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Abstract. In this paper, we describe a unified algorithm
for locating and computing hyperbolic trajectories, and then
computing their stable and unstable manifolds, for finite time
velocity fields in the form of a data set defined on a space-
time grid. The algorithm is applied to a turbulent regime of
a quasigeostrophic wind-driven double gyre in a rectangular
domain.

1 Introduction

The applications of the dynamical systems approach to the
study of Lagrangian transport in fluid mechanics is now well
established with literally hundreds of papers related to the
subject being published over the last twenty years, see the
monographsOttino (1989) andWiggins(1992) for an intro-
duction to the subject.

In recent years this approach has been applied to the study
of Lagrangian transport in oceanographic flows, see, e.g.
Behringer et al.(1991), Bower (1991), Samelson(1992),
Dutkiewicz et al.(1993), Meyers(1994), Duan and Wiggins
(1996), Rogerson et al.(1999), Poje and Haller(1999), Coul-
liette and Wiggins(2001), Yuan et al.(2001), Balasuriya and
Jones(2001), Balasuriya(2001), Poje et al.(2002), Waseda
and Mitsudera(2002), Kuznetsov et al.(2002), Miller et al.
(2002), andKirwan et al.(2003).

Hyperbolic fluid particle trajectories and their stable and
unstable manifolds are the basic building blocks of the
flow field on which the dynamical systems approach to La-
grangian transport is based. However, realistic oceano-
graphic flows give rise to a number of mathematical obstacles
to the implementation of these ideas. Such flows are typi-
cally aperiodic in time (so the usual idea of “Poincaré map”
from dynamical systems theory is not applicable) and dy-
namically consistent flows can generally be realized only on
a space-time grid, i.e. they are realized as a data set that is ob-
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tained through the numerical simulation of a system of par-
tial differential equations (as in this paper) or experimentally
measured. In recent years some of the difficulties arising
have been addressed by various groups; see, e.g.Duan and
Wiggins (1997), Miller et al. (1997), Malhotra and Wiggins
(1998), Haller and Poje(1998), Haller(2000), andHaller and
Yuan(2000).

This paper is concerned with the computation of hyper-
bolic trajectories and their stable and unstable manifolds in
oceanographic flows defined as data sets. We develop an im-
provement (to be described below) of algorithms given inIde
et al. (2002) andJu et al.(2003) for computing hyperbolic
trajectories. This algorithm is then combined with an algo-
rithm given inMancho et al.(2003) for computing the stable
and unstable manifolds of hyperbolic trajectories. In previ-
ous work both of these algorithms have been implemented
for simple, analytically know, velocity fields for the purpose
of benchmarking. This paper is the first implementation of
these algorithms for a turbulent velocity field defined as a
finite time data set.

A hyperbolic fluid particle trajectory is the generaliza-
tion to unsteady flows of a saddle-type stagnation point in
a steady flow1. It could be thought of as a “moving sad-
dle point”. Its stable and unstable manifolds are the time-
dependent generalizations of the separatrices of the saddle-
type stagnation point of the steady flow. They are, likewise,
material curves, which means that they cannot be crossed by
other fluid particle trajectories. It is in this sense that they
form the geometrical template for Lagrangian transport in
flows.

Our search for hyperbolic trajectories is related to the
structure of instantaneous stagnation points (ISP) in the
frozen time flow. ISPs are related to the Eulerian flow struc-
ture, and themselves are not particle trajectories. Neverthe-
less, the work inIde et al.(2002) andJu et al.(2003) shows
how hyperbolic ISPs can be used to initialize an iterative

1The definition of finite time hyperbolicity that we use in this
paper is given in Appendix A.
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process that may converge to a hyperbolic trajectory of the
flow. This iterative method is based on certain integral equa-
tions and is therefore global in time for the entire length of
the time interval of interest. This has the advantage of find-
ing a hyperbolic trajectory that exists for the entire length of
this time interval. Methods based on converging in time lose
part of the data set in the process of convergence. For a finite
time data set, this can be a severe limitation.

The work inIde et al.(2002) applies only to flows where
the region of the hyperbolic trajectory of interest can be de-
scribed by a certain linearized velocity field (described more
fully in Ide et al.(2002)). In this situation Fourier and con-
volution type methods can be used to construct a hyperbolic
trajectory over the entire length of the finite time interval of
interest. The algorithm developed inJu et al.(2003) is fully
nonlinear and, as mentioned above, utilizes an iterative tech-
nique to solve an integral equation, whose solution is a hy-
perbolic trajectory. The first step in this iterative procedure
yields the answer one would obtain by the algorithm devel-
oped inIde et al.(2002). The relation between the two al-
goritms is described inJu et al.(2003). The algorithm for
finding hyperbolic trajectories described in this paper is es-
sentially that developed inJu et al.(2003), but the implemen-
tation given here is slightly different and, we believe, more
numerically advantageous.

Another important feature observed in complicated flows
is that there can be many ISPs that appear and disappear in
bifurcations at different times. Hyperbolic trajectories cannot
bifurcate, since in order to bifurcate, hyperbolicity must be
lost. The algorithms inIde et al.(2002) andJu et al.(2003)
are not able to deal with this more complex case of bifur-
cating ISPs, which is essential in complex spatio-temporal
flows. In this paper we provide a new extension of these
algorithms to certain rather simple situations where this dif-
ficulty can be overcome (but the problem is far from being
“solved”, as we shall see).

Once a hyperbolic trajectory has been located we then
want to compute its stable and unstable manifolds. Here
we combine the hyperbolic trajectory algorithm described in
this paper with the stable and unstable manifold computa-
tion algorithm described inMancho et al.(2003) into a sin-
gle, unified algorithm. As for most algorithms for computing
stable and unstable manifolds of hyperbolic trajectories, this
one involves evolving in time (forward in time for the un-
stable manifold, backward in time for the stable manifold)
a small initial segment of the manifold centered on the hy-
perbolic trajectory. A significant feature of our approach is
that this initial segment is provided by the hyperbolic trajec-
tory locating algorithm. The evolution of the initial piece
of the manifold is carried out adapting sophisticated numer-
ical techniques developed byDritschel(1989) andDritschel
and Ambaum(1997) for controlling the size of gaps between
points in the manifold, interpolation, and point redistribu-
tion along the computed manifold. The numerical techniques
of Dritschel and Ambaum were developed in the context of
studies of the evolutions of the boundaries of vortex patches
in complex fluid flows, and are ideal for the study of the evo-

lution of stable and unstable manifolds in similar complex
flows.

