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Abstract. Viscous heating plays an important role in the dy-
namics of fluids with strongly temperature-dependent viscos-
ity because of the coupling between the energy and momen-
tum equations. The heat generated by viscous friction pro-
duces a local temperature increase near the tube walls with
a consequent decrease of the viscosity which may dramat-
ically change the temperature and velocity profiles. These
processes are mainly controlled by the Peclét number, the
Nahme number, the flow rate and the thermal boundary con-
ditions. The problem of viscous heating in fluids was in-
vestigated in the past for its practical interest in the polymer
industry, and was invoked to explain some rheological be-
haviours of silicate melts, but was not completely applied to
study magma flows. In this paper we focus on the thermal
and mechanical effects caused by viscous heating in tubes of
finite lengths. We find that in magma flows at high Nahme
number and typical flow rates, viscous heating is responsi-
ble for the evolution from Poiseuille flow, with a uniform
temperature distribution at the inlet, to a plug flow with a
hotter layer near the walls. When the temperature gradients
induced by viscous heating are very pronounced, local insta-
bilities may occur and the triggering of secondary flows is
possible. For completeness, this paper also describes magma
flow in infinitely long tubes both at steady state and in tran-
sient phase.

1 Introduction

A common feature of lava flows is the presence of a complex
network of lava tubes, observed both in “pahoehoe” (Peter-
son et al., 1994) and ‘a‘a lava fields (Calvari and Pinkerton,
1998, 1999). The tube system acts as an efficient pathway
for lava from the main vent to the flow fronts, allowing great
distances to be reached. This is mostly due to the decrease of
radiative cooling, as a consequence of a much lower tempera-
ture of the outer crust of the tubes as compared to the temper-
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ature of the lava surface flowing in open channels (Dragoni,
1989; Dragoni et al., 1995).

The effects of heat generation by viscous friction for lava
flows in tubes and channels were often neglected in previous
models. In this work we show that these effects can play
an important role in the dynamics of fluids with strongly
temperature-dependent viscosity such as silicate melts and
polymers. In fact, in these fluids, viscous friction generates
a local increase in temperature near the tube walls with con-
sequent viscosity decrease and increase of the flow velocity.
This velocity increase produces a further growth of the lo-
cal temperature. As we will see later, there are some criti-
cal values of the parameters that control this process above
which this feedback cannot converge. In this case the one-
dimensional laminar solution, valid in the limit of infinitely
long pipe, cannot exist even for low Reynolds numbers. In
pipes with finite length, viscous heating governs the evolu-
tion from Poiseuille regime with a uniform temperature dis-
tribution at the conduit inlet, to a plug flow with a hotter
boundary layer near the walls downstream. This effect could
be observed even in fluids with null yield strength. When the
temperature gradients, induced by viscous heating are very
pronounced, local instabilities occur and triggering of sec-
ondary flows is possible.

Viscous heating was previously invoked to describe the
rheological behaviour of basalts (Shaw, 1969) and to explain
some instabilities in the mantle (Anderson and Perkins, 1974;
Zhao and Yuen, 1987; Larsen et al., 1995; Hansen and Yuen,
1996).

Moreover Fujii and Uyeda (1974), adopting a model only
valid for infinitely long tubes (by the thermal point of view),
explained the size of intrusive dikes in volcanoes.

Because of the low thermal conductivity of silicate melts,
the temperature field shows a strong radial gradient and vis-
cosity layering. Flows with layers of different viscosity were
investigated in the past, also for their practical interest, and
it is known that they are not always stable (Yih, 1967; Craik,
1969; Renardy and Joseph, 1985; Renardy, 1987). The insta-
bilities are generated by the viscosity contrasts, and are sim-
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ilar to the Kelvin-Helmholtz instabilities triggered by den-
sity gradients. In Couette flows of fluids with temperature-
dependent viscosity, Sukanek and Laurence (1974) and Yueh
and Weng (1996) found one instability mode related to the
viscosity gradient at low Reynolds numbers. This kind of
instability shows a local character (Pearson, 1976) and is ex-
pected to occur also in lava flows.

As we will see later, these processes are controlled prin-
cipally by three parameters: the Peclét number (Pe), the
Nahme number (Na0, also called Brinkman number), and
the non-dimensional flow rate (q):

Pe = ρcUH/k; Na0 = µ0U
2β/k; q = µ0Q/ρgH

3 (1)

with ρ density,c specific heat,U mean velocity,H tube ra-
dius,k thermal conductivity,µ0 reference viscosity (Na0 is
based on this value),β rheological parameter (see Eq. 5) and
Q flow rate per unit length (Q = UH ).

Viscous heating in lava and magma flows is responsible
for effects not described by simple isothermal models, and
may help in the understanding of some phenomena observed
in lava flows, which are not yet clearly described. These in-
clude the surprising temperature increase at the base of pa-
hoehoe flows observed by (Keszthelyi, 1995), the formation
of the “roller vortex” (Booth and Self, 1973), thermal erosion
at low Reynolds numbers (Greeley et al., 1998), and the ob-
servation, in lava channels, of magma temperatures greater
than the eruption temperature at the vent (Kauahikaua et al.,
1998). Erosion by viscous heating in mantle convection was
also investigated by Larsen et al. (1997) and Moore et al.
(1998).

Recently, the results of the studies of Polacci et al. (2001)
suggest that the viscous heating may be responsible for the
generation of a heterogeneous distribution of magma proper-
ties inside the conduit. Moreover, the recent viscous gravity
currents model of Vasilyev et al. (2001), based on the con-
servation equations applied to a control volume, shows that
the viscous dissipation exerts a strong influence in the vis-
cous gravity currents. Finally, inadequacy of simple conduc-
tive cooling models is shown by basal temperature measure-
ments carried out by Keszthelyi (1995). Temperature mea-
surements recorded at the base of many flows increases after
some initial cooling. This fact can be easily understood on
the light of the model presented here.

