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Abstract. A numerical analysis is made on the appearance
of oceanic internal solitary waves in a multi-modal setting.
This is done for observed profiles of stratification from the
Sulu Sea and the Bay of Biscay, in which thermocline motion
is dominated by the first and third mode, respectively. The
results show that persistent solitary waves occur only in the
former case, in accordance with the observations. In the Bay
of Biscay much energy is transferred from the third mode
to lower modes, implying that a uni-modal approach would
not have been appropriate. To elaborate on these results in a
systematic way, a simple model for the stratification is used;
an interpretation is given in terms of regimes of thermocline
strength.

1 Introduction

Internal solitary waves in the ocean have been conceived pre-
dominantly from the viewpoint of interfacial waves, see e.g.
the mechanisms for their generation as put forward by Max-
worthy (1979), Osborne and Burch (1980) and Apel et al.
(1985). Even if the notion of continuous stratification was
adopted (involving, in principle, a set of vertical modes),
then in semi-analytical studies still only one mode was se-
lected (e.g. Lee and Beardsley, 1974; Liu et al., 1985; New
and Pingree, 2000). Such a restriction is attractive because it
allows one to reduce the equations to simple evolution equa-
tions like Korteweg-de Vries (KdV) equation or kindred soli-
ton equations. This uni-modal approach rests on the (tacit)
assumption that the selected mode would not be disturbed if
other modes were present, i.e. would not be susceptible to
inter-modal interaction. The main purpose of this paper is to
delineate the conditions under which this assumption can be
expected to be valid.

In purely numerical studies on solitary waves there is no
need to make a uni-modal assumption. For example in the
model developed and used by Lamb (1994), which allows
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for a continuous stratification, many modes are implicitly
taken into account. Yet, if possible, it is attractive to interpret
the model results by making a connection with simple and
well-understood analytical theory (like KdV); thus it is im-
portant to know under what conditions a simple (uni-modal)
approach is justifiable.

On the observational side, two contrasting types of be-
haviour have been described in the literature. Internal soli-
tary waves may show a remarkable longevity, like in the Sulu
Sea (Apel et al., 1985), where they travel distances of over
450 km, until they reach the coast of Palawan Island, where
they still are energetical enough to create considerable se-
iches in Puerto Princesa harbor (Giese et al., 1998). In this
case a uni-modal approach seems appropriate: the solitary
waves are well described by the first mode alone, which here
has its maximum near the thermocline, giving the mode an
interfacial character. The whole process of generation and
propagation can indeed be described entirely in terms of this
“interfacial” mode (Liu et al., 1985; Gerkema, 1994).

The behaviour of internal solitary waves in the Bay of Bis-
cay offers a remarkable contrast, both in their generation and
propagation. The generation process, the observational ev-
idence of which is described by New and Pingree (1990,
1992); New and Da Silva (2002), is now well-understood; the
initial thermocline disturbance from which the solitary waves
emerge is provoked by scattering of an incoming internal-
tide beam at the thermocline (Gerkema, 2001), the scattering
itself being an essentially linear process. It was also found
that the solitary waves decay fairly rapidly (New and Pin-
gree, 1992), which is quite unlike the observations in the Sulu
Sea. The very fact that an internal-tide beam is crucial ren-
ders a uni-modal approach inadequate (since the description
of a beam requires a number of modes to be included). Yet
if one would start the analysis by regarding the thermocline
disturbance as given, then its later evolution would possibly
(but not necessarily) be well represented by one single mode
(in this case: the third mode, see Sect. 3). This approach was
followed by New and Pingree (2000); here we will explore
to what extent it can be justified.
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In a previous study (Gerkema, 2001), the generation pro-
cess in the Bay of Biscay was studied with a simple nonlin-
ear nonhydrostatic internal-tide generation model, using 12–
15 modes. No explicit analysis was made of energy transfer
between modes, as we will do here; to this end we study
the evolution of a given initial profile (instead of incorpo-
rating a full generation mechanism), and take into account
the main modes. First a brief description of the model is
given (Sect. 2), with an additional discussion on the formu-
lation of energy-conservation. Then we apply the model to
the Sulu Sea and Bay of Biscay, using the observed profiles
of the buoyancy frequency (Sect. 3). Finally, we use a simple
model for the stratification (“2c-layer”) to study the differ-
ences found in the previous section in a systematic way, in
terms of stratification regimes, measured by the strength of
the thermocline.