For a finite time data set one only needs to know a hyper-
bolic trajectory at the beginning and end of the time interval
on which it is defined. For computing the unstable (resp. sta-
ble) manifold one goes to the beginning (resp. end) of the
time interval and evolves forward (resp. backward ) in time a
small initial segment of the manifold centered on the hyper-
bolic trajectory. From this point in time onward one can “for-
get” about the hyperbolic trajectory since it is contained in
the curve being evolved. Now it may be that for some known
or unknown reasons the hyperbolic trajectory algorithm only
converges on a time interval that is smaller than the length
of time of the data set, yet in reality the hyperbolic trajectory
exists outside this interval. This is simply a deficiency of the
method (sometimes arising when we encounter bifurcations
of ISPs). However, there is no reason the manifold (con-
taining the hyperbolic trajectory) cannot be evolved in time
outside the interval of time where the hyperbolic trajectory
algorithm converged and the hyperbolic trajectory would be
contained in the evolving curve. Of course, this brings up
many new questions which are beyond the scope of this pa-
per.

The unified algorithm for computing hyperbolic trajecto-
ries and their stable and unstable manifolds is then applied
to a wind-driven quasigeostrophic double-gyre model. This
is a continuation of related studies inCoulliette and Wiggins
(2001), but at higher wind curl stress values, which yields a
much more complex spatio-temporal flow.

2 The model: wind-driven double-gyre ocean
circulation

Our algorithm will be applied to a model of mid-latitude
wind-driven ocean circulation.The data set is obtained by
a numerical simulation of a quasi-geostrophic (QG) 3-layer
model in a rectangular basin geometry (Rowley, 1996). Due
to the latitudinal antisymmetric wind stress curl applied at
the ocean surface, the basic circulation pattern in the up-
per layer is a double-gyre structure separated by an eastward
jet protruding into the flow from the confluence point of the
southward and northward western boundary currents. Driven
by the strong eastward jet, the northern and southern gyres
circulate counterclockwise and clockwise, respectively. De-
pending on the ocean basin size and the amplitude of the
wind stress curl, the ocean circulation exhibits a rich time-
dependent dynamics (Dijkstra and Katsman, 1997) with re-
alistic parameter values for the mid-latitude ocean (Lozier
and Riser, 1989).

We demonstrate our algorithms for a wind stress curl at
0.32 dyn/cm2 where the ocean dynamics is turbulent. The
velocity data set is obtained on a 1000 km× 2000 km rect-
angular domain with spatial and temporal resolutions of
12.5 km× 12.5 km and 2 h (although the data is only saved
every 24 h), respectively, and spans over 4000 days. The
4000 day interval of the data set is considered after the fluid
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Fig. 1. Convergence to the hyperbolic trajectory on the western boundary. The right hand panel shows a
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initial guess for the iterative procedure is show in green. The paths after the 10th iteration (dashed red line)

and the 50th iteration (black), in which convergence is achieved, are also shown.
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Fig. 2. Convergence to the hyperbolic trajectory on the eastern boundary. The right hand panel shows a

blow-up of the region of bifurcation of the stagnation points (blue). The path taken as the initial guess for

the iterative procedure is shown in green. The paths after the 1st iteration (dashed red line) and the 5th

iteration (black), in which convergence is achieved, are also shown.
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Fig. 1. Convergence to the hyperbolic trajectory on the western boundary. The right hand panel shows a blow-up of the region of bifurcation
of the instantaneous stagnation points (blue). The path taken as the initial guess for the iterative procedure is show in green. The paths after
the 10th iteration (dashed red line) and the 50th iteration (black), in which convergence is achieved, are also shown.

is started from rest and allowed to spin up for 25 000 days.
In particular we have chosen the no-stress condition at the
boundaries. Details of the numerical method used in solving
the QG equations can be found inRowley (1996) or Coul-
liette and Wiggins(2001). As the data is discrete in space
and time, in order to have a continuous representation, nec-
essary to integrate Eq. (1), we interpolate the velocity fields
using bicubic interpolation in space and 3rd order Lagrange
polynomials in time.

3 The numerical procedure for calculating hyperbolic
trajectories and their stable and unstable manifolds
from a velocity field given as a data set

In this section we describe the numerical approach to com-
puting hyperbolic trajectories, and their stable and unstable
manifolds, of two-dimensional velocity fields given as data
sets.

We begin with a two-dimensional velocity field defined as
a data set:

ẋ = v(x, t), x = (x1, x2) ∈ IR2, t ∈ [t0, tL]. (1)

First we compute a hyperbolic trajectory of Eq. (1).

3.1 Computation of hyperbolic trajectories

We begin with a descriptive overview of the method.

3.1.1 Overview of the Method for Computing Hyperbolic
Trajectories

We utilize an iterative method, and like many iterative meth-
ods the success begins with a “good guess”. This is a key,
and somewhat subtle, point.

Our first guess is a path in space, denotedx(0)(t),
t∈[t0, tL], which has some form of hyperbolicity or “saddle-

like” properties. It should be stressed thatx(0)(t) is
not a trajectory of Eq. (1) (or we would have “guessed
the answer”). One possible guess is forx(0)(t) to be a
curve of instantaneous stagnation points of Eq. (1), i.e.
v(x(0)(t), t)=0, t∈[t0, tL], and hyperbolicity is introduced
by requiring that for each fixedt , x(0)(t) is a hyperbolic stag-
nation point of the frozen time velocity field. This is another
subtle point. It is well established that hyperbolicity in the
frozen time velocity field need not be reflected in hyperbol-
icity of the trajectories. So how is it useful for finding hy-
perbolic trajectories? We will clarify that point shortly. Hy-
perbolic frozen time stagnation points are a form of Eulerian
hyperbolicity, from which we show how one may obtain La-
grangian hyperbolicity, i.e. hyperbolic fluid particle trajecto-
ries.