We begin our study by investigating the limit case of flows
in infinitely long tubes, and then we will describe the flow in
tubes of finite length as being more representative of actual
magma flows. We find that viscous heating effects cannot be
generally neglected in typical magma flows and that the en-
ergy and momentum equations cannot be decoupled. More-
over, we find that the characteristic plug-like velocity profile
observed in magma flows can be caused by viscous heating
effects, even assuming Newtonian rheology.

Fig. 1. Sketch of the inclined lava tube and prescribed boundary
conditions.

2 Model description

In this paper, magma is assumed to be incompressible and
approximated as an homogeneous fluid with constant density,
specific heat and thermal conductivity. The viscosity, how-
ever, is temperature-dependent. We investigate the flow in a
slab between two parallel boundaries separated by a distance
2H and inclined of an angleα with respect to the horizontal
(see Fig. 1). For symmetry, the velocity is directed along the
flow. At the tube walls (z = ±H ) we impose a null velocity
and a fixed temperature. This last assumption on the temper-
ature is quite restrictive, and will be probably generalized in
future works. However, for the case of tube of finite length,
we show also results obtained by assuming thermal adiabatic
condition at the walls, as a limit case.

When the Peclét number is very high, the lubrication ap-
proximation is valid: the transient term in the momentum
equation is orders of magnitude smaller than the correspond-
ing term in the energy equation (their ratio is of the order of
the inverse of the Prandtl number). This means that the time
scale for momentum relaxation is much shorter that the cor-
responding time scale for thermal relaxation, and the time
evolution of the velocity and temperature profiles is con-
trolled only by the energy equation. In these hypotheses,
magma dynamics in the tube are described by the following
transport equations:

−
∂P

∂x
+ ρg sinα +

∂

∂z

(
µ
∂U

∂z

)
= 0 (2)

and

ρc

(
∂T

∂t
+ U

∂T

∂x
+W

∂T

∂z

)
= k

∂2T

∂z2
+ µ

(
∂U

∂z

)2

(3)

wherez is the coordinate transversal to the flow,x longi-
tudinal coordinate,t time, (U,W) velocity of the fluid in
the directionsx andz respectively,ρ density,P pressure,µ
viscosity,g gravity acceleration,α slope,c specific heat at
constant pressure,T temperature, andk thermal conductiv-
ity. The last term in Eq. (3) represents the heat generation by
viscous dissipation.
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The characteristic length scales of this problem are the
channel dimensions 2H (thickness) andL (length), the me-
chanical relaxation lengthLm = UH 2ρ/µ0, and the thermal
relaxation lengthLt = UH 2ρc/k. For lava flows, typically
Lm/L � 1, butLt/L � 1 and the approximation of in-
finitely long tube is not valid. Only whenLt/L � 1, the
approximation of infinitely long tube (by the thermal point
of view) is allowed. This limit case is simpler to handle, and
it was widely studied in the past. For these reasons, we dis-
cuss magma flow in infinitely long tubes, before studying the
viscous heating effects in tubes of finite length.

In silicate melts the dependence of the viscosity on the
temperature is well described by the Arrhenius law (Shaw,
1969; Danes, 1972; Park and Iversen, 1984; Baloga and Pieri,
1986; Crisp and Baloga, 1994):

µ = µA exp(B/T ), (4)

whereµA is a constant andB is the activation energy. In the
interval of temperatures(T − T0)/T0 � 1 (T0 is a reference
temperature), Eq. (4) is well approximated by the (Nahme’s)
exponential law:

µ = µ0 exp[−β(T − T0)] (5)

with β = B/T 2
0 andµ0 = µA exp(B/T0). In the follow-

ing, for simplicity, we adopt the exponential law, more suited
for the analytical manipulation of the equations (Shaw, 1969;
Dragoni, 1989; Costa and Macedonio, 2002).

2.1 Infinitely long pipe

In this section we study the flow in an infinitely long chan-
nel (slab) driven only by the component of the gravity force
acting along the flow (all gradients are null along the flow).
We assume no-slip conditions (U = 0), constant tempera-
ture (T = Tw) at the walls (z = ±H ) and, for simplicity,
we choose the reference temperatureT0 = Tw. Under these
hypotheses, Eqs. (2) and (3) reduce to:

ρg sinα +
d

dz

[
µ(T )

dU

dz

]
= 0 (6)

and

ρc
∂T

∂t
= k

∂2T

∂z2
+ µ

(
dU

dz

)2

(7)

In a previous work, Pearson (1977) considered a Poiseuille
flow between two horizontal parallel planes with isothermal
boundaries (the temperature at the boundaries is the same as
that of the injected fluid), negligible transversal gradients,
and a given flow rate. Previously, a similar problem (the
Hagen-Poiseuille flow) was numerically solved using ana-
logue computers by Gruntfest et al. (1964), and later Eck-
ert and Faghri (1986) studied the Couette flow. Like Pear-
son (1977), Gruntfest et al. (1964) found that during the
transient phase, in contrast to the steady-state, the temper-
ature profile shows higher values near the walls than in the
channel centre. Moreover, Gruntfest et al. (1964) found that

the solutions of the equations that they consider do not di-
verge only when the non-dimensional pressure gradientGp
(Gp = β(dP/dx)2H 4/kµ0) is smaller than a critical value.
In fact for Gp greater than this value, the temperature in-
creases indefinitely in a finite time. Gruntfest et al. (1964)
suggest that the behaviour of this model can help in un-
derstanding the origin of turbulence (however this feedback
could not produce an indefinite temperature increase in 2-D
and 3-D systems).

Next we investigate the time-dependent problem of a fluid
with initial temperatureTi , and wall temperatureTw = T0,
with Ti ≥ T0. We study the conditions for the existence
of the solution, and the evolution to the steady-state solution
(when it exists). After combining Eqs. (6) and (7), we rewrite
the energy equation in the non-dimensional form:
∂θ

∂τ
=
∂2θ

∂ζ 2
+ Gζ 2eθ

θ = 0 ∀τ > 0, ζ = ±1
θ = B τ = 0, −1< ζ < 1

(8)

where

θ = β(T − T0); ζ =
z

H
; τ = kt/

(
ρcH 2) (9)

G =
β(ρg sinα)2H 4

kµ0
; B = β(Ti − T0). (10)

The parameterG represents the non-dimensional “shear
stress”, and is known as the Nahme number based on the
characteristic stress (instead of the velocity).

