
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were within the same meteorological regime and without interference from other known

special emission situations such as pure hydrocarbon plumes, fireworks on 1 August

and others. Reference spectra for wood burning in the field were obtained by AMS

measurements in Roveredo, Switzerland, where wood burning was found to be the

dominant source of organic aerosol in winter-time (Alfarra et al., 2006b
1
). Additional5

reference spectra for wood combustion were provided by the MS of the cellulose py-

rolysis tracer levoglucosan (Schneider et al., 2006) and combustion of many different

wood types (e.g. chestnut, oak, beech, spruce, Alfarra et al., 2006b
1
; Schneider et al.,

2006). Canagaratna et al. (2004) performed chasing experiments of diesel vehicles in

New York; in addition, spectra of pure diesel fuel and lubricant oil were obtained in the10

lab. A comparison of our obtained spectra with an illustrative selection of the reference

spectra is shown in Table 1. It contains the comparisons of all factors deduced from 2-

to 7-factorial PMF (n=27) with the selected reference spectra (n=11). This comparison

is based on spectral similarities R2
and R2

m/z>44
(in brackets) as defined before. The

most interesting results of this 594 element table will be discussed in detail later in15

Sect. 4.2.

4 Results and discussion

4.1 Determination of the number of factors

In PMF, choosing the number of factors often needs a compromise. Using too few fac-

tors will coerce sources of different types into one factor, while using too many will split20

real sources into unreal factors. PMF is a descriptive model and there is no objective

criterion to choose the ideal solution. Interpretability as well as some PMF diagnostics

(e.g. the rotational matrix, rotmat) is frequently used to determine the number of fac-

tors. The PMF solutions for the data of Zurich-Kaserne were found to be very stable

1
Alfarra, M. R., Prévôt, A. S. H., Szidat, S., et al.: Identification of the mass spectral signature

of organic aerosols from wood burning emissions, Environ. Sci. Technol., submitted, 2006b.
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with respect to different ways of modelling the data uncertainty and other input options

(e.g. EM, FPEAK, lims; Paatero, 2000) (data not shown). The largest element in rot-

mat, max(rotmat), is an estimate for the worst case rotational ambiguity (Lee et al.,

1999). A solution with rotational ambiguity means that the algorithm finds only vec-

tor sets that are linear superpositions of the principal components. This represents5

a mathematical drawback as the solution is not unique, i.e. the resolved factors can

be rotated without changing the residuals associated with the model (rotational ambi-

guity hampers the qualitative interpretation of the results). The PMF output rotmat is

used here to detect the region of reasonable number of factors. There are three local

minima in max(rotmat) versus number of factors shown in Fig. 2: one at two factors10

(max(rotmat)=0.0001) and one at seven factors (max(rotmat)=0.0010). Values similar

to the second minimum can be found from five to nine factors. The third local minimum

is at 15 factors (max(rotmat)=0.0026), but uninterpretable factors (e.g. overwhelming

dominance of m/z 15 or m/z 41) can be observed as soon as the number of sources

is increased from seven to eight. These findings suggest that the 2- or 5- to 7-factorial15

models are most promising to deduce the OA components and sources unambigu-

ously. Therefore, we will study these in detail in the following. In Sect. 4.2 we describe

what happens, when the number of factors is gradually increased from two to seven

sources. In addition to rotmat, the fit of the regressed scores to measured organics

for all PMF solutions was used for choosing the ideal number of factors,20

orgi = a +

∑

p

bpgtp, (6)

A better fit is obtained by increasing the number of factors from two to five. In this case,

a plateau is reached at five factors (R2
=0.9992). Even with only two factors, already

99.86% of the variance of the measured organics can be explained by the model.

Note that the intercept a is virtually zero and the overall slope is 1.00 for any PMF25

model introduced. The products bpgtp in Eq. (6) represent normalized scores and are

estimates for the contributions of each source to total organics. They are shown for

p=6 as absolute values (Fig. 6) and as relative values (Fig. 4). This normalization is
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most promising when the aim is to estimate accurate source contributions. However,

it is important to note that the spectral similarity (Sects. 3.2.1 and 4.2), the correlation

of scores with indicative species (Sect. 4.4) as well as the approximation of the data

matrix (reconstructed organics as discussed in Sect. 3.1 and calculated in Sect. 4.3)

are invariant to factor normalization.5

4.2 Interpretation of factors and mass allocation

The source profiles and its activities will be discussed in order of decreasing explained

variance, EV(F), as described in Paatero (2000). It is a measure of how important each

factor is in explaining the variance in the m/z ’s. The order of discussion is reflected in

Table 1.10

Each factor (or calculated MS) of the 6-factorial PMF is presented in Fig. 3. This

figure shows the normalized intensity (according to Eq. 5) versus mass-to-charge ratio

of all six factors retrieved from PMF. As specific calculated spectra (e.g. the factors

interpreted as HOA) from different factorial approaches show less variability than a

certain group of the reference spectra (e.g. all spectra referring to wood burning), the15

selection of 6-factorial solutions is representative for the factors that are not shown

here. It is the 6-factorial solution that includes the highest number of interpretable

factors and we will proceed with when the discussion turns to source activities. In this

section, the discussion includes all solutions of 2- to 7-factorial PMF analyses.