2 Model equations

The model used here includes nonlinear and nonhydrostatic
effects, but is frictionless, and uniform in one of the hori-
zontal directions (y). Coriolis effects will be ignored here
(except at one instance in Sect. 3); they are already known to
have an adverse effect on the generation of internal solitary
waves (Gerkema and Zimmerman, 1995; Gerkema, 1996).
Here we want to focus purely on the transfer of energy be-
tween modes, in the absence of other complicating factors.
The variables to be solved are the baroclinic streamfunction
ψ (u = ψz, w = −ψx) andρ, which is the density perturba-
tion with respect to its local static value (multiplied byg/ρ∗;
g the acceleration due to gravity,ρ∗ a reference value for den-
sity). The equation expressing mass conservation (∇ ·u = 0)
being automatically satisfied due to the streamfunction for-
mulation, the remaining equations are the momentum equa-
tions foru andw, combined into one equation for vorticity
(∇2ψ), and the equation expressing energy conservation:

∇
2ψt + J (∇2ψ,ψ)− ρx = 0 (1)

ρt + J (ρ,ψ)+N2ψx = 0, (2)

with ∇
2

= ∂2/∂x2
+ ∂2/∂z2; the Jacobians are defined by

J (a, b) = axbz − azbx ; N the buoyancy frequency, here
assumed to be a function of the vertical coordinatez only. In
contrast to Gerkema (2001), no forcing is included; here we
will study the evolution of a given initial depression.

2.1 Multi-modal approach

The vertical modesφn, associated with the linear hydrostatic
version of Eqs. (1,2), satisfy

φ′′
n +

N2

c2
n

φn = 0 (3)

(denoting derivatives inz by primes) along with the boundary
conditionsφn = 0 atz = 0,−H , i.e. at surface and bottom;
cn is the phase-speed of thenth mode.

We shall assume that nonlinear and nonhydrostatic effects
are weak in Eqs. (1, 2), and of equal order of strength. This
implies that results from the linear hydrostatic equations may
be used to simplify the nonlinear and dispersive terms, and
that combined effects of nonlinearity and dispersion (theψxx
in the Jacobian in Eq. 1) can be neglected. We expand the
fields in terms of the vertical modesφn:

ψ =

∞∑
n=1

an(t, x)φn(z) ; ρ =

∞∑
n=1

N2bn(t, x)φn(z) .

As was shown in detail in Gerkema (2001), using orthogo-
nality of the modes (and introducing a correction term in the
modal expansion), finally leads to the following set of equa-
tions for the modal coefficients:

ak,t − c2
kak,xxtRk + c2

k

∑
n,m

an,xam{
Skmn(

1

c2
n

−
1

c2
m

)− Tkmn
1

c2
m

}
+ c2

kbk,x = 0 (4)

bk,t +

∑
n,m{

(bn,xam − an,xbm)Skmn − an,xbmTkmn

}
+ ak,x = 0, (5)

where

Pk =

∫
dzN2φ2

k ; Rk =

∫
dz φ2

k

Pk
;

Skmn =

∫
dzN2φkφ

′
mφn

Pk
; Tkmn =

∫
dz (N2)′φkφmφn

Pk
.

Equations (4) and (5) serve as a starting point for the analysis
in the rest of this paper.

2.2 The connection between nonlinearity and stratification

Here we discuss briefly under what conditions nonlinear-
ity can play a role at all, recapitulating some known results
(LeBlond and Mysak, 1978; Ostrovsky, 1978).

