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Abstract. A numerical analysis is made on the appearancefor a continuous stratification, many modes are implicitly
of oceanic internal solitary waves in a multi-modal setting. taken into account. Yet, if possible, it is attractive to interpret
This is done for observed profiles of stratification from the the model results by making a connection with simple and
Sulu Sea and the Bay of Biscay, in which thermocline motionwell-understood analytical theory (like KdV); thus it is im-

is dominated by the first and third mode, respectively. Theportant to know under what conditions a simple (uni-modal)
results show that persistent solitary waves occur only in theapproach is justifiable.

former case, in accordance with the observations. In the Bay On the observational side, two contrasting types of be-
of Biscay much energy is transferred from the third modehaviour have been described in the literature. Internal soli-
to lower modes, implying that a uni-modal approach would tary waves may show a remarkable longevity, like in the Sulu
not have been appropriate. To elaborate on these results inSea (Apel et al., 1985), where they travel distances of over
systematic way, a simple model for the stratification is used;450 km, until they reach the coast of Palawan Island, where
an interpretation is given in terms of regimes of thermoclinethey still are energetical enough to create considerable se-
strength. iches in Puerto Princesa harbor (Giese et al., 1998). In this
case a uni-modal approach seems appropriate: the solitary
waves are well described by the first mode alone, which here
has its maximum near the thermocline, giving the mode an
interfacial character. The whole process of generation and

Internal solitary waves in the ocean have been conceived prq?mpaga,tiqp can indeed be described entirely in terms of this
dominantly from the viewpoint of interfacial waves, see e.g. nterfacial”mode (Liu etal., 1985; Gerkema, 1994).
the mechanisms for their generation as put forward by Max- The behaviour of internal solitary waves in the Bay of Bis-
worthy (1979), Osborne and Burch (1980) and Apel et al.ca&y oﬁer; aremarkable co!’]trast, both intheirgenergtion and
(1985). Even if the notion of continuous stratification was Propagation. The generation process, the observational ev-
adopted (involving, in principle, a set of vertical modes), idence of which is described by New and Pingree (1990,
then in semi-analytical studies still only one mode was se-1992); New and Da Silva (2002), is now well-understood; the
lected (e.g. Lee and Beardsley, 1974; Liu et al., 1985; Newihitial thermocline disturbance from which the solitary waves
and Pingree, 2000). Such a restriction is attractive because @Merge is provoked by scattering of an incoming internal-
allows one to reduce the equations to simple evolution equatide beam at the thermocline (Gerkema, 2001), the scattering
tions like Korteweg-de Vries (KdV) equation or kindred soli- itself being an essentially linear process. It was also fognd
ton equations. This uni-modal approach rests on the (tacitfhat the solitary waves decay fairly rapidly (New and Pin-
assumption that the selected mode would not be disturbed igree. 1992), which is quite unlike the observations in the Sulu
other modes were present, i.e. would not be susceptible t&€a. The very fact that an internal-tide beam is crucial ren-
inter-modal interaction. The main purpose of this paper is toders a uni-modal approach inadequate (since the description
delineate the conditions under which this assumption can b@f @ beam requires a number of modes to be included). Yet
expected to be valid. if one would start the analysis by regarding the thermocline
In purely numerical studies on solitary waves there is nodisturbance as giyen, then its later evolution Woul_d possibly
need to make a uni-modal assumption. For example in thdbut not necessarily) be well represented by one single mode

model developed and used by Lamb (1994), which allows(in this case: the third mode, see Sect. 3). This approach was
followed by New and Pingree (2000); here we will explore

Correspondence tof. Gerkema (gerk@nioz.nl) to what extent it can be justified.

1 Introduction
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In a previous study (Gerkema, 2001), the generation pro- We shall assume that nonlinear and nonhydrostatic effects
cess in the Bay of Biscay was studied with a simple nonlin-are weak in Egs. (1, 2), and of equal order of strength. This
ear nonhydrostatic internal-tide generation model, using 12-implies that results from the linear hydrostatic equations may
15 modes. No explicit analysis was made of energy transfebe used to simplify the nonlinear and dispersive terms, and
between modes, as we will do here; to this end we studythat combined effects of nonlinearity and dispersion {the
the evolution of a given initial profile (instead of incorpo- in the Jacobian in Eq. 1) can be neglected. We expand the
rating a full generation mechanism), and take into accounfields in terms of the vertical modes:
the main modes. First a brief description of the model is
given (Sect. 2), with an additional discussion on the formu—w _ i“ (1, X)bn (2) ; _ isz (1, X)n(2)
lation of energy-conservation. Then we apply the model to” ~— & """ 9 P= nil B)Pnie) -
the Sulu Sea and Bay of Biscay, using the observed profiles
of the buoyancy frequency (Sect. 3). Finally, we use a simpleAs was shown in detail in Gerkema (2001), using orthogo-
model for the stratification (“2c-layer”) to study the differ- nality of the modes (and introducing a correction term in the
ences found in the previous section in a systematic way, ifnodal expansion), finally leads to the following set of equa-
terms of stratification regimes, measured by the strength ofions for the modal coefficients:
the thermocline.

