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Abstract. The coastal ocean may experience periods of fluc-
tuating along-shelf wind direction, causing shifts between
upwelling and downwelling conditions with responses that
are not symmetric. We seek to understand these asymmetries
and their implications on the Eulerian and Lagrangian flows.
We use a two-dimensional (variations across-shelf and with
depth; uniformity along-shelf) primitive equation numerical
model to study shelf flows in the presence of periodic, zero-
mean wind stress forcing. The model bathymetry and initial
stratification is typical of the broad, shallow shelf off Duck,
NC during summer. After an initial transient adjustment, the
response of the Eulerian fields is nearly periodic. Despite the
symmetric wind stress forcing, there exist both mean Eule-
rian and Lagrangian flows. The mean Lagrangian displace-
ment of parcels on the shelf depends both on their initial lo-
cation and on the initial phase of the forcing. Eulerian mean
velocities, in contrast, have almost no dependence on initial
phase. In an experiment with sinusoidal wind stress forc-
ing of maximum amplitude 0.1 N m−2 and period of 6 days,
the mean Lagrangian across-shelf displacements are largest
in the surface and bottom boundary layers. Parcels that orig-
inate near the coast in the top 15 m experience complicated
across-shelf and vertical motion that does not display a clear
pattern. Offshore of this region in the top 10 m a rotating cell
feature exists with offshore displacement near the surface and
onshore displacement below. A mapping technique is used to
help identify the qualitative characteristics of the Lagrangian
motion and to clarify the long time nature of the parcel dis-
placements. The complexity of the Lagrangian motion in a
region near the coast and the existence of a clear boundary
separating this region from a more regular surface cell fea-
ture offshore are quantified by a calculation from the map of
the largest Lyapunov exponent.

Correspondence to:B. T. Kuebel Cervantes
(bkuebel@coas.oregonstate.edu)

1 Introduction

In this study we examine the Lagrangian characteristics of
two-dimensional, time-periodic, wind-driven coastal flows.
The wind-driven processes of upwelling and downwelling
are of considerable interest to coastal oceanographers study-
ing the physics and biology of these highly productive re-
gions. Most modeling studies of coastal flows have been an-
alyzed in terms of a traditional Eulerian formulation. The
Lagrangian aspects of these flows typically have not been
considered. A description of the Lagrangian behaviour of
wind-driven shelf flow has recently been pursued by Kuebel
Cervantes et al. (2003), hereafter denoted as KC2003, which
motivated this work. The study by KC2003 utilized numer-
ical experiments to examine the Eulerian and Lagrangian
characteristics of wind-driven coastal upwelling and down-
welling forced by measured winds at Duck, North Carolina
during the Coastal Ocean Processes (CoOP) Inner Shelf
Study (ISS). The ISS took place off Duck from August–
November 1994. Interesting Lagrangian behaviour was
found during the month of August that resulted from the
varying along-shelf wind stress direction. The present study
further investigates the impact of the fluctuating along-shelf
winds on fluid parcels in the coastal ocean using periodic
wind forcing with zero time mean. We use a Lagrangian
parcel tracking technique to study fluid parcel displacements
over one period and many periods, as well as to compute
mean Lagrangian velocities. We also employ a technique
utilized by KC2003 of advecting Lagrangian label fields by
the model velocities for further Lagrangian analyses.

Eulerian dynamics are discussed as well. The Eulerian
fields are approximately periodic after an initial adjustment
of a few periods. Although the forcing is periodic, mean
Eulerian velocities exist after one period. Asymmetries be-
tween upwelling and downwelling, including the thickness
of the surface and bottom mixed layers and the relative im-
portance of nonlinear advection, were discussed by KC2003
and are revisited here.
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Fig. 1. Sinusoidal along-shelf wind stress forcing for a portion of
the spinup run duration (shown after 8 periods). The dotted lines
show the times in the forcing period at which model simulations
with ti=8.5 T, ti=8.75 T, ti=9 T, andti=9.25 T are initialized.
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Fig. 2. Depth-averaged along-shelf velocity at 8 m depth (approxi-
mately 2.7 km from the coast) for a 9-period spinup run.

The present investigation has relevance to two differ-
ent scientific communities: coastal oceanography and dy-
namical systems. While these fields are traditionally un-
related, studies in recent years have bridged the gap be-
tween the two fields through the application of dynamical
systems techniques to oceanographic flows. Ridderinkhof
and Loder (1994) and Loder et al. (1997) identify hyper-
bolic fixed points and their associated stable and unstable
manifolds in tidal flows over submarine banks. More re-
cently, Poje et al. (2002) use an ocean model to determine
optimal Lagrangian drifter launch sites by tracking hyper-
bolic points in the flow field and Kirwan et al. (2003) ap-
ply ideas of invariant manifolds to flow in the Gulf of Mex-
ico using a data assimilating model. Early work combin-
ing fluid mechanics and dynamical systems, such as that of
Weiss and Knobloch (1989) and Rom-Kedar et al. (1990),
consider transport properties of fluid in modulated travel-
ing waves and unsteady vortical flow, respectively. Many
studies from the dynamical systems perspective, including
Coulliette and Wiggins (2001), Miller et al. (1997), and Poje
and Haller (1999), apply dynamical systems theory to study
lobe geometry and dynamics and invariant manifolds in ve-
locity fields from ocean circulation models. Most recently,
these techniques have also been developed for application
to two-dimensional time-dependent ocean velocity measure-
ments (Ide et al., 2002 and Haller, 2002). These examples
indicate that the study of oceanic flows using dynamical sys-
tems methods is clearly of interest to oceanographers and ap-
plied mathematicians, however coastal ocean flows over the
continental shelf have generally not been the focus of these
studies.