As one examines the stagnation points of the frozen time
velocity field at different times, it may happen that hyper-
bolic stagnation points lose their hyperbolicity and disappear
in bifurcations. In this case a hyperbolic stagnation point
may not exist for the entire length (in time) of the data set.
In this situation we will show some instances where the first
guess may be a path in space where only part of the path is
made up of hyperbolic stagnation points of the frozen time
velocity field2. How to extend the path (in time) beyond
the hyperbolic instantaneous stagnation point in this case re-
quires some care. We will show some examples, but there is
considerable room for further development here.

With the first guess,x(0)(t) in hand, we localize Eq. (1)
aroundx(0)(t), i.e. letting

y = x − x(0)(t), (2)

2This typically occurs when two or more instantaneous stagna-
tion points collide at some instant of time and disappear in a bifur-
cation. Hyperbolic trajectories cannot bifurcate in this manner.
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we rewrite Eq. (1) in the form:

y = A(0)(t)y + f (0)(y, t), (3)

where the precise form ofA(0)(t) andf (0)(y, t) in terms of
v(x, t), its derivatives, andx(0)(t) will be given below.

Next we (numerically) construct a linear, time-dependent
transformation:

w = T(0)(t)y, (4)

which transforms the linear part of Eq. (3) into a constant
coefficent equation:

w = D(0)w + h(0)(w, t), (5)

where the form ofh(0)(w, t) in terms of T(0)(t) and
f (0)(y, t) will be given below. It is the constant matrixD(0)

here that is crucial.D(0) is a diagonal matrix with one neg-
ative eigenvalue and one positive eigenvalue, i.e. it is hyper-
bolic. We will show below how this hyperbolicity is inherited
from the linear equationy=A(0)(t)y, which, in turn, inherits
its hyperbolicity from our first guess,x(0)(t).

Next we consider the following integral equation associ-
ated with Eq. (5):

w1(t) =

∫ t

t0

ed
(0)
1 (t−s)h

(0)
1 (w1(s), w2(s), s)ds,

w2(t) = −

∫ tL

t

ed
(0)
2 (t−s)h

(0)
2 (w1(s), w2(s), s)ds, (6)

whered
(0)
1 <0 is the negative eigenvalue ofD(0) andd

(0)
2 >0

is the positive eigenvalue ofD(0). It can verified by differ-
entiation with respect to time that a solution of Eq. (6) is a
solution of Eq. (5).

The transformation Eq. (4) offers several advantages.

– It facilitates the solution of the integral Eqs. (6).

– It is directly related to the definition of hyperbolicity
that we use, as discussed in Appendix A.

– It provides the “first guess” for the algorithm for com-
puting the stable and unstable manifolds of the trajec-
tory.

The integral equation also offers several advantages. One
is that it yields a solution that is defined over the entire tem-
poral interval of interest. In this way we do not “lose data”.
The other is that it is ideal for numerical iteration.

It is shown inJu et al.(2003) that if ∂h(0)

∂w
is “small”, then

Eq. (6) has a unique solution whose stability properties are
inherited fromD(0), i.e. it is hyperbolic. One can then work
backwards through the transformations and express the hy-
perbolic trajectory in the originalx coordinates.

There are two issues here. One is that, in general, we can-

not expect∂h(0)

∂w
to be “small”. The other is that we have

described the procedure to compute the hyperbolic trajectory
as an iterative procedure, yet we have not described how we
iterate. These two issues are related in that we will show
below that the iterative procedure involves refining the “first
guess”x(0)(t) iteratively and, when the iteration is success-

ful in finding a hyperbolic trajectory, this will force∂h(0)

∂w
to

become “small”.
Now we turn to describing the procedure in detail.

3.1.2 The iterative procedure

After n−1 steps we obtain an approximation to a hyperbolic
trajectory, denotedx(n)(t). The procedure is then repeated
in order to converge to a hyperbolic trajectory.

Step 0: An Initial Guess
We take as our initial guessx(0)(t) for the iterative algo-

rithm a path (which in general will not be a trajectory) con-
structed from instantaneous stagnation points (ISPs) of the
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Fig. 3. Convergence of the iterative procedure to interior hyperbolic trajectories showing the initial path for the iterative procedure based on
two disjoint segments of the path of stagnation points (red), the 1st iteration (green dotted-dashed line), the 2nd iteration (black line) and the
converged trajectory after 40 iterations (thick blue line). Note that since the gap is not patched in the initial path, all iterations are disjoint
segments (in time).
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Fig. 4. The instantaneous streamlines for days 338–340 (left-to-right panels). Three successive time-slices of the data, where the boxed
region contains the interior hyperbolic stagnation point shown in Fig.3 (square) approaching an elliptic stagnation point (asterisk) and then
disappearing in a saddle-node bifurcation.

Eulerian velocity field. This gives rise to two possible prob-
lems: firstly, with a finite collection of time-slices it is not
always possible to be sure that two ISPs at successive times
form part of the same path in the continuous system under-
lying our data. At present, we intervene manually in cases

of doubt, but there is scope for the development of heuris-
tics. A second difficulty is that ISPs of the continuous prob-
lem may bifurcate, and this gives rise to gaps (in time). In
some simple problems joining two different hyperbolic ISP
paths by linear interpolation across the temporal gaps may
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Fig. 5. The instantaneous streamlines for days 445–447 (left-to-right panels). The time-reversal of the process of Fig.4 for the hyperbolic
trajectories shown in Fig.3. Within the boxed region hyperbolic (square) and elliptic (asterisk) stagnation points appear in a saddle-node
bifurcation and then move apart.

provide a convergent initial guess, but Fig.3 shows a gap we
have not yet succeded in patching in this manner, and Figs.4
and5 each show three consecutive frames of the flow field
with hyperbolic and elliptic points approaching each other
and vanishing (in Fig.3 we show the bifurcating stagnation
points on both sidesof the bifurcation point), and the reverse
time situation (in Fig.5) on the other side of the gap. This
will be explained in more detail in Sect.4.