First we consider the case of constant stratification (N =

Nc). As is well-known (LeBlond and Mysak, 1978), in an un-
bounded medium a monochromatic beamψ, ρ ∼ expi(kx+

mz − σ t) forms a solution of thenonlinear Eqs. (1, 2), pro-
vided that the pair (σ , m/k) satisfies the dispersion relation.
This is because all Jacobians vanish in this case. (Notice that
to arrive at Eq. (1) the Boussinesq approximation was made;
without this approximation nonlinearities of a different type
would arise that are not zero, see Benney, 1966.) A superpo-
sition of beams of different frequencies (each of which sep-
arately satisfying (Eqs. 1, 2)) does not provide a solution of
Eqs. (1, 2); this property was exploited in Shrira (1981) to de-
rive an amplitude equation for a (three-dimensional) internal-
wave packet with a narrow-band spectrum.

In systems bounded below and above (flat bottom, rigid-
lid), the propagation of a monochromatic beam involves re-
flections at the boundaries, giving superpositions of incom-
ing and outgoing beams, and non-vanishing nonlinear terms.
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This last point can be seen as follows: in such a bounded sys-
tem internal-wave propagation can be described alternatively
by vertical modes, and as the multi-modal set (Eqs. 4, 5) in-
dicates, nonlinearities are always present, even for constant
N , in which case:

Tkmn = 0 ; Skmn =
Nc

2cm
×

−1 if m = |k + n|

+1 if m = |k − n|

0 else
(6)

T vanishes because of constantN , but S does not as long
as more than one mode is present. It is only if we reduce
the set (artificially) to one mode that nonlinearity disappears
altogether from Eqs. (4, 5).

Importantly, for non-constantN nonlinear terms do not
disappear (not even in a uni-modal approach). In this sense,
one might say that the thermocline forms a major “source” of
nonlinearity, not only locally, but for the whole watercolumn.

2.3 Conservation of energy

In the following sections we will investigate (numerically)
the transfer of energy between modes. Of course, we must
check that the total energy remains constant. This entails
a complication, for it turns out that the usual definition of
internal-wave energy-density

1

2

(
ψ2
x + ψ2

z +
ρ2

N2

)
, (7)

fails; this is because we considernonlinear waves in anon-
constantly stratified medium. (As will become clear below,
Eq. (7) represents energy-density only if one of the “nons”
were skipped.) A correction to Eq. (7) can be found in
Miropol’sky (2001); however, only a sketch of the deriva-
tion is given there, involving a Hamiltonian formulation. As
an alternative, we here provide a rather more detailed and
elementary derivation, with some additional remarks.

It can be easily derived from Eqs. (1, 2) that the quantity

1

2
(ψ2

x + ψ2
z )+ zρ (8)

is conserved (i.e. its time derivative plus the divergence of
a flux equals zero). The expression remains conserved if
one adds the (time-independent) termzρ0, whereρ0(z) is the
static density; this gives the usual expression for kinetic plus
potential energy. Unfortunately, Eq. (8) does not provide a
suitable starting point for the calculation of energy in terms
of modes. This can be seen by considering, for example,
an initial profile of a mode given byρ = N2 sinx φn(z),
which, if substituted inzρ and integrated over one horizon-
tal wavelength, appears to contain as much energy as does
ρ = 0, which of course must be false. (Recall thatρ does
not denote density itself but the density perturbation due to
wave-motion.) The underlying cause is that the modal series
as such represent infinitesimal displacements, and we should
first make explicit the nonlinear effects implicitly contained
in zρ before we insert the modal expressions (thus spoiling,

however, the exactness). This is most easily done by return-
ing to Eq. (1), which after multiplication byψ and rearrang-
ing of terms becomes:

−
1

2
[ψ2
x + ψ2

z ]t + [ψψxt ]x + [ψψzt ]z

+[(∇2ψ)ψψz]x − [(∇2ψ)ψψx]z − ψρx = 0. (9)

We rewrite the last term as−[ψρ]x + ψxρ, in which the
second term (−wρ) can be reduced by expressingw in terms
of isopycnal displacementsη, and then expressingη in terms
of ρ. In the first step we use the condition for a material
interface

w(t, x, z+ η) = ηt (t, x, z)+ u(t, x, z+ η)ηx(t, x, z), (10)

whereη(t, x, z) denotes the isopycnal displacement of the
surface that would lie at depthz if the fluid were at rest. It is
important here to denote the arguments explicitly, since what
we need isw at depthz (instead of atz + η), so we must
develop Eq. (10) in a Taylor expansion, the first few terms of
which are

w + wzη + · · · = ηt + uηx + · · · ,

wherew andu are now evaluated at depthz. At lowest order
this givesw = ηt , and hence at the next order we find

w = ηt + uηx − ηηtz + · · · . (11)