n=1

2 2
Akt — Ciclkxxt Rk + ¢ Z An xGm

n,m

. 1 1 1
2 Model equations {Skmn(_2 - 5)- Tkmn_z} + 2y, =0 4)
Cn Cm Cm

The model used here includes nonlinear and nonhydrostati@kt n Z
effects, but is frictionless, and uniform in one of the hori-
zontal directions X). Coriolis effects will be ignored here
(except at one instance in Sect. 3); they are already known t({ (B xm — an,xbm) Skmn — an, xbm Tkmn} +ae =0 (5
have an adverse effect on the generation of internal solitary
waves (Gerkema and Zimmerman, 1995; Gerkema, 1996)VNere
Here we want to focus purely on the transfer of energy be- fdz $2
tween modes, in the absence of other complicating factorsPx = fdz N2¢;§; Ry = Tk;
The variables to be solved are the baroclinic streamfunction 2 k

¥ (v = ¥, w = —y,) andp, which is the density perturba- Stmn = Jdz N, bn ST
tion with respect to its local static value (multiplied pyp.; Py

g the acceleration due to gravify, a reference value for den-
sity). The equation expressing mass conservaton(= 0)
being automatically satisfied due to the streamfunction for-

mulation, the remaining equations are the momentum equas >  The connection between nonlinearity and stratification
tions foru andw, combined into one equation for vorticity

(V2y), and the equation expressing energy conservation: Here we discuss briefly under what conditions nonlinear-
2 2 ity can play a role at all, recapitulating some known results

VA + I (V) —px =0 (1) (LeBlond and Mysak, 1978; Ostrovsky, 1978).

pr+J(p,Y) + Ny =0 2) First we consider the case of constant stratificatign=

N¢). Asis well-known (LeBlond and Mysak, 1978), in an un-

bounded medium a monochromatic be#p ~ expi(kx +

n,m

_ [dz (N®) i
mn — Pk .

Equations (4) and (5) serve as a starting point for the analysis
in the rest of this paper.

with V2 = 92/3x? + 82/9z2; the Jacobians are defined by
J(a,b) = acb; — azb)f; iy buoyancy frequency, here mz — ot) forms a solution of theorlinear Egs. (1, 2), pro-
assumed to be a function of the vertlpal poprdlmly. In vided that the paird , m/k) satisfies the dispersion relation.
C(_)ntrast to Gerkem_a (2001), no fc_>r(_:|_ng IS mcluc_ied; here Werhis is because all Jacobians vanish in this case. (Notice that
will study the evolution of a given initial depression. to arrive at Eq. (1) the Boussinesq approximation was made;
without this approximation nonlinearities of a different type
would arise that are not zero, see Benney, 1966.) A superpo-
sition of beams of different frequencies (each of which sep-
arately satisfying (Egs. 1, 2)) does not provide a solution of
Egs. (1, 2); this property was exploited in Shrira (1981) to de-

, N2 rive an amplitude equation for a (three-dimensional) internal-
P+ gt = 0 (3)  wave packet with a narrow-band spectrum.

" In systems bounded below and above (flat bottom, rigid-
(denoting derivatives in by primes) along with the boundary lid), the propagation of a monochromatic beam involves re-
conditionsg,, = 0 atz = 0, —H, i.e. at surface and bottom; flections at the boundaries, giving superpositions of incom-
¢ is the phase-speed of théh mode. ing and outgoing beams, and non-vanishing nonlinear terms.

2.1 Multi-modal approach

The vertical modes,, associated with the linear hydrostatic
version of Egs. (1,2), satisfy
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This last point can be seen as follows: in such a bounded syshowever, the exactness). This is most easily done by return-
tem internal-wave propagation can be described alternativelyng to Eq. (1), which after multiplication by and rearrang-

by vertical modes, and as the multi-modal set (Egs. 4, 5) ining of terms becomes:

dicates, nonlinearities are always present, even for constant

N, in which case: —E[wf + 1//3]; + [l + W],

N, [-Lif m=lk+n| H(VZP)YYelx — (V) Yl — yox = 0. ©
Temn = 0; Skmn = < x{+1if m= |k —n| (6) . . .

2cm 0 else We rewrite the last term as[yp]. + ¥.p, in which the

second term-Cwp) can be reduced by expressimgn terms
T vanishes because of constavit but S does not as long of isopycnal displacemenigs and then expressingin terms
as more than one mode is present. It is only if we reduceof p. In the first step we use the condition for a material
the set (artificially) to one mode that nonlinearity disappearsinterface
altogether from Egs. (4, 5).