The outline of the paper is as follows. The numeri-
cal model methods and particle tracking techniques are de-
scribed in Sect. 2. The dynamical analysis of the Eulerian
mean velocity and momentum balance fields is discussed in
Sect. 3. The Lagrangian results are presented in Sect. 4. A
summary is given in Sect. 5.

2 Methods

2.1 Model description

The numerical model is a two-dimensional version of the
finite-difference Princeton Ocean Model (POM) (Blumberg
and Mellor, 1987). The model equations are the hydrostatic
primitive equations with the Mellor-Yamada (1982) turbu-
lence closure scheme for vertical mixing, as modified in
Galperin et al. (1988), embedded.

The model domain, described in terms of Cartesian coordi-
nates(x, y, z), is a section with variations in the across-shelf
(x) and vertical (z) directions. The flow is assumed to be
uniform in the along-shelf (y) direction, so that the Eulerian
variables have noy dependence. The velocity components in
the (x, y, z) directions are(u, v,w). Note that although the
flow is uniform iny, the along-shelf velocity componentv is
generally not zero. The domain is bounded by vertical walls
at the coast and at the offshore boundary with boundary con-
ditions of no flow in the across-shelf direction (u = 0) and
free-slip in the along-shelf direction (vx = 0).

For application over variable bottom topography, the POM
model is formulated in sigma coordinates(x, y, σ ). The re-
lationship betweenσ and the Cartesian vertical coordinatez
is given by

σ =
z− η

H + η
, (1)

whereD=H+η,H(x) is the depth andη(x, t) is the surface
elevation, so thatσ = 0 at the surface (z=η) andσ= − 1 at
the bottom (z= − H ). Consequently, when discretized, the
same number ofσ levels exist independent of the local depth
and the vertical resolution increases as the depth decreases.
In σ coordinates,ω is a velocity normal toσ surfaces that en-
ters the equations naturally and replaces the vertical velocity
w. The relationship betweenω andw is

ω = w − u(σ
∂D

∂x
+
∂η

∂x
)− σ

∂D

∂t
−
∂η

∂t
. (2)

In the analysis of model solutions, we present the results in
terms of the original Cartesian coordinates to facilitate phys-
ical interpretation.

2.2 Model Setup

The model bathymetry, initial stratification, and forcing cor-
respond to August conditions observed at Duck during the
ISS. The initial state of the model experiments is a coastal
ocean at rest with horizontally uniform temperature and
salinity fields compiled from the horizontal average of those
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Fig. 3. Eulerian across-shelf velocityu, along-shelf velocityv, and potential densityσθ during one period beginning atti=9.25 T. The black
line denotes the 0 contour foru andv.

observed with an across-shelf mooring array at Duck on
7 August 1994. The model is forced by a sinusoidal, spa-
tially independent along-shelf wind stress componentτ sy

and by constant heat flux components (shortwave radiative
heat flux,Qsw, and the sum of the longwave and turbulent
fluxes,Qlw+Qsen+Qlat ) computed from the mean heat flux
values observed at Duck in August (Austin and Lentz, 1999).
The period ofτ sy is chosen to be 6 days based on the ap-
proximate period of maximum wind-forced energy observed
during August. The maximum amplitude ofτ sy , 0.1 N m−2,
is also typical of August values.

The model bathymetry is characteristic of that off Duck
with a relatively steep slope from the coast to about 20 m
depth and a gradual slope offshore of the 20 m isobath. The
model domain extends from the coastal boundary to a dis-
tance of 200 km offshore, with constant water depth of 35 m

offshore of 40 km. A uniform grid spacing is used inx with
a resolution of 250 m and inσ with 30σ levels. The hor-
izontal kinematic eddy viscosity and diffusivity are chosen
to be small constant values,AM=AH=2 m2 s−1. The back-
ground vertical viscosityνM and diffusivity νH are set to
2.0×10−5 m2 s−1. The model has both an “external” time
step to integrate the barotropic (depth-integrated) momen-
tum equations and an “internal” time step to integrate the
baroclinic (depth-dependent) momentum equations. The ex-
ternal time step is 5 s and is governed by fast surface waves,
whereas the internal time step is much longer, 75 s, because
the baroclinic response is governed by slower internal waves.