A connection betweenη andρ can be obtained from the iden-
tity ρ̄(t, x, z + η) = ρ0(z), which holds for incompressible
fluids (hereρ0 denotes the static density distribution;ρ0, ρ
and ρ̄ = ρ0 + ρ have been multiplied byg/ρ∗ for conve-
nience, henceN2

= −ρ0,z). Developing the identity in a
Taylor expansion aroundz, we obtain

ρ0 + ρ0,zη +
1

2
ρ0,zzη

2
+ · · · + ρ + ρzη + · · · = ρ0 ,

in which the quantities are now evaluated atz. Hence

−N2η −
1

2
(N2)zη

2
+ ρ + ρzη + · · · = 0 .

At lowest order this givesρ = N2η, and using this result in
the quadratic terms we find, at next order,

N2η = ρ + ρz
ρ

N2
−

1

2
(N2)z

( ρ

N2

)2
+ · · · . (12)

Using Eq. (11) and Eq. (12), and neglecting terms of orders
higher than cubic, we finally obtain

wρ =
1

2

( ρ2

N2

)
t
+

1

6
(N2)z

( ρ3

N6

)
t
+

1

2

[
ψz
ρ2

N2

]
x

+
1

2

[ρ2ρt

N4

]
z
, (13)

in which the last two terms are in conservative form. Hence
we find from Eq. (9) that the expression

1

2

(
ψ2
x + ψ2

z +
ρ2

N2
+

1

3

ρ3

N6
(N2)z

)
(14)

represents a conserved quantity if we neglect nonlinear terms
higher than cubic; this is the correction to Eq. (7).
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Fig. 1. The profiles ofN for the Sulu Sea(a), and the Bay of Biscay
(c), after Apel et al. (1985) and Pingree and New (1991), respec-
tively. The corresponding modal structures ((b) and(d)) have been
obtained by solving Eq. (3); the first, second and third modes are
indicated by thin, dotted and thick lines, respectively.

Henceforth we will use Eq. (14); although still not an ex-
actly conserved quantity, it suffices for our purposes. Higher-
order terms could be obtained if needed, either by the proce-
dure we used above, or by the one described by Miropol’sky
(2001).

Finally, we emphasize again the importance of writing
down the arguments in Eq. (10); their omission may cause
confusion. For example, the conservation law in Apel (1987,
Eq. 4.70), in which the potential energy is described byρη

(in our notation), has the appearance of being exact, whereas
in fact it is valid only at lowest order (to obtain it use was
made of Eq. (10), but since the arguments are omitted it is no
longer clear that the derivation involves an approximation).

2.4 2c-layer stratification

In Sect. 4 we shall use a “2c-layer” model (Baines, 1982;
Gerkema, 2001): it consists of an unstratified upper layer, a
constantly stratified lower layer, and a jump in density across
the interface, which represents the thermocline. Thus:

N2(z) = g′δ(z+ d)+N2
c2(−z− d) . (15)

Here2 is the Heaviside-step function (being 1 for positive
argument and zero elsewhere);δ the delta-distribution;g′ is
reduced gravity, i.e. the accelerationg multiplied by the rel-
ative difference in density across the interface;d denotes the
depth of the thermocline (interface).

For thisN(z), the eigenvalue problem (Eq. 3) yields

φn(z) =

{
−
z
d

sinqn(H − d) −d < z < 0
sinqn(z+H) −H < z < −d .

(16)

qnd =

(g′d

c2
n

− 1
)

tanqn(H − d) (17)

0 50 100 150 200 250 300
−800

−600
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−200

0
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b n

Fig. 2. The evolution of an initial first-mode depression, for a strat-
ification as in Sulu Sea. A train of solitary waves emerges, and in
each of them the higher modes give a small contribution. Modes
indicated as in the previous figure. Time-lapse between subsequent
stages is 4.5 h.

in which qn = Nc/cn. The eigenvaluescn can be solved
numerically from the dispersion relation (Eq. 17) for given
parametersd, H, g′ andNc. For this stratification the in-
tegral expressions forPk etc. are given in analytical form in
Gerkema (2001), and will not be reproduced here.