From the results of Gruntfest et al. (1964) we know that
whenB = 0 andG > Gcrit (Gcrit ≈ 5.64 for slab flows),
the solution of Eq. (8) diverges in a finite time. In the case
of G < Gcrit, the solution of the transient phase, with two
maxima near the walls, evolves forτ ≈ 1 to the steady-state
solution with only one maximum in the channel centre. In
Fig. 3 and Fig. 2 we report the temporal evolution ofθ found
numerically for the subcritical condition (G = 5), and for
the supercritical condition (G = 8) respectively, both with
B = 0. As shown in Fig. 3, whenG < Gcrit, for small τ
the temperature increases near the boundaries and forτ ≈ 1
its profile tends to the steady-state solution. In Fig. 2, in the
supercritical case, the temperature profile, shows two peaks
near the walls that continuously increase, until they diverge
whenτ reaches a critical valueτcrit.

The general case, with the initial fluid temperature greater
than the temperature at the walls (B > 0), was previously
studied by Fujita (1969) from a theoretical point of view, but
is not yet analytically or numerically solved (to our knowl-
edge). Fujita (1969) clarified the relationship between the
transient and the steady-state phases with some theorems for
the steady-state boundary value problem:

∇
2u+ eu = 0 (x ∈ �) (11)

and for the corresponding time-dependent problem:

∂u

∂t
= ∇

2u+ eu (t ≥ 0, x ∈ �) (12)



548 A. Costa and G. Macedonio: Viscous heating in fluids with temperature-dependent viscosity

Fig. 2. Temporal evolution of the non-dimensional temperature pro-
file in the supercritical conditionG = 8 andB = 0.

Fig. 3. Temporal evolution of the non-dimensional temperature pro-
file in the subcritical conditionG = 5 andB = 0.

with initial conditionu(t = 0) = a(x) (with a(x) continu-
ous), and boundary conditionu(∂�) = 0. One of the theo-
rems states that if Eq. (11) has no solution, then the solutions
of Eq. (12) diverge in a finite time, or diverge fort → ∞.
Another theorem states that if Eq. (11) has more than one so-
lution, φ is the “smaller” solution, andψ is another solution
not equal toφ, then:

1. If a > ψ , then the solutionu of Eq. (12) diverges, in a
finite time, or fort → ∞.

2. If a < ψ , then the solutionu of Eq. (12) uniformly
converges toφ, for t → ∞.

From our numerical solutions of Eq. (8), we observe that
whenB > 0, the range of values ofG below which the so-

Fig. 4. Temporal evolution of the non-dimensional temperature for
G = 2 andB = 3.

Fig. 5. Temporal evolution of the non-dimensional temperature pro-
file in the supercritical conditionG = 4 andB = 3.

lution of Eq. (8) converges is smaller than the corresponding
range ofG for B = 0, but the profiles evolution is similar
to the case withB = 0. We callGcrit(B) the critical value
of G above which the solution diverges when the initial con-
dition is B. An example is reported in Fig. 5 forG = 4
andB = 3 where the temperature diverges in a finite time.
Figure 6 shows the relation betweenB andGcrit(B) found nu-
merically. ForB > 0 we study the following two cases: in
the subcritical case (G < Gcrit) we investigate the effect of the
viscous heating on the temporal evolution of the temperature
profile, and we compare the results to the case without heat
generation (G = 0); in the supercritical case, we investigate
the relation between the critical time corresponding to the
thermal blow-upτcrit andG. When the viscous heating is ne-
glected, Eq. (8) reduces to the classical heat equation. In fact
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Fig. 6. Relation betweenB andGcrit(B).

from an initial condition with uniform temperature greater
than that of the boundaries, the fluid starts cooling near the
walls, until the wall temperature is reached in a time scale of
the order of the characteristic time, i.eτ ∼ 1. By account-
ing for the viscous heating, as shown, for example, in Fig. 4,
the temporal evolution of the temperature can be described in
four phases. The initial phase is characterized by the cooling
near the walls; in the second phase the viscous heating near
the walls produces the increase of the temperature above its
initial value and the temperature profile assumes two max-
ima in the external part of the profile and a minimum in the
central part. During the third phase the two maxima migrate
towards the central part of the channel, and the profile is char-
acterized by a maximum temperature in the centre, that could
be also greater than its initial value. In the fourth phase the
fluid cools until the steady state solution is reached, in agree-
ment with the theoretical results of Fujita (1969), previously
reported.

In the supercritical case (G > Gcrit), we find an non-
dimensional critical timeτcrit above which the solution di-
verges. In this case, the temporal evolution of the tempera-
ture profile is qualitatively similar to the corresponding case
with B = 0, but with shorterτcrit. The temperature increases
near the walls until it diverges asτ → τcrit (similar to the
case shown in Fig. 5). AsG increases,τcrit gets shorter. As
an example, Fig. 7 shows the relation betweenG andτcrit, for
B = 0.

From the physical point of view, when viscous heating is
relevant, a transversal temperature gradient develops near the
walls to dissipate the heat through the boundaries. This tem-
perature increase produces a viscosity decrease with a con-
sequent increase of the flow velocity. This velocity increase
produces an increase in the velocity gradients near the walls,
and a further local temperature increase. WhenG > Gcrit,
the temperature increases without bound this feedback can-
not converge and the steady-state solution does not exist. Of
course, this has no physical meaning, and is related to the

Fig. 7. Relation betweenτcrit andG for B = 0.