4.2.1 Two-factorial solution20

Assuming two factors in PMF modelling, the first factor computed by PMF is most

similar to OOA from Pittsburgh (R2
=0.96), but also highly similar to all other OOA

reference spectra obtained from field studies (R2>0.88). The second factor is closest to

the diesel fuel MS (R2
=0.96), but also similar to the MS from chasing experiments and

lubricant oil (R2>0.93). The average mass associated with the OOA-like factor is 87%,25

while 13% are allocated to HOA (an overview of the average mass associated with each

11693

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/11681/2006/acpd-6-11681-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/11681/2006/acpd-6-11681-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 11681–11725, 2006

Source

apportionment of

submicron organic

aerosols

V. A. Lanz et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

factor is summarized in Fig. 4.). The OOA factor as well as the HOA factor calculated

by PMF are virtually identical (R2
=0.99, R2

m/z>44
=0.99 and R2

=0.98, R2

m/z>44
=0.99,

respectively) to the corresponding factors calculated by using two first-guess principal

components (m/z 44 and m/z 57).

4.2.2 Three-factorial solution5

In the 3-factorial case, the first two factors generally exhibit more or less the same

similarities to reference spectra as in the 2-factorial case. In fact, they are even slightly

more similar to the spectra discussed above. The first factor is strongly correlated with

secondary particles from Pittsburgh (R2
=0.99) and the second factor has the highest

correlation with the fuel reference MS (R2
=0.98). The MS of the third factor is closely10

related to charbroiling (R2
=0.88). A mean mass percentage of 63% is attributed to

OOA, 10% to HOA, and 27% to charbroiling-like aerosol. These changes compared

to the 2-factorial model suggest that some primary particles (charbroiling and similar

sources) are included in OOA, when assuming only two factors (see also Sect. 4.3).

4.2.3 Four-factorial solution15

When a fourth factor is introduced, the first three factors do not change much in terms

of similarity with reference spectra. The new fourth factor shows highest similarity to

wood smoke from the Roveredo field measurements (R2
=0.81). Using four factors,

about 12% of the OA mass originates from wood burning-like aerosol. When the wood

burning factor is introduced, modelled aerosol mass from charbroiling is reduced most20

(difference between the mass attributed within the 3-factorial approach and the one

within the 4 factorial approach: ∆mass=−7%).
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4.2.4 Five-factorial solution

A dramatic change can be observed when five factors are used in PMF modelling:

not as much in the change of max(rotmat) or the model fit (Sect. 4.1), but in terms of

similarity to secondary aerosol. The original first, OOA-like factor is split into highly

aged background aerosol (high similarity to aged rural aerosol: R2
=0.97 and to fulvic5

acid: R2
=0.93) and one that mostly resembles aerosol from isoprene oxidation in the

presence of NOx (R2
=0.82). We will refer to these OOA factors as “OOA, type I” and

“OOA, type II”, respectively. The third spectrum is again associated with charbroiling

(R2
=0.82), the fourth with wood burning (similarity to Roveredo spectra: R2

=0.70;

levoglucosan: R2
=0.71). Increasing the number of factors from four to five does not10

affect the modelled mass of wood burning aerosol (∆mass=−2%) or fuel-like aerosol

(∆mass=−1%), while charbroiling aerosol again (∆mass=−6%) is loosing most of its

contribution. This indicates that using only three or four factors results in overestimating

OA from charbroiling.

4.2.5 Six-factorial solution15

With six factors, the first factor is even more similar to fulvic acid (R2
=0.96), while

the third factor is still very similar to fuel aerosol (R2
=0.99). The second factor can

be interpreted similarly as in the 5-factorial case. However, considering only m/z>44,

correlations are highest with α-pinene SOA rather than isoprene SOA. It should be

noted that in reality SOA from several precursors will contribute to this factor, where20

the differences between the reference spectra do not seem to be significant enough

to discriminate between those. The fourth factor can be interpreted as a charbroiling

source again (R2
=0.85), the fifth is even more levoglucosan-like (R2

=0.82). The sixth

factor does not fit in any class of reference spectra, but it might be associated with food

cooking. The mass spectrum of this factor is characterised by m/z 264 with an intensity25

of about 15% relative to the largest peak (m/z 43) and it is in the same range as m/z 60

in this factor. This might be an indication of oleic acid (NIST, 2006), the most abundant
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monoenoic fatty acid in plant and animal tissues. However, Katrib et al. (2004) showed

that m/z 264 is much more depleted in pure oleic acid than shown in this factor. There-

fore, this is an indication that oleic acid might be lumped together with other similar

fatty acids, such as petroselenic acid (which is present e.g. in coriander and parsley),

pointing to food cooking as a partial source in that factor (additional evidence that this5

factor might include food cooking aerosols will be given in Sect. 4.4.3). Going from

five to six factors, the average mass does not change for fuel-like aerosols. In general,

mass differences for all factors are small (|∆mass| ≤5%).