3 Sulu Sea versus Bay of Biscay

In this section we elaborate on the distinction between the
Sulu Sea and the Bay of Biscay, as regards the behaviour of
internal solitary waves. A distinctive feature can immedi-
ately be seen in the modal structures, shown in Fig. 1 (note:
here and throughout the rest of this paper, we use thin solid
lines for the first mode, dotted lines for the second mode,
and thick solid lines for the third mode). Whereas in the
Sulu Sea thefirst mode has its maximum at the base of the
thermocline, in the Bay of Biscay thethird mode has a (lo-
cal) maximum at the thermocline. Hence we expect an initial
depression of the thermocline in these two regions to be dom-
inated by the first mode and the third mode, respectively; this
is in line with earlier uni-modal numerical studies (Liu et al.,
1985; Gerkema, 1994; New and Pingree, 2000, the first two
dealing with the Sulu Sea, the third with the Bay of Biscay).
Moreover, in the Bay of Biscay the dominance of the third
mode was confirmed observationally, see New (1988).

Here we will investigate whether a uni-modal approach
can be justified in either of the cases. In solving the multi-
modal set (Eqs. 4, 5), we take into account the first three
modes. A finite-difference method was used: a 3-point sym-
metric formula for the time-derivative (and also for the sec-
ond derivative inx), and a 5-point symmetric formula for the
horizontal derivative (see Fletcher, 1991). The coefficients
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Fig. 3. The isothermal displacements at two different depths (Sulu
Sea); due to the multi-modal character of the signal, the profiles are
dissimilar.

Pk, Rk, Skmn andTkmn, which appear in the equations, are
evaluated numerically beforehand. We present the results by
depicting the modal coefficientsb(t, x); thus we implicitly
also visualize the isopycnal displacementsη at any depth,
because

η =

3∑
n=1

bn(t, x)φn(z) , (18)

whereφn is the vertical modal structure shown in Fig. 1.
For the Sulu Sea, we take as an initial profile a first-mode

depression, choosing one of (roughly) similar size and pro-
portion as in Liu et al. (1985). To make it propagate to the
right, we choosea1 = c1b1, initially. In the finite-difference
scheme steps were1x = 100m and1t = 10s. Figure 2
shows the result of the model: the depression develops neatly
into a sequence of amplitude-ordered solitary waves. In each
of them, the first-mode structure is accompanied by a sim-
ilar but smaller third-mode structure, and an even smaller
second-mode one (the former appears in Fig. 2 as an ele-
vation, the latter as a depression). In other words, during the
evolution energy has been transferred from the first mode to
higher ones; the amount involved is small: less than 2%.

However, locally there may be noticeable effects. For ex-
ample inη (given by Eq. 18) the ratio of amplitudes of con-
secutive solitary waves is substantially different at different
depths (in a uni-modal analysis the ratio would be the same
for all depths), as can be clearly seen in Fig. 3; this is in qual-
itative agreement with the observations (Apel et al., 1985).
Put into quantitative terms, the difference is as follows: at
200 m depth the ratio of the first solitary wave to the second
is 1.54, and of the first to the third 2.68; at 100 m depth these
ratios are smaller: 1.27 and 1.89.

Apart from these effects, we can conclude (given the small
amount of energy-transfer) that a uni-modal approach, i.e.

−20 0 20 40 60 80 100
−800

−600

−400

−200

0

x (km)

b n

Fig. 4. The evolution of an initial third-mode depression, for a
stratification as in the Bay of Biscay. Initially, a train of solitary
waves develops, but soon crumbles, while the other modes partici-
pate strongly. Time-lapse between subsequent stages is 4.5 h.

ignoring modes higher than the first, would have been fairly
reasonable, at least as a first approximation.