Fig. 8. Non-Dimensional “shear-stress”G vs. θmax . (θmax is the
maximum temperature in the channel centre, at steady state.)

loss of validity of some assumptions such as the hypothesis
of one-dimensional laminar flow. When the infinitely long
pipe hypothesis is valid, according to Gruntfest et al. (1964),
it is legitimate to assume that above the critical values (Gcrit,
τcrit), other diffusive processes are triggered, allowing a more
efficient heat and momentum transfer.

Instead, whenG < Gcrit, the temperature and velocity pro-
files tend to the steady-state solutions described by:

d2θ

dζ 2
+ Geθζ 2

= 0 (13)

Eq. (13) was widely studied in the past, and it is well known
that it has no solutions forG > Gcrit, whereGcrit is a criti-
cal value (Joseph, 1964). Below the critical value, for each
G there are two solutions corresponding to different tem-
perature profiles: one at low temperature, and one at high
temperature (see Fig. 8). For some years, the existence of
multiple solutions corresponding to a given “shear-stress”G
was discussed in the literature, and the stability of the solu-
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tion in the higher branch was investigated. This depends on
which is the controlling variable of the problem: the veloc-
ity or the shear stress (John and Narayanan, 1997). More-
over, the relevance of the boundary conditions to the multi-
ple steady-states and the stability of the solution was investi-
gated in the contest of asthenospheric shear flow (Yuen and
Schubert, 1977). A complete review on this argument un-
til 1974 is reported by Sukanek and Laurence (1974), and
more recently by Becker and McKinley (2000). In summary,
in the Poiseuille flow between two parallel planes, when the
non-dimensional “shear-stress” parameterG is greater than
a critical valueGcrit(' 5.64), Eq. (13) has no solutions; for
G = Gcrit it has one solution; and forG < Gcrit it has two
solutions, one of which (the one with greater temperature)
may be unstable. ForG < Gcrit, typical profiles of the non-
dimensional temperatureθ , and velocityu/U0 that satisfy
Eq. (6), Eq. (7) and the imposed boundary conditions, are
characterized by a maximum in the centre of the tube.

2.2 Finite length tube

From the thermal point of view, magma flows at high Peclét
number cannot be described by assuming infinitely long
tubes. At high Peclét numbers, the leading term in the left
side of Eq. (3) is the advective term, containing the longi-
tudinal gradient of the temperature (e.g. Lawal and Kalyon,
1997). Including only the relevant terms, the transport equa-
tions (mass, momentum and energy balance) for finite length
tubes, in non-dimensional form are:∫ 1

0
udζ = q (mass)

∂u

∂ζ
=

(
∂p

∂ξ
− sinα

)
ζeθ (momentum)

Pe∗u
∂θ

∂ξ
=
∂2θ

∂ζ 2
+Na∗

(
∂u

∂ζ

)2

e−θ (energy)

(14)

where u = U/U∗ with U∗
= ρgH 2/µ0, and p non-

dimensional pressure (p = P/ρgH ); moreover:

q =
µ0Q

ρgH 3
(15)

Pe∗ =
ρ2cgH 3

kµ0
=
Pe

q
(16)

Na∗
=
βρ2g2H 4

kµ0
=
Na0

q2
(17)

whereNa∗ and Pe∗ are the Nahme and the Peclét num-
bers based on the characteristic velocityU∗ respectively and
Q = UH . The equation describing mass conservation is
written in integral form. To solve the equations in (14), we
assume no-slip conditions for the velocity and constant tem-
peratureTw at the walls. At the inlet we assume a parabolic
velocity profile and constant temperatureTin. Here, for sim-
plicity and according to other authors, we consider the wall

temperature as reference, i.e.T0 = Tw andB = β(Tin−Tw).
From an operative point of view, it would probably be more
convenient to set the reference temperature equal to the tem-
perature at the inlet. Of course, the physical behaviour of the
flow is independent of the choice of the reference tempera-
tureT0; this is obtained by rescaling all the parameters. As
an example, by assumingT0 = Tin, the viscosity needs to be
rescaled by a factoreB, etc.

Recently, Lawal and Kalyon (1997) found analytical so-
lutions of the simpler problem with constant viscosity and
showed typical temperature profiles with two peaks near the
walls. In our case, since we consider temperature-dependent
viscosity, we expect a feedback on the velocity profile. In
fact, using asymptotic solution method for high Nahme num-
bers, Ockendon (1979) solved the Eq. (14) taking in to con-
sideration the full advective term. These solutions describe
the evolution of a flow from the Poiseuille regime with uni-
form temperature at the conduit inlet to a plug regime char-
acterized by two peaks in the temperature profile near the
boundaries far from the inlet. Since the ratioLt/Lm (equal
to the Prandtl number) is very high, it is legitimate to assume
that the flow is fully developed, by the mechanical point of
view, almost at the tube inlet. The characteristic distance
from the inlet where the viscous heating becomes relevant, is
ξ∗

∼ PeNa−3/2 (Ockendon, 1979) (using data from Table 1
this gives 50÷ 5000m for a conduit width of 5m). Under
more general conditions, Schneider (1976) found numerical
solutions of the viscous heating problem, showing clearly
that the deviation from the Newtonian behaviour may have
a thermal origin in fluids with temperature-dependent vis-
cosity. When the viscous dissipation becomes important, its
effect overcomes the thermal cooling from the walls produc-
ing a maximum in the temperature profile near the walls and
a consequent plug-like velocity distribution. These effects
increase with distance from the inlet and, unexpectedly, the
maximum temperature gets more pronounced when the tem-
peratures at the walls get lower. Similar results were obtained
by Galili et al. (1975) using perturbative methods: they found
that the flow rate is not proportional to the longitudinal pres-
sure gradient and the apparent viscosity of a Newtonian fluid
depends on the shear rate because of the viscous dissipation.

We solve Eq. (14) by using a finite-difference method with
an implicit scheme for the integration along directionξ ; the
pressure gradient is iteratively adjusted at each step in order
to satisfy mass conservation. For symmetry we investigate
only half a channel (0≤ ζ ≤ 1). We find that the process is
controlled by four parameters: a Peclét numberPe, a Nahme
numberNa∗, the non-dimensional flow rateq, and the non-
dimensional input temperatureB. However, since we focus
on magma flows in tubes, we setPe = 107 as a typical value,
and we perform a parametric study on the others.