Importantly, for non-constan&v nonlinear terms do not
disappear (not even in a uni-modal approach). In this sensawherer(z, x, z) denotes the isopycnal displacement of the
one might say that the thermocline forms a major “source” of surface that would lie at depthif the fluid were at rest. It is
nonlinearity, not only locally, but for the whole watercolumn. important here to denote the arguments explicitly, since what

we need isw at depthz (instead of atz + n), SO we must
2.3 Conservation of energy develop Eq. (10) in a Taylor expansion, the first few terms of

] ] o ) ] which are
In the following sections we will investigate (numerically)

the transfer of energy between modes. Of course, we musy +w;n + -+ =n +uny +---,

check that t_he total_ energy remains constant. T.hl.s. entall?Nherew andu are now evaluated at depthAt lowest order
a complication, for it turns out that the usual definition of

. . this givesw = n,;, and hence at the next order we find
internal-wave energy-density

w(t,x,z+n) =nt,x,2) +ult,x,z+mn, x,z), (10)

) W= uny =Nz + (11)

1 P

> (Iﬂf +yl+ ﬁ) (?) A connection betweenandy can be obtained from the iden-
_ o ) _ ) tity p(¢, x, z + n) = po(z), which holds for incompressible

fails; this is because we consideoriinear waves in a0 fiyigs (herepo denotes the static density distributions, o

constantly stratified medium. (As will bgcome clear below, andj = po + p have been multiplied by /p, for conve-

Eq. (7) represents energy-density only if one of the unons"nience, hencev2 = —pg.). Developing the identity in a

were skipped.) A correction to Eq. (7) can be found in Taylor expansion around we obtain
Miropol'sky (2001); however, only a sketch of the deriva-

tion is given there, mvolvmggHamHtoman formulathn. As 0 + po.21 + —po,zzn2+“-+p+pzn =g,
an alternative, we here provide a rather more detailed and 2
elementary derivation, with some additional remarks. in which the quantities are now evaluated:aHence
It can be easily derived from Egs. (1, 2) that the quantity 1
—N%p = SINHzn®+ p+ pen+ - =0.

WD 4o ®) . o
At lowest order this givegp = N2y, and using this result in

is conserved (i.e. its time derivative plus the divergence ofthe quadratic terms we find, at next order,

a flux equals zero). The expression remains conserved if 1 2

one adds the (time-independent) tegpg, wherepg(z) is the Nzn =p+ pz% — —(NZ)Z (%) 4+ (12)

static density; this gives the usual expression for kinetic plus N 2 N

potential energy. Unfortunately, Eq. (8) does not provide aUsing Eg. (11) and Eq. (12), and neglecting terms of orders

suitable starting point for the calculation of energy in terms higher than cubic, we finally obtain

of modes. This can be seen by considering, for example, 1,2 1 3 1 2 1r 2

an initial profile of a mode given by = N2sinx¢,(z), wp= —(p—z) + —(N2)2<p—6) -|-—[z/fzp—2] + —[p ﬁ’] , (13)

which, if substituted irp and integrated over one horizon- 2\N“Ji 6 No/e 2L NS 2L NE

tal wavelength, appears to contain as much energy as dods which the last two terms are in conservative form. Hence

o = 0, which of course must be false. (Recall thatioes  we find from Eq. (9) that the expression

not denote density itself but the density perturbation due to 2 1,3

wave-motion.) The underlying cause is that the modal series- (wf NS NuLA —'O—(NZ)Z) (14)

as such represent infinitesimal displacements, and we should NZ ~ 3N°

first make explicit the nonlinear effects implicitly contained represents a conserved quantity if we neglect nonlinear terms

in zp before we insert the modal expressions (thus spoiling higher than cubic; this is the correction to Eq. (7).
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Fig. 1. The profiles ofvV for the Sulu Se4a), and the Bay of Biscay ~ 19 2. The evolution of an initial first-mode depression, for a strat-
(c), after Apel et al. (1985) and Pingree and New (1991), respec-fication as in Sulu Sea. A train of solitary waves emerges, and in
tively. The corresponding modal structurgis)(and(d)) have been each of them the higher modes give a small contribution. Modes
obtained by solving Eq. (3); the first, second and third modes ardndicated as in the previous figure. Time-lapse between subsequent
indicated by thin, dotted and thick lines, respectively. stages is 4.5h.