4.2.6 Seven-factorial solution

The first five factors in the 7-factorial solution are more or less the same as with six10

factors. The seventh factor, tentatively assigned to food cooking, remains unchanged

too, while the sixth factor does not correlate well with any of the available reference

spectra: similarity is highest with the wood burning MS but correlations are lower than

for the fifth factor. If the sixth factor is added to the fifth factor (interpreted as wood

burning), the resulting factor exhibits increased correlation (R2
=0.84, R2

m/z>44
=0.87)15

to ambient wood burning aerosols from Roveredo (but the same or lower correlation to

other measured wood smoke spectra). This indicates that splitting real sources into un-

real factors by assuming too many factors might already start at 7-factorial solutions to

some extent. In addition, no more significant changes in the mass contribution to total

organics take place, when we assume seven instead of six factors: charbroiling (10%)20

and traffic-related fuel aerosol (6%) aerosol remain at constant levels, food cooking

(∆mass=−1%) and OOA from local precursors (∆mass=+1%) are almost unchanged.

4.2.7 Evaluation of 2- to 7-factorial solutions

In summary, choosing only two factors in factor analytical models for this site overes-

timates OOA if interpreted as SOA. At sites with two dominating sources this may be25
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less critical; as an example, Zhang et al. (2006)
2

show that this OOA overestimation

does not apply for the Pittsburgh dataset.

When three and more factors are assumed, aerosol from primary sources is sub-

tracted from OOA and the first factor exhibits higher correlations with fulvic acid (which

represents humic-like substances in the atmosphere; Gelencser, 2004).5

The similarity of this first factor to fulvic acid is mainly increased when the number of

factors is changed from two to three as well as from four to five. About 85–90% percent

of the overall m/z 44 variance can be explained by this first factor. Evidence for m/z

44 and m/z 57 as tracers for oxygenated and hydrocarbon aerosol was first given in

Alfarra et al. (2004).10

A HOA-like factor is salient from 2- to 7-factorial PMF. The fraction of OA explained

by HOA is decreasing from 13% in the 2-factorial approach to 6–7% in the 4- to 7-

factorial approaches. The similarity to fuel is already strong when using only two fac-

tors. Strongest similarity is reached when five factors are used. Most of the variance in

the diesel marker m/z 57 can be explained by the HOA factor. In the 2-factorial case,15

this amounts to 80% and monotonously decreases with each additional source down

to about 50%. The wood burning-factor explains 12–13% of the m/z 57 variance.

When only three factors are chosen, wood burning is mainly lumped together with

charbroiling (Sect. 4.2.3). Adding a fourth factor takes account of the fact that there is

wood burning in summer (log-fires, barbecues, as well as domestic garden and forest20

wood burning). At least four factors are necessary to identify wood burning. The factor

identified as wood burning explains 45–55% of all variance in m/z 60. About 25% of

m/z 60 cannot be explained by the PMF models. About 25% of the m/z 73 variance is

explained by the charbroiling factor and nearly 20% by the wood burning factor, while

23% remain unexplained. Mass-to-charge ratio 60 and 73, as well as 137 have been25

linked to wood burning by Schneider et al. (2006) as well as by Alfarra et al. (2006b)
1
.

2
Zhang, Q., Jimenez, J.-L., Dzepina, K., et al.: Component analysis of organic aerosols in

urban, rural, and remote site atmospheres based on aerosol mass spectrometry, 7th Interna-

tional Aerosol Conference, poster 5H8, St. Paul, Minnesota, USA, 2006.
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The wood burning factor can account for 30–45% of the m/z 137 variance, and about

30% can not be explained by the model.

When a fifth factor is assumed, OOA is divided into highly aged background aerosol,

which is fulvic acid-like and a second type that can not be clearly assigned to any

reference MS (considering both, R2
and R2

m/z>44
, see Table 1). Choosing five, six or5

seven factors does not affect the solution significantly. Choosing more than seven fac-

tors generates source profiles that cannot be interpreted. Changes from six to seven

factors are very small. Additionally, the average mass associated with each source

does not change much when we increase the number of factors from five to six factors,

and even less when choosing seven instead of six factors (Fig. 4). With five factors, the10

similarity plateau (defined by R2
of 7-factorial solutions, which typically exhibit the high-

est values) is not attained in most cases (Table 1), whereas the similarity to isoprene

is highest with five factors. Therefore (and because of the findings from the 7-factorial

solution, Sect. 4.2.6), using 6 factors might be a good compromise for further analysis.