In Fig. 9 and 10, we show a solution of Eq. (14) for dif-
ferent non-dimensional distance from the inlet: fromξ = 0
to ξ = 104. Starting with uniform temperature (θ = 0)
and parabolic velocity profile at the inlet, the flow evolves
gradually to a plug-like velocity profile with two symmetric
peaks in the temperature distribution. In this case we used
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Fig. 9. Longitudinal evolution of the non-dimensional temperature
profile Pe = 107, Na∗

= 100,q = 1, B = 0 for different non-
dimensional distance from the inlet (10−3ξ = 0,2,4,6,8,10).

Fig. 10. Longitudinal evolution of the non-dimensional velocity
profile Pe = 107, Na∗

= 100,q = 1, B = 0 for different non-
dimensional distance from the inlet (10−3ξ = 0,2,4,6,8,10).

Na∗
= 100,q = 1 andB = 0 and the viscous dissipation

effects become important only for high values ofξ . Instead
in Fig. 11 and 12 the solutions forNa∗

= 1000,q = 1 and
B = 0 are shown; these results are qualitatively similar to
the previous ones but the temperature peaks are more pro-
nounced and the length scale for the development of the plug
flow is lower than before (practically, the transition occurs
for ξ = 1000).

When the viscous heating is important withB > 0, the
typical temperature profile shows low values at the walls with
peaks near the walls, as reported in Fig. 13. As shown in
Fig. 14, starting with a parabolic velocity profile at the inlet
(ξ = 0), the flow migrates to a plug-like regime downstream.
By increasingB, the peak in the temperature profile moves
towards the centre of the channel.

In general, viscous heating becomes important when ei-
ther the Nahme number (Na∗) or the non-dimensional flow

Fig. 11. Longitudinal evolution of the non-dimensional tem-
perature profilePe = 107, Na∗

= 1000, q = 1, B =

0 for different non-dimensional distance from the inlet (ξ =

0,200,400,600, 800,1000).

Fig. 12. Longitudinal evolution of the non-dimensional ve-
locity profile Pe = 107, Na∗

= 1000, q = 1, B =

0 for different non-dimensional distance from the inlet (ξ =

0,200,400,600, 800,1000).

rate (q) increase. For comparison, in Fig. 15 and 16, we
show the evolution of the temperature and velocity profiles
in a case similar to Fig. 9 and 10, but with adiabatic thermal
conditions at the walls. In this case, as expected, the temper-
ature increases more than the case of isothermal walls, and
the the velocity profile shows a more pronounced plug-like
behaviour.

2.3 Velocity field stability and secondary flows

The energy equation of fluids with temperature-dependent
viscosity in infinitely long flows is similar to the equation
which governs chemical explosive processes in some mate-
rials (described by the Frank-Kamenetski equation, 1939).
In this last case, when the parameter corresponding toG is
greater than its critical value, ignition occurs. In fluids, how-
ever, other multidimensional degrees of freedom can be ac-
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Fig. 13.Longitudinal evolution of the non-dimensional temperature
profilePe = 107, Na∗

= 1000,q = 4, B = 4 for different non-
dimensional distance from the inlet (10−3ξ = 0,2,4,6,8,10).

Fig. 14. Longitudinal evolution of the non-dimensional velocity
profilePe = 107, Na∗

= 1000,q = 4, B = 4 for different non-
dimensional distance from the inlet (10−3ξ = 0,2,4,6,8,10).

tivated without the occurrence of extreme events. For ex-
ample, in flows between two parallel planes, cylindrical sec-
ondary flows can develop near the walls, or toroidal sec-
ondary flows can occur in circular pipes.

Due to the strong coupling between viscosity and temper-
ature, the thermal instability generated by viscous heating
may trigger an instability in the velocity field, which can-
not be predicted by a simple isothermal newtonian models.
When the viscous heating produces sharp peak in the tem-
perature profile near the walls, with consequent strong in-
crease in the viscosity gradient, a triggering of instabilities
and the transition to secondary flows (with more efficient
thermal and mechanical diffusion) is possible. The stability
of the plane Couette flow was recently re-examined by Yueh
and Weng (1996), who improve the results previously found
by Sukanek et al. (1973). The flow shows two different in-
stability modes: the former arises in the non-viscous limit,
and the latter is due to the viscosity stratification (Yueh and

Fig. 15.Longitudinal evolution of the non-dimensional temperature
profilePe = 107,Na∗

= 100,q = 1, adiabatic walls, for different
non-dimensional distance from the inlet (10−3ξ = 0, 2,4, 6,8, 10).

Fig. 16. Longitudinal evolution of the non-dimensional velocity
profilePe = 107,Na∗

= 100,q = 1, adiabatic walls, for different
non-dimensional distance from the inlet (10−3ξ = 0, 2,4, 6,8, 10).

Weng, 1996). For this last instability mode, it was numeri-
cally demonstrated that the critical Reynolds number (Rec),
above which the flow becomes turbulent, decreases with the
increase of the Nahme number (Na), that is with the viscous
heating. This behaviour is confirmed by recent experiments
performed by White and Muller (2000). In these experi-
ments, the authors use a temperature-dependent fluid (glyc-
erin) and a Taylor-Couette device which allows the tracking
of vortex by a laser particle tracer. Results clearly show that,
above a critical Nahme number, an instability appears at a
Reynolds number one order of magnitude lower than the cor-
responding Reynolds number predicted for isothermal flow.

Moreover, the triggering of the instability in the laminar
flow and the activation of new secondary flows are confirmed
by our 2-D direct numerical simulations of the complete
Navier-Stokes equations, which will be the subject of a fur-
ther work.
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Table 1. Parameters characteristic of lava flows.