Note that the only relevant, and ultimate, justification for
an initial guess is that the algorithm successfully converges
to a hyperbolic trajectory – it is not required to have any
physical interpretation in its own right.

Step 1: Localization about the Approximation to the Hyper-
bolic Trajectory.

Let

y = x − x(n)(t), (7)

Then in they-coordinates the velocity field takes the form:

y = A(n)(t)y + f (n)(y, t), (8)

where

A(n)(t) =
∂v

∂x
(x(n)(t), t),

f (n)(y, t) = v(y + x(n)(t), t)y

−
∂v

∂x
(x(n)(t), t)y − x(n)(t). (9)

The time-dependent matrixA(n)(t) is required to reflect
the hyperbolic nature of the pathx(n)(t) (note thatA(n)(t) is
the Jacobian of the instantantaneous velocity field evaluated
on the path). This is checked in the next step.

When working on a finite time-grid,x(n)(t) is calculated
using second-order central differences in the time direction
on the interior time slices, and one-sided second-order
schemes at both ends. The Jacobian matrixA(n)(t) is
calculated using bicubic spatial interpolation of the velocity
field, which typically also provides the derivatives of the
velocities (seePress et al., 1992). The velocity derivatives
required at the grid points are calculated using second-order
central differences in space.

Step 2: Transform the Linear Part of Eq. (8) to constant co-
efficient and check hyperbolicity.

Solve the matrix equation

Y(n)
= A(n)(t)Y(n), Y(n)(t0, t0) = id, (10)

for the 2×2 fundamental solution matrixY(n)(t, t0),
t∈[t0, tL], with Y(n)(t0, t0)=id, where id denotes the 2×2
identity matrix.
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At each instant of time compute the singular value decom-
position (SVD) ofY(n)(t, t0):

Y(n)(t, t0) = B(n)(t, t0)e
6(n)(t,t0)

(
R(n)

)T

(t, t0), (11)

where B(n)(t, t0) and R(n)(t, t0) are orthogonal matrices,
and 6(n)(t, t0) is a diagonal matrix. If the eigenvalues of

1
tL−t0

6(n)(tL, t0) ared
(n)
1 <0 andd

(n)
2 >0, thenx(n)(t) is hy-

perbolic, and the procedure continues.
We define the constant matrix

D(n)
=

1

tL − t0
6(n)(tL, t0), (12)

and the time dependent matrix

T(n)(t) = e(t−t0)D(n)

T(n)(t0)
(
Y(n)

)−1
(t, t0). (13)

A full derivation of these two terms is given in an Ap-
pendix, together with details of the numerical procedure used
to calculate them.

Then (seeIde et al., 2002, and Appendix A),

w = T(n)(t)y, (14)

transforms Eq. (8) to the form:

w = D(n)w + h(n)(w, t), (15)

whereh(n)(w, t) is given by:

h(n)(w, t) = T(n)(t)f

((
T(n)

)−1
(t)w, t

)
. (16)

Step 3: Transform Eq. (15) to integral equation form and
compute an approximate solution.

The improvement to the approximate hyperbolic trajectory
obtained in the previous step is obtained by solving an inte-
gral equation (Eq.6) by the iteration:

w
(n+1)
1 (t) =

∫ t

t0

ed
(n)
1 (t−s)h̃

(n)
1 (w

(n)
1 (s), w

(n)
2 (s), s)ds,

w
(n+1)
2 (t) = −

∫ tL

t

ed
(n)
2 (t−s)h̃

(n)
2 (w

(n)
1 (s),

w
(n)
2 (s), s)ds, (17)

whereh(n)(w(n)(t), t) is given by

h(w(n)(t), t) = −T(n)(t)x(n)(t), (18)

i.e. the nonlinear terms inh(n)(w, t) are neglected. In this
case, sincex(n)(t) is a known function from the previous step
in the iteration,w(n+1)(t) is obtained by a quadrature. These
integrals are calculated numerically using the trapezium rule

after a change of variablesτ=ed
(n)
i (t−s) is introduced to ex-

tract the exponential part of the behaviour.
The neglect of the nonlinear terms inh(n)(w, t) is an im-

portant point. A consequence is that a solution of Eq. (17) is
not a trajectory of Eq. (8). In order to remedy this situation
we will need to require that the nonlinear terms vanish in the

limit of an infinite number of iterations. We will discuss this
shortly.

We have now gone through one step of the iterative pro-
cedure. To obtain the approximation to the hyperbolic tra-
jectory to be used in the next step we transform back to the
originalx-coordinates by:

x(n+1)(t) = x(n)(t) +

(
T(n)

)−1
(t)w(n+1)(t), (19)

and repeat the procedure withx(n+1)(t).

3.1.3 Convergence of the Iterative Procedure

In order for the iterative procedure to be successful in yield-
ing a hyperbolic trajectory the iterative solution of the inte-
gral Eq. (17) must yield a fixed point,w(∞)(t), with

lim
n→∞

∥∥∥∥T(n)(t)

(
v

((
T(n)

)−1
(t)w(n)(t) + x(n)(t), t

)
−

∂v

∂x

(
x(n)(t), t

))∥∥∥∥ = 0, (20)

in some convenient norm.
In order for the trajectory to be hyperbolic we must have:

lim
n→∞

d
(n)
1 < 0, lim

n→∞
d

(n)
2 > 0. (21)

Each of these quantities is monitored at each step until a
numerically acceptable tolerance for convergence is reached
(10−5 or better).

3.2 Computation of the stable and unstable manifolds of
the hyperbolic trajectory

Once a hyperbolic trajectory has been found, we want to
compute its stable and unstable manifolds. We first give an
overview of the method used inMancho et al.(2003), as well
as describe the general issues involved.

3.2.1 Overview of the method and issues associated with
computing the stable and unstable manifolds of a hy-
perbolic trajectory

We discuss the computation of the unstable manifold of the
hyperbolic trajectory. The discussion of the computation of
the stable manifold is completely analogous, the only excep-
tions being that we start the computation at the end of the
data set (i.e.tL), and evolve backwards in time to the begin-
ning of the data set.