The spectra of these six factors are shown in Fig. 3.15

4.3 Primary sources contributing to OOA (calculated by 2-factorial PMF)

In Sect. 4.2.2, it was hypothesized that the first factor of 2-factorial PMF (interpreted

as OOA) includes oxidized species from primary sources. Further evidence that 2-

factorial PMF overestimates secondary aerosol at this site, if the factor interpreted

as OOA is equated with SOA is given here. We would expect that periods of nice20

weather, when oxidized aerosol species from primary sources (e.g. charbroiling, wood

burning, tobacco smoke, food cooking) interfere with oxidized secondary aerosols, are

most erroneously modelled by using two-factors only. In such situations, the 2-factorial

model is expected to be less accurate than for instance the 3-factorial approach.

As all used PMF approaches (2- to 7-factorial) can technically model the data almost25

perfectly (Sect. 4.1), the error patterns in those models are investigated by considering

the sum of the absolute model residuals (or absolute differences between the mea-

sured data matrix, ORGti , and its model approximate, OR̂Gti ) divided by the sum of
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the measured organics.

et(rel.) =

∑

i

∣

∣

∣ORGti − OR̂Gti

∣

∣

∣

∑

i

ORGti

(7)

Periods of elevated photochemistry (as well as 1 August) are indeed more erroneously

modelled by 2-factorial PMF (Fig. 5) compared to the 3-factor solution. In contrast, the

errors, et (rel.), are more or less identical during periods of low photochemistry (19–255

July and 30 July–4 August; with the exception of the morning of 1 August).

4.4 Interpretation of scores (activity of sources)

4.4.1 Processed and volatile OOA

Particulate AMS-sulphate is correlated with OOA, type I (R2
=0.52, n=14914). Both

time series are shown in Fig. 6 and all discussed correlations are presented in Table 2.10

Atmospheric oxidants (O3+NO2) are also correlated to OOA, type I (R2
=0.51), giving

further evidence that OOA, type I refers to highly aged and processed organic aerosol.

This OOA type is relatively stable during the photochemical period and exhibits a slight

maximum in the afternoon, when temperature is highest. This suggests that the aerosol

modelled by OOA, type I is thermodynamically stable. This is, together with the spectral15

similarity to fulvic acid, strongly indicating that OOA, type I represents aged, processed

and possibly oligomerized OOA with low volatility as found in SOA from smog chamber

studies (Kalberer et al., 2004).

In contrast, OOA, type II shows diurnal patterns with maxima typically found at

night. During the photochemical phase, the baseline of OOA, type II is clearly elevated20

(Fig. 6). Both findings indicate a general accumulation of oxidation products formed

during the day that condense onto pre-existing particles at night. This latter process

is reflected by OOA, type II. Particle-nitrate retrieved from AMS measurements shows
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a high correlation (R2
=0.55) with OOA, type II when the last fifth of the sampling pe-

riod is excluded (see below). The particulate nitrate concentration depends strongly

on temperature, as the formation of condensed phase ammonium nitrate is in a tem-

perature and humidity dependent equilibrium with ammonia and nitric acid in the gas

phase. These findings suggest that OOA, type II is a volatile fraction of OOA with high5

anti-correlation to the temperature (e.g. if we consider the first four days of the cam-

paign – those are all associated with elevated photochemistry – a relationship of OOA,

type II=−0.13*temperature + 5.09, R2
=0.47, can be described). In fact, this volatile

fraction of OOA is even more strongly dependent on temperature when its measure-

ment series is shifted back in time about half a day (R2
=0.66). This might suggest10

that concentrations are highest in the night after a day with high photochemical activ-

ity when more condensable organics are available. As of 1 August (the Swiss National

day), the concentrations of measured nitrate and modelled OOA, type II diverge. These

last days of the campaign are characterized by lower temperatures (T<23
◦
C). This sug-

gests that during this period photochemical oxidation of SOA precursors is low while15

the formation of nitrate is still high, possibly due to night-time chemistry. Also influences

from fireworks cannot be excluded.

4.4.2 HOA, charbroiling and wood burning aerosol

Wood burning is better correlated with CO (R2
=0.70, n=2793, 7 outliers) than with NOx

(R2
=0.48, n=2800). CO is a tracer for incomplete combustion (in complete combustion20

processes, only CO2 is formed). We can expect that aerosols from domestic log-fires

are often generated at low temperatures, favouring incomplete combustion and CO

emissions. HOA shows a slightly better correlation with CO (R2
=0.81, n=2776, 24

outliers), than with NOx (R2
=0.74, n=2776, 24 outliers). High concentrations of char-

broiling aerosols typically coincide with evenings of periods of warm temperatures (e.g.25

on 14–17 July; Figs. 1 and 6). Charbroiling events are observed simultaneously with

wood burning aerosol and HOA suggesting that charbroiling emissions are highly vari-
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able with respect to their chemical composition (complete and incomplete combustion

of accelerants, char, fat) and probably cannot be described by a single mass spectrum.