ρ 2500 kg/m3

β 0.04 K−1

c 1000 J kg−1K−1

k 2.0 W m−1K−1

Ts 1173 K

Tin 1373 K

µ(Tin) 500 Pa s

U 1÷10 m/s

2H 0.5÷ 5 m

3 Implications for lava flows

In this section we apply the previous theoretical results to the
study of lava and magma flows in tubes. We take the typical
magma parameters reported in Table 1 as representative, but
the obtained results can be easily generalized.

Following Bruce and Huppert (1989),Tw is the tempera-
ture at the wall, which is defined as the temperature at which
crystallization of magma ceases the flow. Here, we estimate
Tw as the temperature in the mid-range betweenTin and the
solidification temperatureTs : therefore, we useT0 = Tw ≈

1273 K. From this value ofTw and from the values ofβ and
Tin, reported in Table 1, we haveB = β(Tin − Tw) ≈ 4 and
µ0 = µ(Tin) · eB ≈ 30, 000 Pa s. Using the other values
reported in Table 1, we obtain the following characteristic
non-dimensional numbers:

q = µ0Q/ρgH
3 1 ÷ 10

Na0 = µ0U
2β/k 6 · 102

÷ 6 · 104

Pe = ρcUH/k 3 · 105
÷ 3 · 107

Pr0 = cµ0/k 1.5 · 107

Na = µ(Tin)U
2β/k 1 ÷ 103

Re = ρUH/µ(Tin) 1 ÷ 100
Pr = cµ(Tin)/k 3 · 105

(18)

The last three numbers in Eq. (18) are the Nahme, the
Reynolds and the Prandtl numbers based onµ(Tin), respec-
tively, and are reported just for completeness.

The values of the non-dimensional numbers reported in
Eq. (18) allow for the application of the model described
above for lava and magma flows. In fact, the high Peclét
number results in a very fast advective transport and vali-
dates the assumption of the lubrication theory. Concerning
the effects of viscous heating on magma flows, we found that
for the lower value of the non-dimensional flow rate consid-
ered in our study (q = 1) andNa∗

= Na0/q
2 . 1000, the

cooling effects prevail on the viscous heating. This becomes
dominant forNa∗

∼ 104 showing velocity and temperature
profiles similar to those reported in Fig. 13 and 14. Instead,
at high flow rates (q = 10), the corresponding values ofNa∗

are lower: the viscous heating effects are dominant even at
Na∗

∼ 100 whereas forNa∗ . 10 cooling effects prevail.
Since these conditions are usual in magma flows, it should

be possible to observe viscous heating effects in the natural
environment.

For magma flows in eruptive conduits, recently, Polacci
et al. (2001) emphasized the importance of the viscous heat-
ing in magma flow during volcanic eruptions to explain
the creation and the discharge of two different varieties of
pumice. In their scheme, one type of pumice originates in
the region with greater temperature and higher strain rate
near the conduit walls, whereas the other type is generated
in the central part of the conduit with lower strain rate and
temperature.

For lava flows, field evidences corresponding to the start-
ing of secondary flows, previously described, are possibly
represented by the “roller vortex” phenomenon (Booth and
Self, 1973) and by the thermal erosion observed by Greeley
et al. (1998) where the authors find “unequivocal evidence
for thermal erosion” in lava tubes at Cave Basalt, Mt. St. He-
lens for which the dynamic analysis indicates laminar flows.
It is known that the turbulent flow is more effective in ero-
sion than the laminar flow because of the higher heat transfer
rate (Hulme, 1973; Greeley et al., 1998); moreover prelim-
inary studies show that purely thermal erosion by laminar
flow is very difficult unless the substrate is of much lower
melting temperature than the eroding fluid (Greeley et al.,
1998). Field studies report that during the Kilauea erup-
tion in 1994, lava eroded 5 m of the basaltic substrate with
an average erosion rate of 10 cm/day at low Reynolds num-
bers between 16 and 64 (Kauahikaua et al., 1998). Such
high erosion rates highlight the difficulties that arise when
trying to explain thermal erosion in laminar flows. More-
over, Kauahikaua et al. (1998) show that the Jeffreys equa-
tion that relates the velocity and the flow depth in a lami-
nar flow is less adequate than other relations valid for turbu-
lent flows such as the equation of Goncharov-Chezy, even for
flows at low Reynolds numbers. Concerning the temperature,
Kauahikaua et al. (1998) report the interesting and puzzling
observations of some temperature measurements greater than
the magma temperature at the vent and even greater that the
upper limit of the temperature range of the used radiometer
(about 1200◦C). An explanation of this phenomenon could
be the local increase of temperature near the walls caused by
the viscous heating, as previously described. Other authors
also report the evidence of vortices associated with the begin-
ning of turbulence in active lava flows (Keszthely and Self,
1998) and the onset of complex flow patterns Greeley (1987);
Lipman and Banks (1987); Crisp and Baloga (1994); Calvari
and Pinkerton (1998). The inadequacy of pure laminar flows
to explain field observation such as mixing and streamlines
breaking has been well known since the sixties when the not
widely accepted term of “disrupted flow” was introduced to
describe a flow with characteristics between pure laminar and
turbulent (for a discussion see Baloga et al., 1995). Moreover
basal temperature measurements carried out by Keszthelyi
(1995) show that temperature at the base of some flows in-
creases after some initial cooling. This behaviour cannot be
predicted by a simple conductive model but can be explained
using a correct physical model which correctly describes vis-
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cous heating effects.
At Etna, during the eruption of 1971, secondary rotational

flows were observed near the walls in flows confined between
levees or in deep channels (Booth and Self, 1973). These sec-
ondary flows consist of two elicoidal patterns symmetrical to
the centre of the flow. Booth and Self (1973), because of
the low Reynolds number, exclude any turbulent flow, and
try to explain these rotational flows invoking other causes
and other, sometimes weak, argumentations. We think that
the observed phenomena reported by Booth and Self (1973)
could be interpreted as the secondary flows triggered by a
pronounced viscous heating. The rotational flows, which al-
low the mixing of the fluid along sections orthogonal to the
direction of the flow, invoked in the model of lava flows with
two thermal components by Crisp and Baloga (1990), could
have a similar interpretation.