The model is spun up for several forcing periods after
which the Eulerian fields are nearly periodic. In Sect. 4.2, we
present results for parcels initialized at different phases in the
forcing period. The net parcel displacements and Lagrangian
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Fig. 4. Top three panels are time series of along-shelf wind stress (top), area-averaged along-shelf velocity (Eq.3) (middle), and area-
averaged along-shelf velocity squared (bottom) during a 10-period simulation beginning atti=9.25 T. Bottom panel is the area-averaged
kinetic energyK̄E (Eq.4) vs. the time derivative∂KE/∂t for the first period during the same simulation. The symbols in the bottom right
plot correspond toti=9.25 T (open circle),ti+T/4 (square),ti+T/2 (filled circle), andti+3T/4 (triangle).

mean velocities over one period are highly sensitive to this
initial phase. Results from the model simulations are refer-
enced according to the start time,ti , given as the number of
periods in the long spinup run. Results will be presented
for four different initialization times;ti=8.5 T, ti=8.75 T,
ti=9 T, andti=9.25 T (Fig. 1). Most of the results will focus
on the simulation beginning atti=9.25 T, at which time the
wind forcing is in the middle of an upwelling-favorable half-
cycle and the amplitude is maximum. The near periodicity of
the Eulerian fields after several forcing periods is illustrated
by the time-dependence of the depth-averaged along-shelf
velocity in 8 m water depth during a 9-period spinup run in
Fig. 2. The density values (not shown) decrease slightly with
each period due to positive surface heat flux forcing, however
the vertical gradient in density remains nearly periodic.

Contour plots of the Eulerian across-shelf velocityu,
along-shelf velocityv, and potential densityσθ during a sim-
ulation beginning atti=9.25 T show the evolution of the
model fields over a forcing period (Fig. 3). The upwelling
response ofu with offshore flow in the surface and onshore
flow in the bottom boundary layers is apparent initially at
9.25 T. Thev field shows a northward coastal upwelling jet
andσθ shows most of the isopycnals intersect the bottom and

a few intersect the surface. The across-shelf flow then weak-
ens and shifts to downwelling with surface onshore flow and
offshore flow in the bottom layer at 9.75 T. Theu field at
9.75 T is not equal and opposite that at 9.25 T, but is char-
acterized by a slightly thinner surface layer from 10–20 km
offshore and a more structured flow below the surface layer
inshore of 20 km. Differences in the structure ofu dur-
ing transition between upwelling and downwelling condi-
tions are seen at 9.5 T and 10 T. The along-shelf velocity
changes rather suddenly from northward at 9.5 T to south-
ward at 9.75 T. The isopycnals are upwelled along the bot-
tom at 9.5 T and then move back down the shelf at 9.75 T.
After 9.75 T, the across-shelf flow weakens again and returns
to the upwelling response at 10.25 T. The along-shelf veloc-
ity also becomes dominantly northward once again and the
isopycnals return to their initial location at 9.25 T.

Time series of the Eulerian fields during a 10-period simu-
lation beginning atti=9.25 T further illustrate the nearly pe-
riodic nature of the flow (Fig. 4). The area-averaged along-
shelf velocity, defined as

v =
1

A

∫ xb

0

∫ η

−H

vdxdz, (3)
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whereA is the cross sectional area of the model domain, fol-
lows the sinusoidal wind forcing with a lag of about 19 h,
which is approximately the inertial period 2π/f . A slight
increase in the maximum magnitude ofv during upwelling
forcing relative to downwelling forcing is seen. This differ-
ence magnifies whenv is squared (third panel);v2 is sig-
nificantly higher during upwelling than during downwelling.
The plot ofv2 also reveals more clearly than the plot ofv that
the periodicity is only approximate.

A phase-plane diagram of the area-averaged kinetic energy
KE versus the time derivative of kinetic energy∂KE/∂t
(Fig. 4, bottom panel) shows the difference in upwelling and
downwelling energy responses. The area-averaged kinetic
energy is calculated as

KE =
1

A

∫ xb

0

∫ η

−H

1

2
(u2

+ v2)dxdz. (4)

A time series ofKE is very similar to the time series of
A−1

∫ ∫
v2dxdz sinceA−1

∫ ∫
u2dxdz does not make a sig-

nificant contribution. For the cycle beginning atti=9.25 T,
the time derivative ofKE decreases from the initial time to
the value att=ti+T/4, at which point the wind stress be-
comes negative. The time derivative ofKE then increases
until t=ti + T/2, the point of maximum wind stress in the
downwelling forcing phase. This kinetic energy cycle re-
peats approximately for the next half period. Thus, at ev-
ery t=ti+nT/4, whenτ sy is either at a maximum/minimum
value orτ sy=0, there is a transition in the rate of increase
or decrease of the total energy. Note that in the phase-plane
diagram the final point of the cycle does not coincide exactly
with the initial point, although it is close, again demonstrat-
ing the approximate periodicity of the motion.

2.3 Lagrangian Techniques

We utilize the Lagrangian information that is directly avail-
able from the model and consider the motion of model fluid
parcels that are advected by the model-resolved velocity
field. Since the model also includes a parameterization of
small-scale turbulence, these Lagrangian parcel trajectories
comprise only the resolved part of the full fluid motion rep-
resented in the model.

Lagrangian fluid motion is calculated using two different
techniques. The first approach involves computing parcel tra-
jectories by solving the differential equations

dx

dt
= u,

dy

dt
= v,

dσ

dt
=

ω

(H + η)
. (5)

Parcels are indexed by their initial positions on the model
grid of 30σ levels and 800x positions. We require the
parcels to stay within the grid at which the interior Eulerian
velocities are defined so that they remain at least1σ/2 from
the surface and bottom boundaries and1x/2 from the coast
and offshore boundaries. Numerical solutions to Eq. (5) are
calculated utilizing a fourth-order Runge-Kutta scheme for
x andσ and a backward Euler method fory. The time step
used for the Runge-Kutta scheme is the model internal time
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Fig. 5. Lagrangian parcel paths during one period beginning at
ti=9.25 T (red). The paths during a second period beginning at
ti=10.25 T are shown in blue with a 5 km offset. The dots denote
the initial locations of the parcels.

step (1ti). To determine the effect of the time step used to
solve Eq. (5), we also computed results using1t=1ti/2,
which involves interpolation of the model velocities to this
time. The results were quantitatively similar for both cases.