Therefore, we might underestimate those emissions here. Both CO and NOx are emit-

ted by vehicles. NOx is also strongly associated with diesel vehicle exhaust. Therefore,

there is less discrepancy in the R2
when HOA is correlated with CO and NOx than it5

is the case for domestic wood burning, as these latter particles are often generated at

temperature where NOx is a minor product.

If a multiple linear regression is calculated for the 6-factorial PMF results (primary

sources only),

Tracer = f (HOA, charbroiling, wood burning, minor source), (8)10

the correlation is in the same range for Tracer=CO, yielding R2
=0.88 (21 outliers)

as well as for Tracer=NOx (R2
=0.76, 29 outliers). This multiple correlation with the

gaseous marker NOx does not improve much compared to the ordinary correlation of

NOx with HOA (calculated with PMF). Hence, the HOA factor is sufficient to explain

variances in NOx.15

Boxplots of HOA during days dominated by commuters and heavy traffic with mod-

erate influence of leisure traffic and activities (Monday to Friday) were calculated and

compared to the remaining days, which can all be (partially) characterized by leisure

road traffic and activities: Saturdays (after-noon and evening activities) and Sundays

(trucks are banned from roads), as well as Monday, 1 August (Swiss national holiday)20

(Fig. 7). For working days only, HOA exhibits a similar daily cycle as NOx which can

be characterized by two peaks: one in the morning at 08:00 to 09:00 a.m. and one

in the evening at about 09:00 to 10:00 p.m. For the weekend and holidays, these

diurnal patterns differ: not as much in the morning, when both daily cycles do not in-

crease significantly (i.e. the notched areas overlap in both cases), but in the evening25

as of 06:00 p.m., when HOA is significantly concentrated at higher levels (compared to

morning hours). Therefore, sources other than on-road traffic might contribute to HOA.

Note, however, that nitrogen oxides (NOx=NO+NO2) also include substantial interfer-
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ences by NOx oxidation products (Steinbacher et al., 2006
3
), and are also emitted by

lightning, biomass burning and industrial sources. In 2000, traffic sources contributed

about 58% of total NOx emissions in Switzerland (EKL, 2005). Therefore, NOx is not a

perfect traffic marker, and HOA should not be equated with pure vehicle exhaust either.

It is interesting to note the high wood burning concentrations compared to relatively5

low HOA and charbroiling contributions during the night from 1 August (Swiss national

holiday) to 2 August (Fig. 6). This together with the outstanding sulphate peak is a

strong indication that the wood burning factor is also influenced by emissions from

the fireworks on the national holiday (fireworks consist of wood or wooden products,

e.g. cardboard coating, and sulphur which is used for several purposes). However, we10

can not clearly rule out the simultaneous overlay of log-fires from upwind places, as

the submicron sulphate concentration decreases while the baseline of the modelled

wood burning aerosol concentration is still increasing (until the morning increase of the

boundary layer height) (Fig. 8). In fact, there are lots of wood fires from big stacks

at many places on this evening. These fires will be smouldering far into the night, as15

actually also seen in Fig. 8.

In August 2002,
14

C analyses were performed by Szidat et al. (2006) at Zurich-

Kaserne. Based on assumed OC/EC values of wood burning for biomass emission

factors they calculated that 13% of total organic matter stems from biomass burn-

ing. This is in good agreement with 10% wood burning contribution calculated in this20

study. Based on emission inventories we can rule out contributions of biomass burning

sources other than wood combustion. In addition, as there is virtually no EC emis-

sion from charbroiling (shown e.g. by Schauer et al., 1999) it is unlikely that barbecue

activities are included in this 13% biomass burning (as biomass contributions were

calculated from EC values).25

3
Steinbacher, M., Zellweger, C., and Schwarzenbach, B.: Nitrogen oxides measurements

at rural sites in Switzerland: bias of conventional measurement techniques, J. Geophys. Res.,

submitted, 2006.
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4.4.3 Minor source (influenced by food cooking)

In this section we provide some evidence that the minor source was influenced to some

extent by food cooking. Hourly notched boxplots were calculated for the modelled minor

source time series and are presented in Fig. 9. A significant increase was observed in

this factor at noon and from 08:00 to 09:00 p.m. during the photochemically active pe-5

riods (14–18 and 26–29 July 2005; Fig. 1) which were accompanied with nice weather

and more leisure activities. In contrast, there is no peak at noon and a less eminent

increase in the concentration from 08:00 p.m. to 09:00 p.m. when the whole dataset is

analyzed.