Moreover, exploration and investigations on terrestrial
planets and satellites demonstrated that their lava channels
are typically larger than the corresponding channels on the
Earth. To account for the large sizes of lunar and martian
channels Hulme (1973, 1982) and Carr (1974) proposed that
lavas eroded the ground over which they flowed (see also
Baloga et al., 1995). Our model could be used to investi-
gate whether the action of secondary flows caused by vis-
cous heating could have eroded the preflow surface more ef-
ficiently than laminar flows.

We wish to remark that the proposed model is applicable
to slab flows, but it easily generalizable to flows in circular
pipes. Moreover, modeling of magma and lava flows needs
also the study of open channels with free surface and differ-
ent types of thermal boundary conditions, not considered in
the present study. In particular, a more realistic description
should account for the temperature variations of the ambi-
ent medium, that needs the introduction of additional con-
trol parameters such as the Nusselt number which measures
how much the heat transferred through the boundaries is con-
ducted away.

Finally, an accurate study of the flow instabilities and the
triggering of secondary flows needs the solution of the com-
plete transport equations in 2-D or 3-D, which is the subject
of a further work in preparation.

4 Conclusions

The effects of viscous heat generation in fluids with strongly
temperature-dependent viscosity such as silicate melts are in-
vestigated. These effects can play an important role in the
dynamics of magma flow in conduits and lava flows in tubes.
In fact, viscous friction generates a local increase in temper-
ature near the tube walls, with consequent increase of the
fluid velocity because of the viscosity decrease. In the case
of infinitely long tubes, one-dimensional models predict that
viscous heating can lead to a positive feed-back known as
“thermal runaway”. Actually, as described by 2-D and 3-
D models, this feed-back causes the activation of other de-
grees of freedom, with the production of local instabilities

and the triggering of secondary flows. However, the typical
high value of the Peclét number in magma flows does not al-
low the assumption of an infinitely long tube (from the ther-
mal point of view), and a model for magma flow in tubes of
finite length is needed, as described in the paper. In general,
this process is controlled by the value of the Nahme number,
the flow rate, the Peclét number, and the thermal conditions
at the inlet. By adopting such a model, and typical values of
the parameters for lava flows in tubes, we find that starting
from a constant temperature and parabolic velocity profile at
the tube inlet, viscous heating causes the increase of the tem-
perature near the walls, with a consequent local viscosity de-
crease. This can lead to the formation of a plug-like velocity
profile, commonly observed in lava flows, and explained only
by assuming a Binghamian rheology. Moreover, the presence
of an inflex in the velocity profile near the walls can lead to
the formation of local flow instabilities, even at low Reynolds
numbers. The assumption of isothermal boundary conditions
at the walls, although simplifying, is probably too restrictive;
however, by assuming adiabatic conditions, the qualitative
character of the flow does not seem to change dramatically
in tubes of finite length. We hope that this work will provide
a motivation for further theoretical and field investigations
of viscous heating effects in magma flows. In particular, the
formation of vortices in active lava flows at low Reynolds
numbers, thermal erosion, temperature and velocity profile.
Moreover, the effects viscous dissipation in volcanic con-
duits could have an important role on the dynamics of the
both effusive and explosive eruptions.

Acknowledgements.This work was supported by the European
Commission (Contract ENV4-CT98-0713), and by the Gruppo
Nazionale per la Vulcanologia (INGV). We are grateful to all the
researchers who contributed to improve the manuscript with their
helpful suggestions, and in particular to A. Neri. Finally we wish to
thank S. Baloga and the anonymous referees of this paper.

References

Anderson, O. and Perkins, P.: Runaway temperatures in the as-
thenosphere resulting from viscous heating, J. Geophys. Res., 79,
2136–2138, 1974.

Baloga, S. and Pieri, D.: Time-dependent lava flows, J. Geophys.
Res., 91, 9543–9552, 1986.

Baloga, S., Spudis, P., and Guest, J.: The dynamics of rapidly em-
placed terrestrial lava flows and implications for planetary vol-
canism, J. Geophys. Res., 100, 24 509–24 519, 1995.

Becker, L. and McKinley, G.: The stability of viscoelastic creeping
plane shear flows with viscous heating, J. Non-Newtonian Fluid
Mech., 92, 109–133, 2000.

Booth, B. and Self, S.: Rheological features of the 1971 Mount Etna
lavas, Phil. Trans. R. Soc. Lond., A., 274, 99–106, 1973.

Bruce, P. and Huppert, H.: Thermal control of basaltic fissure erup-
tions, Nature, 342, 665–667, 1989.

Calvari, S. and Pinkerton, H.: Formation of lava tubes and exten-
sive flow field during the 1991-1993 eruption of Mount Etna, J.
Geophys. Res., 103, 27 291–27 301, 1998.

Calvari, S. and Pinkerton, H.: Lava tube morphology on Etna and
evidence for lava flow emplacement mechanisms, J. Volcanol.
Geotherm. Res., 90, 263–280, 1999.



A. Costa and G. Macedonio: Viscous heating in fluids with temperature-dependent viscosity 555

Carr, M.: The role of lava erosion in the formation of lunar rilles
and martian channels, Icarus, 22, 1–23, 1974.

Costa, A. and Macedonio, G.: Nonlinear phenomena in fluids
with temperature-dependent viscosity: An hysteresis model for
magma flow in conduits, Geophys. Res. Lett., 29(10), 1402–
1405, 2002.

Craik, A.: The stability of plane Couette flow with viscosity strati-
fication, J. Fluid Mech., 36, 687–693, 1969.

Crisp, J. and Baloga, S.: A model for lava flows with two thermal
components, J. Geophys. Res., 95, 1255–1270, 1990.

Crisp, J. and Baloga, S.: Influence of crystallization and entrain-
ment of cooler material on the emplacement of basaltic aa lava
flows, J. Geophys. Res., 99, 11 819–11 831, 1994.