The updated positions obtained by solving Eq. (5) are
saved hourly for each initial parcel position. Interpolation
of all three components of velocity to the parcel positions
after each iteration is bilinear. Lagrangian results from ad-
ditional experiments using bicubic interpolation of the ve-
locity fields to the parcel positions were quantitatively sim-
ilar to those using bilinear interpolation. Although many of
the model parcel paths exhibit considerable complexity, they
are closely similar from one period to the next (Fig. 5). The
only region in which significant discrepancy exists is near the
coastal boundary from about 5–15 m depth. This region will
be shown in Sect. 4 to produce complex and irregular parcel
displacement patterns.

In addition to tracking individual water parcels, we uti-
lize a second technique that gives Lagrangian trajectories for
a continuous field of parcels. This approach involves the
definition of three Lagrangian label fields that are advected
by the model velocities. The Lagrangian labels,X(x, z, t),
Y (x, y, z, t), andZ(x, z, t), satisfy the following equations:

DX

Dt
= 0,

DY

Dt
= 0,

DZ

Dt
= 0, (6)

where D
Dt

=
∂
∂t

+u ∂
∂x

+v ∂
∂y

+w ∂
∂z

. The initial conditions are

X(x, z, t = 0) = x,

Y (x, y, z, t = 0) = y,

Z(x, z, t = 0) = z. (7)
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beginning atti=9.25 T.u is across-shelf,w is vertical, andv is along-shelf.

With the two-dimensional approximation for the Eulerian
flow we obtain

D

Dt

∂Y

∂y
=0. (8)

Thus, we can write

Y (x, y, z, t) = y + Y ′(x, z, t), (9)

and we can determineY by solving forY ′, where

DY ′

Dt
+v=0, (10)

with

Y ′(x, z, t = 0) = 0. (11)

The labelsX, Y andZ are calculated as fields on the model
grid with the higher-order accurate advection scheme of
Smolarkiewicz (1983) using three iterations of the correc-
tive step. We note that the evolution of the Lagrangian label
fields is completely determined by advection with the model-
resolved velocity fields. Consequently, the behaviour of the
labels will differ from that of passive tracer fields that are
diffused by the effects of small-scale turbulence. This differ-
ence is shown explicitly by analysis of results from related
solutions in KC2003.

3 Dynamical analysis

3.1 Mean velocities

The one period means of the Eulerian, Lagrangian and Stokes
velocities (Fig. 6) show a response to both upwelling and

downwelling forcing. The mean Stokes velocity is defined
here as the difference between the mean Lagrangian and Eu-
lerian velocities:

ūS(x(ti), z(ti)) = ūL(x(ti), z(ti))

−ūE(x(ti), z(ti)), (12)

where

ūE(x(ti), z(ti)) =
1

T

tf∫
ti

uE(x(ti), z(ti), t)dt, (13)

ūL(x(ti), z(ti)) =
x(tf )− x(ti)

T
,

w̄L(x(ti), z(ti)) =
z(tf )− z(ti)

T
,

v̄L(x(ti), z(ti), y(ti)) =
y(tf )

T
. (14)

andT = tf − ti .
The mean Eulerian across-shelf velocityu shows onshore

flow of 2 cm s−1 in the bottom layer and offshore flow at
about 5–15 m depth from 0–20 km offshore. A classical
steady upwelling response would exhibit offshore flow in the
surface layer and onshore return flow in the bottom layer (as
in Fig. 3 att=9.25 T). The response here resembles such an
upwelling circulation, but the location of the maximum off-
shore velocity is shifted from the surface layer downward due
to the downwelling phase of the circulation. There also exists
a region of onshore flow in the top 5 m and a region of off-
shore flow between 20–25 m depth from 10–20 km offshore.
The pattern of mean onshore surfaceu and offshoreu below
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arises because the surface layer during upwelling is thicker
than that during downwelling from 10–20 km offshore. The
dynamics of this response are described in Sect. 4.1.

The Lagrangian across-shelf velocity computed from the
parcel tracking technique shows a similar pattern. The Stokes
velocity quantifies the differences between the Eulerian and
Lagrangian mean velocities. The most significant difference
is located near the bottom from the coast to 8 km offshore.
The mean Lagrangianu is offshore in this region, whereas
the Eulerianu is onshore, leading to large positive Stokes
drift values. Parcels that are initialized in this region have a
net offshore displacement, despite the mean onshore Eulerian
velocity, because they are advected vertically up the shelf and
then offshore over a forcing period.

The mean Eulerian along-shelf velocityv shows a north-
ward coastal upwelling jet of 5 cm s−1 and a region of similar
magnitude southward velocities from 20–40 km offshore and
extending to 20 m depth. This pattern results from a nar-
row northward coastal jet during upwelling and a broader
southward current during downwelling. The Lagrangian
along-shelf velocity pattern is similar, although the north-
ward coastal jet is distorted inx and z and located closer
to the coast. The Stokes velocity reflects this difference, as
well as the larger southward Eulerianv values offshore of
15 km. The Eulerian vertical velocityw is rather noisy, but
shows upward velocities near the coast due to upwelling, and
downward velocities just offshore due to downwelling. The
Lagrangian vertical velocity shows a similar pattern from the
coast to 12 km offshore, without the small-scale features seen
in the Eulerian field. The vertical Stokes velocity reflects the
consistently larger Eulerianw values and the patch of nega-
tive Eulerianw from 12–20 km that is not found in the mean
Lagrangianw.