We considerL time increments betweent0 andtL, i.e.

t0 < t1 < t2 < · · · < tL−1 < tL, ti < tj , i < j, (22)

where the increments need not be equally spaced. These are
the times at which we wish to observe, or “output”, the man-
ifold.
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The idea for computing the unstable manifold is simple.
We begin with a small initial segment of the unstable
manifold, either centered on the hyperbolic trajectory, or
with one endpoint being the hyperbolic trajectory, at the
beginning of the data set. This segment is then evolved in
time to the end of the data set. However, since the initial
segment is represented by discrete points, the process of
evolving this segment to the end of the data set gives rise to
numerous numerical issues, that we now describe.

– The initial segment of the unstable manifold

We shall take as the initial guess a “small” segment of the
linearization of the unstable manifold of the hyperbolic tra-
jectory att=t0. The stable and unstable manifold theorem for
hyperbolic trajectories (Mancho et al., 2003) tells us that this
is a good approximation for a small enough segment (which
will, generally, be a problem dependent notion).

This initial segment of the linearized unstable manifold is
provided to us by the algorithm for computing hyperbolic
trajectories given above. Recall that the matrixD had a pos-
itive eigenvalue in the second column, then the associated
linearized unstable direction att=t0 in thew-coordinates is
simply e2=(0, 1)T , which corresponds toT−1(t0)e2 in the
y-coordinates.

Along this direction the initial segment of the manifold
is realized by taking five closely spaced points, where the
middle point corresponds to the hyperbolic trajectory (if the
hyperbolic trajectory is on a solid boundary, we also take five
points with the end point being on the hyperbolic trajectory).

This initial segment is then evolved forward in time. As
the points which make up this computational representation
of the manifold evolve they may grow apart, giving rise to
unacceptably large gaps between adjacent points on the man-
ifold. In order to address this a precise formulation of the
acceptability of gaps, and some means of filling them is nec-
essary.

It is clear that any such method of “filling gaps” amounts
to a claim about the behaviour of the manifold between
points at a given time. Addressing this issue requires some
form of interpolation.

– Interpolation

In Mancho et al.(2003) several forms of interpolation (e.g.
linear, Lagrange polynomials, cubic splines) were compared
for use in the manifold computation algorithm and it was
found that a method due toDritschel (1989) developed in
the course of his work on contour advection gave the best re-
sults (according to various criteria discussed inMancho et al.
(2003)).

Dritschel’s method makes use of the positions of the four
consecutive pointsxj−1, xj , xj+1 andxj+2 to represent the
curve between pointsxj andxj+1 as

x(p) = xj + p tj + ηj (p) nj , (23)

for 0≤p≤1 with x(0)=xj andx(1)=xj+1, where

tj = (aj , bj ) = xj+1 − xj , tj ∈ IR2 (24)

nj = (−bj , aj ), nj ∈ IR2 (25)

ηj (p) = µjp + βjp
2
+ γjp

3, ηj (p) ∈ IR. (26)

The cubic interpolation coefficientsµj , βj andγj are

µj = −
1

3
djκj −

1

6
djκj+1, (27)

βj =
1

2
djκj , (28)

γj =
1

6
dj (κj+1 − κj ), (29)

where

dj = |xj+1 − xj |, (30)

and

κj = 2
aj−1bj − bj−1aj

|d2
j−1tj + d2

j tj−1|
(31)

is the local curvature defined by a circle through the three
points, xj−1, xj , andxj+1. Therefore, the representation
x(p) for 0≤p≤1 uses the local curvatures at each end of its
interval to describe the smooth curve betweenxj andxj+1.

– A measure of the density of points along the computed
manifold

Following Dritschel (1989) and Dritschel and Ambaum
(1997), for each pair of consecutive pointsxj andxj−1 in
manifold at a given time we calculate a desired density of
points,ρj , defined by

ρj ≡
(κ̄jL)

1
2

µL
+ κ̄j , (32)

or 2/δ, whichever is smaller (so that nodes cannot get closer
than δ/2, whereδ is a problem dependent distance which
serves as a small-scale cut-off distance for resolving man-
ifold details). The parameterµ in this equation ultimately
controls the overall point density along the manifold. Small
values ofµ correspond to a high point density, but the pa-
rameter needs tuning for individual problems.

The quantityκ̄j in Eq. (32) is defined in terms of̌κ,

κ̄j ≡ (κ̌j + κ̌j+1)/2, (33)

which in turn is defined by

κ̌j =
wj−1κ̃j−1 + wj κ̃j

wj−1 + wj

, (34)

which uses the weightingwj=dj/(d
2
j + 4δ2) and the further

curvatureκ̃j , which itself is defined by

κ̃j =

√
κ2
j + 1/L2, (35)

whereκj , finally, is the local curvature defined in Eq. (31),
andL is defined inDritschel and Ambaum(1997) to be a
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length typical of the large-scale vorticity distribution; in the
absence of such a scale we substitute a typical length of the
domain for the calculation.

– A criterion for unacceptably large gaps

Now we can define what we mean by an acceptable gap
between adjacent points on the manifold. The distancedj

betweenxj andxj+1 is unacceptable ifσj>1, whereσj is
defined byσj=ρjdj .

3.2.2 The algorithm

The computation of the unstable manifold proceeds as fol-
lows.
Step1: Evolve the approximate initial segment of the unsta-
ble manifold forward in time, with for instance a 5th order
Runge-Kutta method, starting fromt=t0.
Step 2: At each observation time,tk, check the size of gaps
between adjacent points on the manifold.

At each timetk on the time grid of the computation we
check each pair of adjacent points with the criterion de-
scribed above.
Step 3: Apply a point insertion and interpolation scheme at
time tk−1.

If the gap is unacceptably large we insert a new point at
the previous observation timetk−1 between the positions of
the points at timetk−1 that evolve along trajectories to the
pointsxj andxj+1 at time tk using Eq. (23) to locally rep-
resent the manifold attk−1. We insert points at a time before
a gap becomes unacceptably large so that the curve used for
interpolation is always an acceptable representation of the
manifold, by our definition, and we evolve those points with
a 5th order Runge-Kutta method to timetk.