Further evidence that the sixth factor can be interpreted as influenced by cooking is10

given by filtering the data with respect to wind direction. An area of densely located

restaurants (“Langstrassen-Quartier”) is in the direction of Northwest to Southwest,

while air from North to East is coming from the main train station (“Zürich HB”). A

minimal wind speed of 0.5 m/s is imposed (wind direction and wind speed are mea-

sured 32.1 m above ground level). The busiest hours in that area are typically from15

06:00 p.m. to 11:00 p.m. Aerosol concentrations from the sixth factor are signifi-

cantly higher (mean: 0.52µg m
−3

, standard deviation: 0.02µg m
−3

) when air from

the “Langstrassen-Quartier” arrived at the measuring site than when the wind came

from the direction of the main train station (mean: 0.27µg m
−3

, standard deviation:

0.03µg m
−3

). Thus, a ratio of 1.9 can be calculated for aerosol from the “Langstrassen-20

Quartier” compared to “Zürich HB”. Note that this phenomenon is untypical for other

aerosol concentrations: no significant dependence on wind direction can be observed

for the other primary factors (HOA, charbroiling and wood burning aerosol), and both

OOA factors are lower in air masses from West (ratio of type I, aged fraction): 0.4;

type II, volatile fraction: 0.7). Very similar results are obtained without applying the time25

filter. North-eastern winds (“Bise”) during Swiss summers are typically anticyclonic and

associated with clear sky and more solar radiation favouring atmospheric oxidation pro-

cesses, while Western winds often contain wet air masses from the Atlantic Sea. This
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is an indication why OOA (especially type I) shows lower concentrations in Western air

masses.

4.5 Modelled emission ratios

The emission ratios of modelled primary organic aerosol (POA) or HOA versus mea-

sured primary pollutants such as elemental carbon (EC), NOx and CO are calculated5

from the slope s of the following linear regression modell:

primary pollutant (modelled) = a + s primary pollutant (measured) + ε (9)

Based on the solution of 6-factorial PMF, primary organic aerosol (POA) is estimated

as

POA = HOA + wood burning + charbroiling + minor source (food cooking) (10)10

Then, a ratio of 15.9µg m
−3

/ppmv (+/−2.3µg m
−3

/ppmv) for HOA/NOx results for this

campaign. Similar values can be calculated from a tunnel study (Kirchstetter et al.,

1999): a ratio of 16µg m
−3

/ppmv for diesel trucks and 11µg m
−3

/ppmv for light-duty

vehicles. In this calculation, HOA as the primary component from traffic emission was

chosen. The emission ratios calculated for the morning hours of weekends (Satur-15

days, Sunday and 1 August) as well as of working days (Monday to Friday) do not

significantly differ from the overall ratio of 15.9µg m
−3

/ppmv. On the other hand,

values for after-noon and evening hours (12:00–23:50 p.m.) are significantly larger

(s=27.7µg m
−3

/ppmv).

For POA/EC a ratio of 1.1µg m
−3

/µgC (+/−0.1µg m
−3

/µgC) – or 1.6µg m
−3

/µgC20

(+/−0.1µg m
−3

/µgC) assuming an intercept of zero – is obtained. These values are

similar to 1.4µg m
−3

/µgC calculated from a dispersion modelling study for Northeast-

ern United States by Yu et al. (2004). In Pittsburgh, a ratio of 1.4µg m
−3

/µgC results

from multivariate analysis of AMS data by Zhang et al. (2005b) and 1.2µg m
−3

/µgC

can be deduced from emission inventories (Cabada et al., 2002).25
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A ratio of 10.4µg m
−3

/ppmv (+/−0.4µg m
−3

/ppmv) is found for POA/CO in Zurich

in summer 2005. Very similar ratios resulted in Northeastern U.S. (9.4µg m
−3

/ppmv)

calculated from various gaseous organics (de Gouw et al., 2005) as well as in Tokyo

(11µg m
−3

/ppmv) based on AMS measurements (Takegawa et al., 2006).

In summary, these results support the interpretation of POA as given by Eq. (10) and5

further evidence is given that HOA can be related to traffic.

4.6 Uncertainty estimates of source contributions

The uncertainty of the source contributions as defined in Eq. (5) is a function of both,

the uncertainty of the fitting parameter b, σ(bp), and the uncertainty of the scores

σ(gtp):10

σ(bpgtp) = f (σ(bp), σ(gtp)) (11)

The uncertainties of the scores, σ(gtp) (or G std-dev in PMF2), depend on the uncer-

tainty of F (as G and F are not independent of each other). Unfortunately, the standard

deviation of G is determined by the assumption that F is kept fix within PMF2 (Paatero,

2000). Rotational ambiguity is also contributing to total uncertainty; this is not taken15

into account by uncertainty calculations within PMF2, too. In practice, additional un-

certainty comes also from the ambiguity in choosing the reduced dimensionality p.