We now turn to the Bay of Biscay, where (for the above-
mentioned reasons) the initial profile will be chosen to con-
sist of the third-mode alone, witha3 = c3b3. Here we choose
an initial profile whose integral is zero, because Coriolis ef-
fects can then be incorporated in a natural way (for a single
depression the transverse velocity component would remain
finite far away from the depression).

The evolution according to Eqs. (4, 5), for the first three
modes, is shown in Fig. 4, here without Coriolis effects.
At the early stages of development a train of solitary waves
seems to emerge, but the pattern soon becomes irregular and
the peaks (“solitary waves”) generally become smaller; also,
the first two modes soon play a prominent part. Evidence
of the latter feature is more clearly seen in the distribution
in time of energy-density, given by Eq. (14), see Fig. 5: al-
most half of the energy originally contained in the third mode
leaks away to the first two modes.

In contrast to the Sulu Sea, which is located very close to
the equator, in the Bay of Biscay Coriolis effects are not neg-
ligible in internal-tide and solitary-wave dynamics. Hence
we repeated the previous calculation, now taking Coriolis
effects into account (f = 1 · 10−4s−1). This requires an
adaptation of Eqs. (4, 5), see Gerkema (2001). In this case
(not shown) the solitary waves are less prominent, and in any
case much less form-preserving than in the previous case.
The energy transferred from the third mode to the first two
is still significant, though smaller: being about one-quarter.
All in all, the qualitative conclusions are the same as without
Coriolis effects.

To summarize, in a multi-modal analysis a clear contrast
is seen between the evolution of the “thermocline modes” in
the Sulu Sea and Bay of Biscay (first and third mode, respec-
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Fig. 5. The time-development of energy-density for each of the
participating modes; the upper line represents the total energy.

tively; other choices will be considered in the next section).
Whereas in the Sulu Sea the first-mode depression develops
into a well-defined train of persistent solitary waves with no
significant loss of energy to other modes, in the Bay of Bis-
cay the pattern is much more blurred, the solitary waves less
steady, and much energy is transferred to the first two modes.
In the next section we will generalize these results by pin-
pointing the essential difference between the two cases: the
thermocline strength.

4 Classification in terms of 2c-layer model

In this section we use the 2c-layer stratification model, see
Eq. (15), which despite its simplicity captures the two key
elements of the oceanic stratification: the presence of a ther-
mocline and a weak abyssal stratification. The model is gov-
erned by only four parameters, three of which will be kept
fixed: d = 50 m (thermocline depth),H = 4000 m (water-
depth),Nc = 0.002 s−1 (abyssal stratification). Onlyg′, the
thermocline strength, is varied (units are m s−2 – for brevity
we will not repeat them below; for a simple geometric inter-
pretation ofg′, see Gerkema, 2001).

Following Baines (1982) and Gerkema (2001), we can
distinguish three regimes A, B, and C, in which the ther-
mocline is weak, strong, and moderate, respectively. This
corresponds to a distinction in modal structures, see Fig. 6:
in A, the modal patterns are very similar to those in a con-
stantly stratified fluid (i.e. sinusoidal); in B, thefirst mode
has its maximum near the thermocline (much like an inter-
facial mode in a two-layer system); finally, in a range of in-
termediate values (C), thethird mode has an extremum near
the thermocline, while the first and second modes look much
like those in A. (There is of course a smooth transition of the
modal structures from one regime to another, but here we will
focus on the distinctive ones shown in Fig. 6.) The connec-
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Fig. 6. Modal structures for the 2c-layer model, defined by (15),
for three typical stratification regimes, in which the thermocline is:
weak or absent ((a), g′

= 0); very strong ((b), g′
= 0.4); and

moderate ((c), g′
= 0.02). Recall that the first, second and third

modes are indicated by thin, dotted and thick lines, respectively.

tion with the previous section is that Fig. 6b is reminiscent of
Fig. 1b, and Fig. 6c of Fig. 1d.

By varyingg′ we also vary the quantity

γ =
(g′d)1/2

NcH
, (19)

which in fact is the determining factor in distinguishing the
regimes (see Gerkema, 2001); this shows how we would go
from one regime to another if for instanced were varied in-
stead ofg′. As before, quantities referring to the first, second
and third mode will be plotted in thin lines, dotted lines, and
thick lines, respectively.