3.2 Nonlinear Advection

The dominant balance in the one period mean of the along-
shelf momentum balance for a cycle beginning atti=9.25 T
is between the Coriolis and vertical diffusion terms (Fig. 7).
Within the first 12 km of the coast, the nonlinear advection
term also plays an important role. The nonlinear term is also
important in the explanation of dynamical differences be-
tween the upwelling and downwelling responses (KC2003).
We investigate these differences further by looking at mean
fields computed over each half period with upwelling and
downwelling forcing beginning atti=9 T (Fig. 8). The
streamfunctionψ is defined asψσ=uD,ψx=−ω. The non-
linear advection term may be written asu·∇v=uvx+wvz,
which corresponds to a spatial derivative ofv in a direction
tangent to the streamlinesψ=constant. The relative inten-
sity of the across-shelf circulation can be estimated from the
spacing of the streamlines. Thus, the magnitude of the term
u·∇v can be qualitatively assessed from the streamline spac-
ing and the gradient ofv along streamlines. The stream-
lines show very similar across-shelf circulation values dur-
ing upwelling and downwelling, with opposite signs to in-
dicate the reversed sense of circulation between upwelling
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Fig. 7. Mean along-shelf momentum balance terms over one period
beginning atti = 9.25 T. The signs of the terms correspond to all
terms on the left-hand side of the equation. The units for each term
are 10−6 m s−2.

and downwelling. The along-shelf velocity during upwelling
shows a northward coastal jet from 0–15 km offshore and a
region of southward velocities just offshore. During down-
welling, however, the strongest along-shelf velocity values
extend to 35 km offshore, with a region of much weaker ve-
locity from 5–10 km offshore. This structure exhibits weaker
across-shelf and vertical gradients inv, which lead to smaller
magnitude values for the nonlinear term during downwelling.
The nonlinear term during downwelling is only significantly
different from zero in a few small bands of about 1 km width
(Fig. 8, bottom right panel). During upwelling, the nonlinear
term is large and positive from 2–6 km offshore, and large
and negative from 10–20 km offshore. The structure of the
nonlinear advection term during upwelling also closely re-
sembles that of the mean field over a period (Fig. 7). There-
fore, the nonlinear advection term makes a significant contri-
bution to the along-shelf momentum balance during the up-
welling phase of the forcing period, but a relatively small
contribution during the downwelling phase.
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4 Lagrangian parcel paths

4.1 Lagrangian label field results

The time evolution of the Lagrangian label fieldsX, Y , andZ
introduced in Sect. 2.3 provide an effective way to visualize
the across-shelf, along-shelf, and vertical displacements of
water parcels on the shelf. We show the evolution of these
fields throughout a forcing period beginning atti=9.25 T
by plotting their distributions att=9.5 T, 9.75 T, 10 T, and
10.25 T (Fig. 9). At 9.5 T, theX label shows surface parcels
have moved about 10 km offshore, while bottom parcels have
moved about 5 km onshore as the response in the bottom
layer is slower than that in the surface. Parcels near the sur-
face move onshore close to their initial locations at 9.75 T
while most of the bottom layer parcels have not moved sig-
nificantly since 9.5 T. At 10 T, parcels in the surface layer
are displaced 10 km onshore and parcels in the bottom layer
have retreated offshore toward their initial across-shelf loca-
tion. After a full period, surface parcels are advected offshore
again near their initial positions. The final distribution ofX

shows a feature of offshore displacement at 20 m depth from
15–35 km offshore and several interlacing features inshore
of 20 km. The former is due to the thicker bottom bound-
ary layer that is present during downwelling than during up-
welling, ascribed by Lentz and Trowbridge (1991) to the
upslope (upwelling) or downslope (downwelling) transport
of buoyancy along the bottom. During upwelling, the ups-
lope transport of denser water under lighter water enhances
the stratification and inhibits growth of the bottom boundary
layer. In contrast, the downslope transport of lighter water
under heavier water during downwelling tends to enhance
mixing and thus, leads to growth of the bottom boundary
layer. During downwelling, parcels are displaced offshore in
a 10–15 m thick bottom layer. However, during upwelling,
the bottom layer is only 5–10 m thick, therefore parcels in
this thinner bottom boundary layer are displaced onshore and
parcels just above it are displaced offshore relative to their
initial positions after one period.

A similar physical argument applied to the surface layer
supports the pattern ofu in Fig. 3 and the feature of offshore
displacement ofX just below the surface from 10–20 km
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offshore in Fig. 9. In this case, upwelling transports heav-
ier water to the surface, enhancing mixing and producing
a thicker surface boundary layer. Downwelling transports
lighter water onshore which inhibits mixing and leads to the
net onshore displacement of greenX labels at the surface
from 10–20 km offshore (Fig. 9).