This procedure is carried out for each pair of adjacent
points making up the manifold attk. If new points are added,
the entire procedure is repeated again.

The procedure is iterated until there are no gaps exceeding
the tolerance at timetk.
Step 4: Apply point redistribution attk.

Once the gap size acceptability criterion is satisfied at a
time tk we use the point redistribution algorithm described
in Dritschel (1989) in an attempt to ensure that points are
removed from less demanding parts of the manifold and
thereby reduce the total number of points included in the
manifold.

During redistribution the end points of the manifold are
held fixed. Letn be the number of nodes attk. Compute

q =

n∑
j=1

σj (36)

and definẽn=[q] + 2 (i.e. two more than the nearest integer
to q). Then−2 “old” nodes between the end points will be
replaced byñ−1 entirely new nodes in such a way that the
spacing of new nodes is approximately consistent with the
desired average density, controlled by the parameterµ.

Let σ ′

j=σj ñ/q so that
∑n

j=1 σ ′

j=ñ. Then, the positions of
the new nodesi = 2, ..., ñ are found successively by seeking
j andp such that,

j−1∑
l=1

σ ′

l + σ ′

jp = i − 1, (37)

and placing each new nodei between the old nodesj and
j+1 at the positionx(p) given in Eq. (23).
Iterative procedure: evolve in time, applying this procedure
at each observation time until the end of the data set is
reached,t=tL.

Once the point insertion and interpolation scheme, fol-
lowed by point redistribution, has been completed for the
manifold attk, the entire manifold is evolved to the next ob-
servation time,tk+1. Then the point insertion and interpola-
tion scheme and point redistribution is applied at this time.
The procedure is then repeated at each observation time until
the end of the time interval of interest is reached.

4 Application of the procedure to a data set obtained
from a quasigeostrophical model.

We now apply our procedure to the data from the quasi-
geostrophic model described in Sect.2

To begin, we compute the hyperbolic trajectories on the
boundaries. As explained above these computations consist
of an iterative procedure which starts from an initial guess
based on the path of instantaneous stagnation points. Fig-
ures1and2show the ISPs for the western and eastern bound-
aries, respectively. In order to show the bifurcations of the
stagnation points circles are used for the stable points (“sta-
ble” in the instantaneous velocity field, that is) and crosses
are for the unstable points.

Bifurcations of ISPs complicate the choice of the initial
guess: on the western boundary we have two coexisting ISPs
for a time, while on the eastern boundary there is a time in-
terval for which the flow has no ISPs. To deal with the bifur-
cation on the western boundary an initial guess (green path)
was used, with some points of the ISP path replaced by points
calculated from a cubic polynomial that smoothly matches
the two branches of the ISPs between days 396 to 406 ex-
clusive (see Fig.1). On the eastern boundary the small gap
between the two saddle-node bifurcations has been patched
with a constant value (see the green line in Fig.2). The hy-
perbolic trajectories obtained by successive iterations of the
algorithm are displayed in red and black lines in those fig-
ures.

Convergence of the algorithm is reached after a different
number of iterations for each side (i.e. for the western and
eastern boundaries), however the accuracy of the hyperbolic
trajectory is reduced in the time intervals where the ISPs bi-
furcate. In Fig.1 from day 400 to day 430 the converged
solution (black line) obtained after 50 iterations does not co-
incide with the trajectory that would be computed by an inte-
gration starting from any point of the trajectory at a previous
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Fig. 6. The unstable manifold (at day 430) grown from the western boundary starting at day 50. Smaller figures show successive magnifica-
tions of the manifold. The length of the manifold shown is composed of 51 611 points.

time, and in Fig.2 the black line displays a slight spike just
where the gap has been filled. At the places where the bifur-
cations occur there is a sudden jump in the path (smoothed
slightly by fitting a cubic profile) which induces a corre-
sponding jump in the coordinate system used to localise the
system, and thus a spike in thex(n) term in Eq. (9). The
system remains sensitive to these spikes and the final “tra-
jectory” for such cases still shows traces of them. This does
not happen with smooth initial paths (e.g. those from non-
bifurcating ISPs).

Figure3 shows thex1 andx2 coordinates of two interior
ISPs which bifurcate at days 339 and 446 (see Figs.4 and5).
As discussed in Sect.3.1.2those gaps are not filled, since in
that case we have not found a patching procedure for which
the iterative procedure converges, and therefore we compute

the interior hyperbolic trajectories only for the time intervals
displayed in Fig.3, which again shows a sequence of itera-
tions.

Once we have the hyperbolic trajectories, we proceed with
the computation of their unstable and stable manifolds. To
begin with we need a small initial segment of the unstable
or stable manifolds. As discussed in Sect.3.2.1 the algo-
rithm to compute the hyperbolic trajectories also provides a
subspace tangent to the stable and unstable manifolds. For
the case of hyperbolic trajectories on the western and eastern
boundaries this is not necessary as it can easily be shown that
the required linear segments of the unstable and stable man-
ifolds are perpendicular to the boundaries. Equation (1) on
the western boundary can be linearized around the hyperbolic
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Fig. 7. The stable manifold (at day 380) grown from the eastern boundary starting at day 1495, with successive magnifications. The length
of the manifold shown is composed of 33 413 points.

trajectory,x=xhyp(t) + x′,

d

dt

(
x′

1
x′

2

)
=

(
∂v1
∂x1

∂v1
∂x2

∂v2
∂x1

∂v2
∂x2

)(
x′

1
x′

2

)
. (38)

Now ∂v1
∂x2

=0, sincev1 is identically zero on the western

boundary and∂v2
∂x1

=0, since we impose a no-stress condition
on the boundary in the quasigeostrophic model. On the other
hand incorporating the divergence-free condition∂v1

∂x1
=−

∂v2
∂x2

into Eq. (38) gives

d

dt

(
x′

1
x′

2

)
=

∂x2

∂v2

(
−1 0

0 1

)(
x′

1
x′

2

)
. (39)

Since ∂x2
∂v2

(xhyp(t))<0, i.e.v2 is a decreasing function on
the western boundary close to the hyperbolic trajectory, it is

clearly seen that the unstable subspace is perpendicular to
the boundary which contains the stable manifold. An analo-
gous argument shows that the stable subspace on the eastern
boundary is perpendicular to the boundary. In order to pre-
serve this perpendicularity in the numerical model it is im-
portant that the spatial interpolation maintains the no-stress
condition for the velocity field at the boundaries.