Both the uncertainty (estimated 95%-confidence interval) propagation according to

Eq. (11) for the 6-factorial solution as well as ambiguity from choosing the 5-, 6-, or

7-factorial approach are summarized in Table 3 (values are given as percentages):20

these two ranges are in good agreement. Both suggest that the uncertainty in OOA,

type II (volatile fraction) is rather small (18.9%–22.3% and 21.7%–22.0%), compared

to OOA, type I (aged fraction) (∼40%–50%). This is a hint that OOA, type II is strongly

associated with a physical process (condensation at low temperatures at night) rather

than a factor summarizing all kind of photochemical processes where a large number of25

VOC and OVOC precursors are involved (OOA, type I). The estimated 95%-confidence

intervals, [µ(bpgtp)±2σ(bpgtp)], of several primary components and sources overlap
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(Table 3). Nevertheless, we can state that charbroiling contributes significantly more

to measured organics than HOA or aerosols from a minor source (influenced by food

cooking).

5 Conclusions

PMF was successfully applied for the first time to organic aerosol mass spectra mea-5

sured by an Aerodyne AMS. Up to six factors could be interpreted either as different

sources or aerosol components contributing to the submicron organic aerosol (OA) in

summer at Zurich-Kaserne, an urban background location in Switzerland. The average

OA concentration was 6.58µg m
−3

or 66% of the total aerosol concentration measured

by the AMS. In the 2-factorial solution, more than 85% of the organic aerosol was10

assigned to oxygenated organic aerosol (OOA).

When using more than two factors, OOA accounts for around 60–69% of the to-

tal organic mass. In the 6-factorial PMF, OOA could be split into an aged, less

volatile, fulvic acid-like (OOA, type I) and a volatile, highly temperature dependent,

oxygenated organic aerosol fraction (OOA, type II). Within the primary organic aerosol15

(POA) classes, an average of 6–10% hydrocarbon-like organic aerosols (HOA) (3- to 7-

factorial PMF solutions) seems surprisingly small while charbroiling and wood burning

(both at ∼10%) exceeded the estimated aerosol concentration from incomplete fossil

fuel combustion. The calculated contribution of wood burning is in good agreement with

results based on
14

C analyses (Szidat et al., 2006). A source potentially interpreted20

as food cooking makes up 6% of the total organics. Our results indicate that organic

aerosols in Zurich in summer are composed of one third from primary and two thirds

from secondary origins. These findings are in line with the studies from Pittsburgh

(Zhang et al., 2005b) as well as Mexico City (Volkamer et al., 2006).

Since there are significant primary emissions of oxygenated compounds in Zürich25

(∼24–27%) the 2-factorial approaches overestimate the contribution of SOA by about

15–25% if OOA is interpreted as secondary organic aerosol (SOA). Technically, the
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2-factorial PMF approach can unmix the data matrix almost perfectly: it is the most

unique solution (solution with lowest rotational freedom), explains already R2
=0.9986

of the data variance and its resulting factors show good agreement with measured

spectra representing OOA and HOA (Alfarra, 2004; Zhang et al., 2005a). However, for

this site OOA and HOA factors from 2-factorial PMF should not be equated to SOA and5

POA as the direct emission of oxygenated aerosol species from sources like biomass

burning, charbroiling, food cooking etc. cannot be ruled out. It was shown e.g. by

Simoneit et al. (1993) that emissions of those sources can include a myriad of oxidized

organic compounds. The sum of (OOA, type I) and (OOA, type II) might represent SOA

but we cannot rule out that oxidized primary particle emissions contribute to OOA in10

the mass spectrum. Primary biogenic emissions (e.g. wax fragments) could also be

significant sources of OOA, although no indication was found in this study. In addition,

Zurich-Kaserne might be slightly biased toward charbroiling and wood burning particles

because of some local emission events. Thus, further application of this method to

other datasets will give more insight into the variability of the source composition at15

different locations.
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Table 1. Spectral similarity for all m/z ’s (and m/z>44 only) with a selection of illustrative ref-

erence spectra (R2≥0.90, R2≥0.80 and R2≥0.70) from Alfarra (2004)
1
, Zhang et al. (2005a)

2
,

Alfarra et al. (2006a)
3
, Bahreini et al. (2004)

4
, Alfarra et al. (2006b)

5
, Schneider et al. (2006)

6
,

Canagaratna et al. (2004)
7
, this study (Sect. 3.2.1)

8
.
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Table 1. Continued.