The evolution ofZ in Fig. 9 shows complicated structures
that develop during both upwelling and downwelling. At
9.75 T, a thin layer of parcels initialized at mid-depth has
been advected upward toward the coast due to upwelling.
After downwelling begins, the 10 T distribution shows part
of this thin layer ofZ parcels remains trapped at the coast
because the downwelling response is weak inshore of about
5 km.

The Y label field shows along-shelf advection of up
to 40 km to the north (red) and south (blue). The re-
gion of northward parcel advection in the coastal up-
welling jet moves onshore and increases in magnitude from
9.5 T–9.75 T. After a quarter-period of downwelling forc-
ing (10 T), however, the region of northward displacements
has decreased significantly in size and magnitude and south-
ward displacements are found offshore near the surface. The
quarter-period of upwelling forcing from 10 T–10.25 T does
not significantly increase the northward displacements in this
region, as might be expected, but only moves the jet up the
shelf. Southward displacements exist over a region of rela-
tively large offshore extent fromx=15−35 km. TheY re-

sponse reflects the lag of along-shelf parcel advection after
the along-shelf wind changes direction discussed in Sect. 2.2
(Fig. 4).

Net displacements of water parcels over many forcing pe-
riods, or several upwelling and downwelling events, can also
be described by the evolution of the Lagrangian label fields
X, Y , andZ (Fig. 10). After two periods, the distributions
of X, Y , andZ look very similar to those after one period in
Fig. 9. The feature at 20 m depth inX that was described due
to the difference in bottom boundary layer thickness during
upwelling and downwelling becomes more pronounced with
each additional forcing period. It also appears in theZ field
after 4 periods (t=13.25 T). The region of trapped parcels
near the coast, as shown byZ, grows in time and the initial
position of the trapped parcels becomes deeper (colours near
the coast change from yellow to red). Net onshore displace-
ment ofX occurs at about 5–10 m depth offshore of 30 km.
Between these features at mid-depth offshore of 30 km, there
is very little horizontal or vertical motion. Onshore of 30 km,
however, parcel displacements are complicated and there is
significant across-shelf and vertical motion.

The region of southward along-shelf displacements (Y )
increases in both size and magnitude as the parcels are ad-
vected farther south over a broader region of the shelf with
each forcing period. In contrast, the inshore region of north-
ward displacements shrinks in size and decreases in mag-
nitude. This result is robust for simulations beginning at
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any point in the forcing period (8.5 T, 8.75 T, 9 T, or 9.25 T).
Thus, after several periods, parcels at almost all depths from
0–50 km will be displaced south of their initial position, in-
dependent of the initial forcing phase. Evidently, the rea-
son for this is that parcels do not remain in the region of
the northward upwelling jet, where they would be advected
farther northward, but instead move offshore into the broad
region of southward velocities (see the mean Lagrangianu

andv in Fig. 6).

4.2 Fluid parcel tracking results

We also investigate parcel displacements over a forcing pe-
riod using the parcel tracking method introduced in Sect. 2.3
for a simulation withti=9.25 T and parcels initialized at ev-
ery grid point on the model domain (Fig. 11, top panel).
Some regions show net displacements over a period that
agree well with the label fields (Fig. 9), while other regions
are more complicated. Parcels in the bottom 5 m of the shelf
move onshore with displacement values that increase as the
initial position of the parcel nears the coast. Offshore dis-
placement, due to the thicker bottom boundary layer during
downwelling, of parcels initially between 15–45 km is ap-
parent above the bottom layer. At mid-depth and offshore of
20 km, parcels are shown to move slightly downward over
a forcing period. In the surface layer offshore of 30 km,
a cell structure is seen with parcels moving offshore above
5 m and onshore from 5–10 m depth. The parcel motion near
the coast is complicated with parcel displacements that cross
one another and vary in length and direction. It is unclear
whether all of this complexity is due to the true motion re-
solved by the model, or if small errors in the parcel tracking
calculation make a contribution in this region. The results of
the Lagrangian label analysis also show this region produces
significant parcel displacements and complex paths over one
period (Fig. 9) or ten periods (Fig. 10). Thus, we are confi-
dent in the general conclusion that complex parcel paths exist
in this region, although care must be taken in interpreting in-
dividual parcel trajectories.

4.2.1 Parcel displacement maps

Due to the near periodicity of the response, we can use a
mapping technique to calculate the parcel displacements over
many periods without actually tracking them in the model
simulation. The map is created from the one-period model
parcel displacements (Fig. 11, top panel). Using a bilinear
interpolation, the net displacement of each parcel inx andz
may then be iterated forward for as many periods as desired.
This mapping technique can thus, provide a description of
parcel displacements over many periods at very little compu-
tational cost. The map is an extremely useful tool that helps
determine the qualitative Lagrangian behaviour and gives a
clear picture of parcel displacement trends. Implementing
the one-period displacement map technique, we effectively
approximate the Eulerian flow as periodic. The qualitative
accuracy of this approximation is supported by Figs. 2 and 5,

as well as the bottom panels of Fig. 11, which show that the
iterated map reproduces the features of the ten-period model
parcel displacements reasonably well. The model displace-
ments tend to be larger than those produced from the iterated
map in some locations. Again, the complicated region near
the coast exhibits the largest quantitative differences because
the model displacements are not entirely reproducible from
one period to the next in this area (Fig. 5), hence the iterated-
map trajectories diverge slowly from the model trajectories.