4.1 Development of first-mode depression

In this section we study the development of a first-mode de-
pressionb1, with a1 = c1b1 (initially) which makes the de-
pression move to the right. We consider each of the three
regimes of stratification indicated in Fig. 6, but notice that
the first-mode depression can be associated with a distinct
thermocline depression only in regime B. In all cases the first
three modes are taken into account.

For weak and moderate regimes (i.e. A and C) no solitons
emerge and the profile develops only a dispersive tail (not
shown), which is due to the dynamics of the first mode itself;
virtually no energy is transferred to the higher modes. Only
for sufficiently strong thermoclines, regime B, do solitons
emerge, see Fig. 7. Associated with each soliton is a small
elevation of the third mode (and to a lesser extent, of the sec-
ond mode too), but the contribution to the interfacial (ther-
mocline) excursion remains negligible because of the small
local values ofφ3 andφ2.

For all three values ofg′ the amount of energy transferred
from the first mode to higher modes is insignificant, be-
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Fig. 7. The development of an initial first-mode depression in
regime B (strong thermocline). Time-lapse between subsequent
stages is 4.5 h.

ing less than 0.1%; in other words, a uni-modal approach
would have been appropriate here. Notice that we deal
here only with a “free” exchange of energy; the presence
of topographic features may lead to a different outcome,
as was shown numerically and in laboratory experiments
by Vlasenko and Hutter (2001), where a first-mode profile,
when encountering a sill, lost much energy to the second
mode.

4.2 Development of third-mode depression

We now study the development of a third-mode depression
b3, with a3 = c3b3 (initially) which makes the depression
move to the right. We consider each of the three regimes
of stratification indicated in Fig. 6, but notice that the third-
mode depression can be associated with a thermocline de-
pression only in regime C. Furthermore, in none of the cases
does the profile manifest itself as a depression throughout the
water column; the change of sign inφ3 turns it into an eleva-
tion in part of the column.

For comparison, we first show the development of the
third mode in auni-modal approach, here forg′

= 0.02
(regime C), see Fig. 8: the depression evolves into a pattern
of amplitude-ordered solitary waves, like in common soliton
equations (e.g. KdV).

Since it is rather artificial to exclude other modes from tak-
ing part, we now allow the first and second modes to interact
with the third, see Fig. 9. These modes are seen to develop
oscillations at the expense of the third mode. In particular,
the first mode manifests itself as a group of high-frequency
waves, which will be most prominent half-way down the wa-
tercolumn, because the first mode has its maximum there.
This, apparently, is the origin of the oscillations noticed in
the more complicated context of earlier numerical experi-
ments (Gerkema, 2001). A conspicuous feature in Fig. 9 is a
“twin-type” solitary wave, which propagates steadily apart
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Fig. 8. Development of initial third-mode depression when all other
modes are excluded (uni-modal approach), for regime C (moderate
thermocline). Time-lapse between subsequent stages is 4.5 h.
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Fig. 9. Development of initial third-mode depression when the first
and second mode are taken into account too, again for regime C
(moderate thermocline). Time-lapse between subsequent stages is
9 h.

from a small but persistent oscillation. Although the first
mode seems least important here, it turns out that it plays a
crucial role in keeping the “twins” together (this was checked
by performing a calculation with the second and third mode
alone). Interestingly, “twin” patterns have indeed been ob-
served in the Bay of Biscay (New and Pingree, 1990). The
possibility to describe this pattern analytically by Eqs. (4, 5)
(or a simplified version of it) will not be probed here. To our
knowledge, the only analytical description of multi-modal
solitons was made by Vlasenko (1994), but this involved a
correction to the known uni-modal KdV soliton (square hy-
perbolic secans; the paper states coth−2, an apparent mis-
print), rather than an entirely new structure.

The appearance of a multi-modal twin-type solitary wave
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Fig. 10. Same as in Fig. 9, but for a slightly weaker thermocline
(g′

= 0.015). Time-lapse between subsequent stages is 4.5 h.

as shown in Fig. 9 is not typical of regime C, since it appears
only in a small range ofg′. For example for a somewhat
smaller valueg′

= 0.015 the pattern is entirely absent, see
Fig. 10. Here solitary waves, if present at all, are certainly
not well-defined. Like in Fig. 9, the first mode manifests
itself as groups of modulated high-frequency waves.