Aged and processed Wood burning, traffic related and charbroiling
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0.06
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0.08

(0.45)

0.25

(0.65)

2 OOA, type II 0.27
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0.34

(0.79)

0.05

(0.75)
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0.62

(0.51)

0.53

(0.27)

0.37

(0.13)

0.33

(0.16)
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3 HOA 0.15
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0.12
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0.03

(0.14)
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(0.16)

0.27
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0.25

(0.32)

0.15
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0.99
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0.50
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4 charbroiling 0.18
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0.06
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(0.19)
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5 wood burning 0.26
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(0.35)

0.17
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(0.23)

0.15

(0.27)

0.38
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6 minor/cooking 0.24
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(0.48)

0.05
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0.48

(0.61)

0.37

(0.34)

0.32

(0.18)

0.05

(0.19)

0.07

(0.46)

0.23

(0.65)

2 OOA, type II 0.26

(0.86)

0.33

(0.79)

0.05

(0.74)
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(0.83)

0.79

(0.64)

0.60

(0.50)

0.51

(0.26)

0.35

(0.12)

0.33

(0.15)

0.49

(0.40)
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(0.59)

3 charbroiling 0.18

(0.70)
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(0.50)

0.06

(0.57)
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(0.67)
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(0.68)

0.34
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0.28

(0.19)

0.21

(0.09)

0.24

(0.15)
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0.86
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4 HOA 0.14

(0.24)

0.11

(0.09)

0.03

(0.15)

0.31

(0.17)

0.27

(0.26)
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(0.41)

0.24

(0.32)

0.15

(0.25)

0.99
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0.82
(0.72)

0.51

(0.47)

5 wood burning 0.45

(0.47)
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(0.42)

0.36

(0.46)
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(0.35)
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(0.84)
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0.12
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(0.44)
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(0.46)

0.44

(0.37)
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(0.49)
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(0.43)
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(0.38)

0.55

(0.26)

0.25

(0.18)

0.40

(0.32)

0.63

(0.42)

7 minor/cooking 0.29

(0.61)
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(0.47)

0.08

(0.50)

0.52

(0.55)

0.70

(0.46)

0.71

(0.54)

0.67
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(0.29)
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Table 2. Correlation of scores (or calculated source contributions) by 6-factorial PMF with in-

dicative species of the gas- and aerosol phase and temperature, Temp. (selection of illustrative

examples).

i -th factor (interpreted as component/source)

1st factor (OOA I) 2nd factor (OOA II) 3rd factor (HOA) 4th factor (wood)

measurement (R2
) particle-SO

2−
4

(0.52) particle-NO
−
3

(0.55) NOx(0.81) CO (0.70)

represented process secondary secondary/nightime

chemistry

combustion incomplete combustion

measurement (R2
) O3+NO2 (0.51) Temp. (0.47, 0.66) CO (0.74) NOx (0.48)

represented process atmos. oxidation condensation

(anticorr. ∆t=0,

∆t=10 h)

incomplete combustion combustion

11715

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/11681/2006/acpd-6-11681-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/11681/2006/acpd-6-11681-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 11681–11725, 2006

Source

apportionment of

submicron organic

aerosols

V. A. Lanz et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 3. Two different uncertainty estimates of the scores (or calculated source activities) for

the p=6 factor solution (in %): variability from different factorial approaches (var. in p-1,p, p+1)

and calculated 95%-confidence intervals for the source contributions (est. 95%-c.i. bpgtp).

OOA, type I OOA, type II HOA charbroiling wood minor (cooking)

var. in p-1,p, p+1 39.8%–50.0% 18.9%–22.3% 6.3%–7.3% 10.1%–14.7% 7.4%–10.0% 5.5%–6.5%

est. 95%-c.i. bpgtp 40.6%–49.0% 21.7%–22.0% 5.6%–8.6% 10.1%–11.1% 8.4%–10.3% 5.2%–7.4%

average 44.1% 21.9% 7.3% 10.7% 9.5% 6.5%
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Fig. 1. Measured organics (values above 30µg m
−3

are not shown), temperature and rainfall

during the sampling campaign at Zurich-Kaserne.
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Fig. 2. Goodness of fit (R2
) of regressed scores vs. measured organics and rotational freedom

as a function of the number of factors chosen in PMF.
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Fig. 3. Spectra of all PMF factors (interpreted as the denoted source profiles) calculated by
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it is the only source or component with significant features in the high mass region on the linear
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culated by 6-factorial PMF: OOA, type I and particulate sulphate, OOA II and particle-nitrate,

HOA and nitrogen oxides (NOx), charbroiling, wood burning and CO, and minor source (food
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Fig. 7. Notched boxplots for HOA (top) and NOx (bottom) on working days (left) and on week-

ends as well as holidays (right). Medians are represented by horizontal black bars, and the

notched span equals the estimated 90%-confidence interval of the hourly grouped median. If

the notched intervals of two medians do not overlap with each other, they are said to be signif-

icantly different (e.g. bottom/right graph: the median for the fifth hour of the day is significantly

lower than the median of the sixth hour of the day).
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Fig. 9. Notched boxplots for minor sources (food cooking): for the photochemical phase only

(left) and for the whole campaign (right).
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