Once we have the initial segments we compute the mani-
folds to the boundary and interior hyperbolic trajectories us-
ing the methods described in Sect.3.2.1. To perform the inte-
gration we have rescaled the domain[0, 1000]×[0, 2000] to
[0, 1]×[0, 2] to get a domain similar to that used inMan-
cho et al.(2003) and we have accordingly used the same
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Fig. 8. The unstable manifold (at day 400) grown from the interior hyperbolic trajectory starting at day 120 shown in Fig.3 with successive
magnifications. The length of the manifold shown is composed of 34 220 points.

parameter values:

L = 3, δ = 10−6, µ = 0.005.

Figure6 shows a long unstable manifold associated with a
hyperbolic trajectory on the western boundary and successive
magnifications showing how the density of points changes to
resolve high curvatures in the manifold, of which we com-
pute spatial features in the range of hundreds of meters. The
same is shown in Fig.7 for the stable manifold of the hyper-
bolic trajectory on the eastern boundary.

In Fig. 8 we show the result of the unstable manifold
grown for an interior hyperbolic trajectory. The hyperbolic
trajectory chosen is the one computed over the time interval
from day 0 to day 339. The unstable manifold is shown in
the figure at day 400, and the computation of the unstable

manifold is begun at day 120. Note that the unstable man-
ifold is evolved outside the time interval for which the hy-
perbolic trajectory is originally computed. In Fig.9 we show
the stable manifold grown from an interior hyperbolic trajec-
tory. The hyperbolic trajectory chosen is the one computed
over the time interval from day 446 to day 880. The stable
manifold is shown in the figure at day 380, and the computa-
tion is begun at day 595. Note also that the stable manifold
is evolved outside the time interval for which the hyperbolic
trajectory is originally computed.

An obvious question is whether or not the hyperbolic tra-
jectory computed on the time interval from day 0 to day 339
is the same as the hyperbolic trajectory computed on the time
interval from day 446 to 880 in the sense that if the trajectory
were to evolve in time beyond day 339 it would smoothly
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Fig. 9. The stable manifold (at day 380) grown from the interior hyperbolic trajectory starting at day 595 shown in Fig.3. Smaller figures
show successive magnifications of the manifold. The length of the manifold shown is composed of 45 509 points.

join up with the other trajectory at day 446. Answering this
question is beyond the scope of this paper, but significant ad-
ditional numerical work could provide an answer, as well as
yield an improvement to the iterative method for computing
hyperbolic trajectories as well as more insight into the con-
sequences for hyperbolic trajectories when ISPs bifurcate.

As we discussed in the introduction, there is no problem
evolving the stable or unstable manifold outside the time
interval where the hyperbolic trajectory, whose stable and
unstable manifold we are computing, was found with the it-
erative method. We are simply evolving a material curve, and
the original hyperbolic trajectory must remain somewhere in
this curve. In our situation, if the two hyperbolic trajectories
defined on non-overlapping time intervals actually did lie on
the same trajectory then we expect the trajectory to be in the

intersection of the stable manifold computed for the hyper-
bolic trajectory in the time interval from day 446 to day 880
with the unstable manifold computed for the hyperbolic tra-
jectory in the time interval from day 0 to day 339 on any day
between 339 and 446. Numerically, it is difficult to establish
that these intersection points lie on these trajectories because
of the saddle point nature of the trajectories, i.e. errors in
conditions grow exponentially. A way to proceed might be
to construct a new initial guess for the iterative procedure
for finding hyperbolic trajectories by spanning the gap be-
tween day 339 and day 446 with a curve of initial conditions
given by the appropriate intersections of the stable manifold
of the hyperbolic trajectory originally computed for days 446
to 880, but evolved backwards in time across this gap, with
the unstable manifold of the hyperbolic trajectory originally
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Fig. 10. Coexisting manifolds at day 395: The unstable man-
ifold from the western boundary (red, 17 098 points), the un-
stable manifold of the interior hyperbolic trajectory (magenta,
27 133 points), the stable manifold of the interior hyperbolic tra-
jectory (cyan, 21 521 points) and eastern boundary stable manifold
(blue, 16 078 points).

computed for days 0 to 339, but evolved forwards in time
across this gap. This is a numerically intensive project which
will be left for future work.

Figure 10 shows all the manifolds that we computed on
day 395.

The redistribution procedure is very useful for this compu-
tation. In a previous study (Mancho et al., 2003) of the Duff-
ing equation the performance was similar to other manifold
computation techniques, but in this data set, where the time-

dependence of the vector field varies greatly between differ-
ent spatial regions, trajectories on the manifold can not only
move apart to leave gaps, but also (as Fig.11d shows) accu-
mulate in regions where they are not needed for an accurate
representation of the manifold. Figure11c shows how the
redistribution algorithm reduces the point density in the less
curved parts of the manifold. Figure11f shows how over-
resolution can generate jaggedness in the folds of the mani-
fold. This is also prevented by redistribution (see Fig.11e).

Appendix A
Finite time hyperbolicity and the construction of the
linear, time-dependent coordinate transformation to
constant coefficients

Hyperbolicity of the pathx(n)(t) (which may, or may not, be
a trajectory) follows from the properties of the linearization
of the velocity field aboutx(n)(t) , y=A(n)(t)y (see Eqs.7,
8 and9). For notational simplicity, in the following we will
leave the superscript(n) off the various quantities.

Let Y(t, t0) denote the fundamental solution matrix of
the linear equationy=A(t)y, i.e. it is a 2×2 matrix whose
columns are linearly independent solutions ofy=A(t)y and
it satisfiesY(t0, t0)=id.