Danes, Z.: Dynamics of lava flows, J. Geophys. Res., 77, 41 430–
1432, 1972.

Dragoni, M.: A dynamical model of lava flows cooling by radiation,
Bull. Volcanol., 51, 88–95, 1989.

Dragoni, M., Piombo, A., and Tallarico, A.: A model for the for-
mation of lava tubes by roofing over a channel, J. Geophys. Res.,
100, 8435–8447, 1995.

Eckert, E. and Faghri, M.: Viscous heating of high Prandtl number
fluids with temperature-dependent viscosity, Int. J. Heat Mass
Transfer, 29, 1177–1183, 1986.

Fujii, N. and Uyeda, S.: Thermal instabilities during flow of magma
in volcanic conduits, J. Geophys. Res., 79, 3367–3369, 1974.

Fujita, H.: On the nonlinear equation1u + eu = 0 and∂v/∂t =

1v + ev , Bull. Am. Math. Soc., 75, 132–135, 1969.
Galili, N., Takserman-Krozer, R., and Rigbi, Z.: Heat and pressure

effect in viscous flow through a pipe. 1. General formulation and
basic solution, Rheol. Acta, 14, 550–557, 1975.

Greeley, R.: The role of lava tubes in Hawaiian volcanoes, in: Vol-
canism in Hawaii, edited by Decker, R., Wright, T., and Stauffer,
P., chap. 59, pp. 1589–1602, U.S. Geol. Surv. Prof. Pap. 1350,
1987.

Greeley, R., Fagents, S., Harris, R., Kadel, S., Williams, D., and
Guest, J.: Erosion by flowing lava: field evidence, J. Geophys.
Res., 103, 27 325–27 346, 1998.

Gruntfest, I., Young, J., and Johnson, N.: Temperature generated by
the flow of liquids in pipes, J. Appl. Phys., 35, 18–22, 1964.

Hansen, U. and Yuen, D.: Potential role played by viscous heat-
ing in thermal-chemical convection in the outer core, Geochim.
Cosmochim. Acta, 60, 1113–1123, 1996.

Hulme, G.: Turbulent lava flows and the formation of lunar sinuous
rilles, Mod. Geol., 4, 107–117, 1973.

Hulme, G.: A review of lava flow processes related to the formation
of lunar sinuous rilles, Geophys. Surv., 5, 245–279, 1982.

John, L. and Narayanan, R.: Frictional heating in plane Couette
flow, Proc. R. Soc. Lond., A, 453, 1653–1670, 1997.

Joseph, D.: Variable viscosity effects on the flow and stability of
flow in channels and pipes, Phys. Fluids, 7, 1761–1771, 1964.

Kauahikaua, J., Cashman, K., Mattox, T., Heliker, C., Hon, K.,
Mangan, K., and Thornber, C.: Observation on basaltic lava
streams in tubes from Kilauea Volcano, island of Hawaii, J. Geo-
phys. Res., 103, 27 303–27 324, 1998.

Keszthely, L. and Self, S.: Some physical requirements for the em-
placement of long basaltic lava flows, J. Geophys. Res., 103,
27 447–27 464, 1998.

Keszthelyi, L.: Measurements of the cooling at the base of pahoe-
hoe flows, Geophys. Res. Lett., 22, 2195–2198, 1995.

Larsen, T., Yuen, D., and Malevsky, A.: Dynamical consequences
on fast subducting slabs from a self-regulating mechanism due to
viscous heating in variable viscosity convection, Geophys. Res.

Lett., 22, 1277–1280, 1995.
Larsen, T., Yuen, D., Smedsmo, J., and Malevsky, A.: Generation of

fast timescale phenomena in thermo-mechanical processes, Phys.
Earth Planet. Inter., 102, 312–322, 1997.

Lawal, A. and Kalyon, D.: Viscous heating in nonisothermal die
flows of viscoplastic fluids with wall slip, Chem. Eng. Sci., 52,
1323–1337, 1997.

Lipman, P. W. and Banks, N. G.: Aa flow dynamics, Mauna Loa
1984, in: Volcanism in Hawaii, edited by Decker, R., Wright, T.,
and Stauffer, P., chap. 59, pp. 1527–1567, U.S. Geol. Surv. Prof.
Pap. 1350, 1987.

Moore, W., Schubert, G., and Tackley, P.: Three-dimensional sim-
ulations of plume-lithosphere interaction at Hawaiian swell, Sci-
ence, 279, 1008, 1998.

Ockendon, H.: Channel flow with temperature-dependent viscosity
and internal viscous dissipation, J. Fluid Mech., 93, 737–746,
1979.

Park, S. and Iversen, J.: Dynamics of lava flow: thickness growth
characteristics of steady two dimensional flow, Geophys. Res.
Lett., 11, 641–644, 1984.

Pearson, J.: Instability in non-newtonian flow, Ann. Rev. Fluid
Mech., 172, 163–181, 1976.

Pearson, J.: Variable-viscosity flows in channels with high heat gen-
eration, J. Fluid Mech., 83, 191–206, 1977.

Peterson, D., Holcomb, R., Tilling, R., and Christiansen, R.: Devel-
opment of lava tubes in the light of observations at Mauna Ulu,
Kilauea Volcano, Hawaii, Bull. Volcanol., 56, 343–360, 1994.

Polacci, M., Papale, P., and Rosi, M.: Textural heterogeneities in
pumices from the climactic eruption of Mount Pinatubo, 15 June
1991, and implication for magma ascent dynamics, Bull. Vol-
canol., 63, 83–97, 2001.

Renardy, Y.: Viscosity and density stratification in vertical
Poiseuille flow, Phys. Fluids, 30, 1638–1648, 1987.

Renardy, Y. and Joseph, D.: Couette flow of two fluids between
concentric cylinders, J. Fluid Mech., 150, 381–394, 1985.

Schneider, J.: Einige Ergebnisse der theoretischen Untersuchung
der Str̈omung hochviskoser Medien mit temperatur- und druck-
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