We performed simulations with varying horizontal and
vertical resolution to determine the sensitivity of the Eulerian
and Lagrangian results on model resolution. Forti=9.25 T,
we computed model Eulerian fields, Lagrangian labels, and
parcel trajectories over one period with1x=125 m and
45 σ levels to compare with the basic case resolution of
1x=250 m and 30σ levels. Parcels were located at each grid
point in both simulations. The results of the mean Eulerian
fields, Lagrangian label evolution, and 10 period parcel maps
were quantitatively similar in both cases.

The Lagrangian results depend on the simulation start
time because this determines the phase of the model Eule-
rian velocity field. We investigate the dependence of the
100 period Lagrangian maps on the simulation start time
by plotting selected parcel positions after each period for
ti=8.5 T, ti=8.75 T, ti=9 T, and ti=9.25 T (Fig. 12). The
same structures are seen in all of these maps, however they
are located in different across-shelf and, in some cases, verti-
cal, locations. The maps show regions with well-defined pe-
riodic motion and regions with a more complex response to
periodic forcing. A rotating cell feature (offshore of 30 km
at ti=8.75 T) and the slow downward motion at mid-depth
are apparent. The previously described feature with offshore
displacement from 20–25 m depth and onshore displacement
below is seen. Inshore of 30 km, the parcel displacements
do not exhibit any regular patterns. Parcels that upwell to
the near surface close to the coast are typically displaced off-
shore within the complex region. A clear boundary between
this region and the offshore surface cell is apparent (e.g. at
30 km offshore atti=8.75 T) in which parcels above 10 m
depth move upward and offshore into the cell.

The evolution of parcels in the cell structure and other
parcels on the shelf is explained by the upwelling and down-
welling dynamics over a forcing period and can be deter-
mined by studying the sequential maps (Fig. 12). The surface
cell feature is displaced offshore of 30 km forti=8.5 T and
onshore forti=9 T. For ti=9.25 T, the location is similar to
that for ti=8.75 T. The orientation of the boundary between
this structure and the complex region inshore also varies.
Parcels offshore of 30 km in the top 5 m are displaced on-
shore about 20 km during the half cyclet=8.5 T–9 T, and
parcels from 5–10 m are displaced about 10 km onshore.
From 10–20 m depth, parcels are displaced 5 km offshore
and below this, in the bottom boundary layer region, parcels
are displaced about 10 km offshore. Near the coast the
across-shelf motion is not as clear and vertical motion is sig-
nificant.
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Fig. 12.Lagrangian parcel positions after each period predicted by mapping technique over 100 periods for simulations beginning atti=8.5 T,
ti=8.75 T, ti=9 T, andti=9.25 T.

To quantify the motion of the cell feature over a forcing
period, consider the trajectory of a single parcel initialized
at ti=8.5 T at x=48.875 km, z= − 4.0783 m (the approxi-
mate center of the offshore surface cell) (Fig. 13a). Subject to
downwelling forcing initially, the parcel moves 9 km onshore
in the first quarter-period and 11 km onshore in the second
quarter-period. After upwelling winds begin att=9 T, the
parcel moves offshore 8 km during the third quarter-period
and another 12 km in the final quarter-period. Total vertical
displacement over a period is only about 0.2 m. The final
position of the parcel is almost exactly the same as its initial
position. Thus, the net across-shelf displacement of a parcel
near the cell center over a period is very small even though it
is advected 20 km across the shelf during each phase of the
forcing period. Figure 13a shows movement of the cell center
and clearly illustrates why the maps constructed at different
phases of the forcing cycle have different structures.

Consider a second parcel initialized atti=8.5 T at
x=37.375 km,z= − 4.0448 m (Fig. 13b). The parcel travels
about 20 km onshore during downwelling and 20 km offshore
during upwelling. The position after one period, att=9.5 T,
is about 1 m above the initial position and the position after
two periods att=10.5 T is 1 m above that att=9.5 T. The
parcel has a net offshore displacement of 1 km during each

of these periods. In contrast, the net displacement of the par-
cel is 1 km onshore over the period fromt=9 T–10 T. Thus,
the direction of displacement across the shelf differs for the
upwelling half-period (onshore displacement) and the down-
welling half-period (offshore displacement) for parcels in the
region just onshore of the cell feature, and the net displace-
ment over a full-period depends on the phase of the forcing
at initialization due to the net vertical motion and the vertical
shear of the time-dependent Eulerian flow.

4.2.2 Lyapunov exponents

Lyapunov exponents quantify exponential rates of diver-
gence or convergence of the trajectories of initially neigh-
boring particles in a flow field. Thus, they provide a mea-
sure of the chaos present in a system. The Lagrangian results
presented in Sects. 4.1 and 4.2 suggest that the parcel trajec-
tories in the complicated region near the coast are chaotic.
We examine this possibility and quantify the degree of chaos
present in the wind-forced flows studied here by calculat-
ing the largest Lyapunov exponent of the parcel displacement
maps.