The finite time Lyapunov exponents are the logarithms of
the eigenvalues of the symmetric matrix:(

YT (tL, t0)Y(tL, t0)
) 1

2(tL−t0)
, (A1)

and we say that a path is hyperbolic on the finite time in-
terval t0≤t≤tL if the finite time Lyapunov exponents on this
time interval are nonzero. The path is saddle-like in stabil-
ity (the case of interest to us), if one finite time Lyapunov
exponent is positive and the other negative (this generalizes
naturally to higher dimensions, but for our purposes we re-
strict ourselves to two dimensions). This definition of finite
time Lyapunov exponent has been in use in the predictability
community for some time, seeLapeyre(2002), Legras and
Vautard(1996), andFarrell and Ioannou(1996). In the or-
dinary differential equations community characterization of
hyperbolicity is more often given in terms of exponential di-
chotomies. In our context the approaches are equivalent, as
is shown inIde et al.(2002), see alsoDieci et al.(1997).

The finite time Lyapunov exponents can also be character-
ized in terms of the singular value decomposition (SVD) of
Y(t, t0) (Greene and Kim, 1987; Geist et al., 1990; Farrell
and Ioannou, 1996; Legras and Vautard, 1996; Dieci et al.,
1997; Lapeyre, 2002). This will prove useful to us when we
derive the transformation that makes the coefficients of the
linear part of the velocity field constant.

In terms of its SVD, we can writeY(t, t0) as:

Y(t, t0) = B(t, t0)e
6(t,t0)RT (t, t0), (A2)

where B(t, t0) and R(t, t0) are time-dependent orthog-
onal matrices, i.e.BT (t, t0)B(t, t0)=B(t, t0)BT (t, t0)=id,
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Fig. 11. The unstable manifold (at day 290) grown from the western boundary hyperbolic trajectory since

day 50. a) The global appearance of the manifold obtained with the algorithm using redistribution. The

total number of points on it at this stage is 2309. b) The global appearance of the manifold obtained with

the algorithm without using redistribution. The total number of points on it at this stage is 7660. c) A

magnification of the zone marked with a big rectangle, for the manifold computed with redistribution; d)

the same as in c) without redistribution. e) A magnification of the zone marked with a small rectangle for

the manifold computed with redistribution; f) the same as in e) without redistribution.
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Fig. 11.The unstable manifold (at day 290) grown from the western boundary hyperbolic trajectory since day 50.(a) The global appearance
of the manifold obtained with the algorithm using redistribution. The total number of points on it at this stage is 2309.(b) The global
appearance of the manifold obtained with the algorithm without using redistribution. The total number of points on it at this stage is 7660.
(c) A magnification of the zone marked with a big rectangle, for the manifold computed with redistribution;(d) the same as in (c) without
redistribution.(e) A magnification of the zone marked with a small rectangle for the manifold computed with redistribution;(f) the same as
in (e) without redistribution.

RT (t, t0)R(t, t0)=R(t, t0)RT (t, t0)=id and6(t, t0) is a di-
agonal matrix. It then follows that the diagonal elements of

1
tL−t0

6(tL, t0) are the finite time Lyapunov exponents as de-
fined above.

Now, for completeness, we provide a brief derivation of
the transformation of the linear part to constant coefficients
that was given inIde et al.(2002) and show how the SVD of
Y(t, t0) and the finite time Lyapunov exponents are used in
the construction of the transformation.

The constant matrixD in Eq. (15) will be specified in rela-
tion to the dynamics ofy=A(t)y. In order to do this we will
relate the fundamental solution matricesY(t, t0) andW(t, t0)

corresponding to the evolution of trajectories of the purely
linear homogeneous parts of Eqs. (8) and (15). Recall that
the fundamental solution matrices satisfy:

Y(t, t0) = A(t)Y(t, t0), (A3)

W(t, t0) = DW(t, t0), (A4)
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and sinceD will be chosen to be a constant matrix, it follows
that:

W(t, t0) = e(t−t0)D. (A5)

Since evolution must commute with the change of coordi-
nates, as shown in the diagram (A6),

y(t0)
T(t0)

−−−−→ w(t0)

Y(t,t0)

y yW(t,t0)

y(t) −−−−→
T(t)

w(t)

(A6)

we have

Y(t, t0) = T−1(t)W(t, t0)T(t0)

= T−1(t)eD(t−t0)T(t0) (A7)

Evaluating this expression att=tL, and using the SVD rep-
resentation forY(t, t0), gives:

Y(tL, t0) = T−1(tL)W(tL, t0)T(t0)

= T−1(tL)e(tL−t0)DT(t0)

= B(tL, t0)e
6(tL,t0)RT (tL, t0), (A8)

from which it follows that:

BT (tL, t0)T−1(tL)e(tL−t0)D

T(t0)R(tL, t0)e
−6(tL,t0) = id. (A9)

This equality is satisfied with the choices:

D = 6(tL, t0)/(tL − t0), (A10)

T(t0) = RT (tL, t0), (A11)

T(tL) = BT (tL, t0). (A12)

Therefore we see thatD is a diagonal matrix whose eigenval-
ues are the finite time Lyapunov exponents.

Finally, from Eq. (A7), the SVD expression forY(t, t0),
Eqs. (A10) and (A11) we have the transformation:

T(t) = e(t−t0)DT(t0)Y−1(t, t0)

= e(t−t0)DRT (tL, t0)

R(t, t0)e
−6(t,t0)BT (t, t0). (A13)

So the transformation to constant coefficients is expressed
entirely in terms of the SVD ofY(t, t0). Furthermore, the
use of the SVD representation allows the orthogonal ma-
tricesR(t, t0) andB(t, t0) in Eq. (A2) to be represented in
terms of two scalar angle variables, while the exponential
behaviour ofY(t, t0) is incorporated into6(t, t0), which
prevents the numerical difficulties which might occur from
working directly withY(t, t0). The resulting system of dif-
ferential equations is solved using a fourth-order Runge-
Kutta scheme; full details of this procedure are given inIde
et al.(2002).
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