For very weak or very strong thermoclines (not shown),
i.e. regimes A and B, we find that the depression under-
goes only a minor distortion and does not develop into soli-
tary waves. Also, virtually no energy is transferred to other
modes. For the whole range of thermocline regimes, the re-
sults are collected in Fig. 11; we see indeed that the third
mode loses energy only for moderate values of thermocline
strength, i.e. regime C.

Finally, it has been checked whether the above results are
sensitive to the inclusion of even more modes (i.e. fourth and
higher). It turns out that the results undergo at most only mi-
nor quantitative changes, and that the qualitative conclusions
remain the same.

5 Conclusion

As discussed in the introduction, oceanic observations on in-
ternal solitary waves have brought to light a remarkable con-
trast between tropical regions, like the Sulu Sea, and the Bay
of Biscay. First of all in their generation: in the Sulu Sea they
stem from a disintegration of the internal tide which itself is
generated by a direct forcing at the thermocline, in the Bay of
Biscay they arise when an incoming internal-tide beam hits
the thermocline.

In the latter case the waves thus forced at the thermo-
cline would decay during their propagation even in the linear
regime, because they consist of a number of modes and thus
give rise to downward “leaking” (Gerkema, 2001). But, as
is shown in the present study, in the nonlinear regime even
the dominant (third) mode, taken in isolation, tends to de-
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Fig. 11. The loss to the first two modes of the energy originally
contained in the third-mode alone, as a function of the thermocline
strengthg′.

cay, because it loses energy to other modes. As is clear
from Fig. 11, this decay occurs for thermoclines of moderate
strength – which is indeed the regime of the Bay of Biscay
(in summer). By contrast, for strong thermoclines, the mode
dominating the thermocline motion (the first mode) loses no
significant amount of energy to other modes; this explains
the persistence of the solitons observed in the Sulu Sea.

The different behaviour in different stratification regimes
can be understood intuitively as follows. For a weak ther-
mocline (regime A) the modal structures are nearly the same
as for constant stratification, and hence interaction terms are
weak (though not absent, see Eq. 6). For a strong thermocline
(regime B), the first mode has an interfacial character while
the other modes, which have a much lower phase speed, are
similar to those of constant stratification (see 6a, b: the sec-
ond and third modes in b have an overall similarity to the first
and second modes in a); again one expects little energy ex-
change between modes. It is only for moderate thermoclines
(regime C) that a significant exchange is to be expected.

From a modelling point of view, the conclusion is that a
uni-modal approach is not well suited for describing the evo-
lution (i.e. generation and propagation) of internal solitary
waves in the regime of moderate thermoclines (C), like in the
Bay of Biscay. For strong thermoclines (tropical regions), by
contrast, a uni-modal approach is justifiable. It should be em-
phasized that the terms “moderate” and “strong” are relative
in the sense that they are weighed by the other factors making
up the stratification; this is expressed by Eq. (19). The value
of g′, the thermocline strength as used in the 2c-layer sys-
tem, can be obtained from empirical profiles by measuring
the area enclosed by theN2 versusz graph (see Gerkema,
2001); hence not only the amplitude ofN plays a role but
also the thermocline thickness. It is precisely the latter factor
that creates the difference in thermocline regimes between
the Sulu Sea and the Bay of Biscay (compare Figs. 1b, d).
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Two interesting features stand out in regime C. The first
one is the occurrence, in part of the regime, of persistent
multi-modal twin-type solitary waves (Fig. 9), which deserve
further (analytical) study. The second one is of interest in a
wider oceanographic context. It is the co-occurrence of first-
mode modulated wave groups which arise at the expense of
the original third-mode depression (Figs. 9, 10). It under-
lines the fact that the thermocline region and abyssal ocean
are closely connected dynamically, and that the occurrence
of solitary waves near the thermocline may be accompanied
by high-frequency wave trains in the deeper parts, and may
thus affect at once the abyssal internal-wave spectrum.
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