We estimate the largest Lyapunov exponentλ for the
two-dimensional periodic map (see e.g. Benettin et al.,
1976; Lichtenberg and Lieberman, 1983) from the truncated
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approximation with finiteM as:

λ =
1

M1t

M∑
i=1

ln
Li

L′

i−1
, (15)

whereLi=(1x2
i +1z

2
i )

1/2 is the distance after theith cy-
cle between two parcels initially separated by1x0 at t=t0
andL′

i=(1x
′2
i +1z′2i )

1/2 where1x′

i , 1z
′

i are rescaled val-
ues of the estimated separations1xi ,1zi given, ifLi>1x0,
by 1x′

i=
1xi
Li
1x0, 1z′i=

1zi
Li
1x0 so thatL′

i=L0=1x0. The
calculation ofLi is made after each iterated period for every
parcel initialized on the map grid at(x0, z0) and a neigh-
boring parcel initialized at(x0+1x0, z0). If Li>1x0, the
distance between parcels is rescaled such that the neigh-
boring parcel is re-positioned from(xi+1xi, zi+1zi) to
(xi+1x

′

i, zi+1z
′

i) to keep the calculation near linear as par-
cel separations increase. IfLi ≤ 1x0, then we do not rescale
so that1x′

i=1xi , 1z
′

i=1zi , andL′

i=Li . The map is then
used to determine the positions of the grid of neighboring
parcels after any necessary rescaling has been done. The cal-
culation was tested by varying the initial separation distance
1x0 by1x0=1xgrid/n (where1xgrid=250 m, the grid res-
olution of the model and the map), andn=1, 2, 4, 8, 16,
32, 64. We also performed tests with an initial separation
in the vertical direction of1z0 such that the grid of neigh-
boring parcels was initialized at(x0, z0+1z0). The largest
Lyapunov exponent was estimated for both positive and neg-
ative values of1x0, 1z0 and the results were qualitatively
similar in all cases. As1x0 decreased, the small differences
between results for the positive and negative initial separa-
tions also decreased.

Estimates for the largest Lyapunov exponentλ are cal-
culated forM=100 forcing periods with1x0=1xgrid/64
(Fig. 14). Plots ofλ for selected parcels versust−1

=(i1t)−1

indicate that the choice ofM = 100 gives reasonable, but not
fully convergent, approximations for the values ofλ. Values
of λ are largest in the region with complex parcel displace-
ments near the coast and in the bottom 10 m. In these loca-
tions, the magnitudes ofλ are approximately 6–8. Offshore
of 30–40 km from the surface to 25 m depth, values decrease
to near zero, indicating regular behaviour. Negative values
in this region, which presumably would asymptote to zero,
are generally small, e.g. the minimum value is−0.75. The
boundary at 30 km between large, positiveλ in the top 10 m
and smallλ offshore divides the region of irregular and com-
plicated parcel paths from the regular motion found in the
surface cell feature. The location of this boundary is a robust
result for any sufficiently large number of periodsM. The
small λ values below the surface cell feature correspond to
the mid-depth region of slow downward parcel motion.

5 Summary

The Eulerian and Lagrangian dynamics of a wind-forced
continental shelf have been studied using a numerical model
forced by periodic winds. The mean Eulerian velocities show
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Fig. 14. Largest Lyapunov exponentλ computed from the map-
ping technique after 100 forcing periods beginning atti=9.25 T.
The black line denotes the 0 contour.

features from both the upwelling and downwelling phases of
the period. Near the surface, there is offshore flow from the
coast to 30 km due to upwelling and onshore flow just above
due to downwelling. In the bottom layer, onshore flow due



16 B. T. Kuebel Cervantes et al.: Lagrangian characteristics of continental shelf flows

to upwelling is in the bottom 5 m, and just above is a region
of offshore flow due to downwelling, a result of the thicker
bottom boundary layer during downwelling. In the along-
shelf momentum balance, nonlinear advection of momentum
is stronger during the upwelling phase. This result is linked
to the weaker across-shelf and vertical gradients in the along-
shelf velocity during downwelling.

Lagrangian motion was analyzed using Lagrangian label
fields and a parcel tracking technique. The labels show sig-
nificant across-shelf, along-shelf, and vertical advection over
a period. After several forcing periods, the bottom layer re-
sponse becomes much more pronounced while the surface
layer response weakens. Near the coast, a region of large
x andz displacements shows complex patterns in the label
fields with variability in parcel trajectories from one period
to the next. Net southward displacement increases and net
northward displacement decreases in time, leading to the re-
sult that all the parcels on the shelf are displaced to the south
after many periods. Similar information can be obtained by
tracking individual parcels in the traditional manner.

Results have also been obtained by iterating the one-period
displacement map for many periods. The map is useful in
providing a qualitative assessment of the Lagrangian motion
of fluid parcels over many periods. The perspective on parcel
motion over one period gained from the analysis of these iter-
ated maps is valuable as well. By following the progression
of maps initialized at different forcing phases, the displace-
ment of parcels in different regions of the shelf can be iden-
tified. The rotating surface cell offshore of 30 km appears
especially clearly in this analysis. The map also makes possi-
ble the calculation of approximate values for the largest Lya-
punov exponent, which quantifies to some extent the chaos
present in the region of complicated parcel paths near the
coast.

Except near the center of the offshore surface cell, parcels
generally do not return to their initial location after a period,
hence a Stokes drift exists and is maximum in the complex
region near the coast. Parcel displacement depends on the
initial location and the initial forcing phase. Asymmetries
between the upwelling and downwelling responses lead to
significant net across-shelf displacements in the surface and
bottom layers. The complex motion of Lagrangian parcels in
three dimensions leads to interesting results that are not obvi-
ously suggested by the Eulerian fields. One clear example is
the robust southward along-shelf displacement of all parcels
after several periods.
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