Henceforth we will use Eq. (14); although still not an ex- in which g, = N./c,. The eigenvalues, can be solved
actly conserved quantity, it suffices for our purposes. Higher-numerically from the dispersion relation (Eq. 17) for given
order terms could be obtained if needed, either by the proceparameters/, H, g’ andN.. For this stratification the in-
dure we used above, or by the one described by Miropol'skytegral expressions faP; etc. are given in analytical form in
(2001). Gerkema (2001), and will not be reproduced here.

Finally, we emphasize again the importance of writing
down the arguments in Eqg. (10); their omission may cause
confusion. For example, the conservation law in Apel (1987,3 Sulu Sea versus Bay of Biscay

Eq. 4.70), in which the potential energy is describedolyy ) ) o
(in our notation), has the appearance of being exact, whered§ this section we elaborate on the distinction between the

in fact it is valid only at lowest order (to obtain it use was Sulu Sea and the Bay of Biscay, as regards the behaviour of
made of Eq. (10), but since the arguments are omitted it is ndnternal solitary waves. A distinctive feature can immedi-

longer clear that the derivation involves an approximation). 2t€ly be seen in the modal structures, shown in Fig. 1 (note:
here and throughout the rest of this paper, we use thin solid

2.4 2c-layer stratification lines for the first mode, dotted lines for the second mode,

and thick solid lines for the third mode). Whereas in the
In Sect. 4 we shall use a “2c-layer” model (Baines, 1982;Sulu Sea thdirst mode has its maximum at the base of the
Gerkema, 2001): it consists of an unstratified upper layer, ahermocline, in the Bay of Biscay thhird mode has a (lo-
constantly stratified lower layer, and a jump in density acrosscal) maximum at the thermocline. Hence we expect an initial
the interface, which represents the thermocline. Thus: depression of the thermocline in these two regions to be dom-

inated by the first mode and the third mode, respectively; this
N?(2) = g8z +d) + NZO(—z —d). (15 isin line with earlier uni-modal numerical studies (Liuetal.,
Here ® is the Heaviside-step function (being 1 for positive 1985; Gerkema, 1994; New and Pingree, 2000, the first two
argument and zero elsewherg)the delta-distributiong’ is ~ dealing with the Sulu Sea, the third with the Bay of Biscay).
reduced gravity, i.e. the acceleratipmultiplied by the rel-  Moreover, in the Bay of Biscay the dominance of the third
ative difference in density across the interfa¢etenotes the ~mode was confirmed observationally, see New (1988).

depth of the thermocline (interface). Here we will investigate whether a uni-modal approach
For thisN(z), the eigenvalue problem (Eq. 3) yields can be justified in either of the cases. In solving the multi-
. modal set (Egs. 4, 5), we take into account the first three

b (2) = { —gSingu(H —d) —d <z <0 (16)  modes. A finite-difference method was used: a 3-point sym-
Singn(z+H)  —H<z<-d. metric formula for the time-derivative (and also for the sec-

_(gd ond derivative inc), and a 5-point symmetric formula for the
qnd = (E - 1) tang, (H — d) A7) horizontal derivative (see Fletcher, 1991). The coefficients
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Fig. 3. The isothermal displacements at two different depths (SuluFig. 4. The evolution of an initial third-mode depression, for a

Sea); due to the multi-modal character of the signal, the profiles arestratification as in the Bay of Biscay. Initially, a train of solitary

dissimilar. waves develops, but soon crumbles, while the other modes partici-
pate strongly. Time-lapse between subsequent stages is 4.5 h.

Py, Ry, Skmn and Ty, Which appear in the equations, are

evaluated numerically beforehand. We present the results bjgnoring modes higher than the first, would have been fairly
depicting the modal coefficients(, x); thus we implicitly  reasonable, at least as a first approximation.

also visualize the isopycnal displacementsat any depth, We now turn to the Bay of Biscay, where (for the above-
because mentioned reasons) the initial profile will be chosen to con-
sist of the third-mode alone, witly = c3b3. Here we choose

an initial profile whose integral is zero, because Coriolis ef-
fects can then be incorporated in a natural way (for a single
depression the transverse velocity component would remain
whereg, is the vertical modal structure shown in Fig. 1. finite far away from the depression).

For the Sulu Sea, we take as an initial profile a first-mode The evolution according to Egs. (4, 5), for the first three
depression, choosing one of (roughly) similar size and proimodes, is shown in Fig. 4, here without Coriolis effects.
portion as in Liu et al. (1985). To make it propagate to the At the early stages of development a train of solitary waves
right, we choos@; = c1b1, initially. In the finite-difference ~ seems to emerge, but the pattern soon becomes irregular and
scheme steps wer&x = 100m andA¢ = 10s. Figure 2 the peaks (“solitary waves”) generally become smaller; also,
shows the result of the model: the depression develops neatlihe first two modes soon play a prominent part. Evidence
into a sequence of amplitude-ordered solitary waves. In eaclf the latter feature is more clearly seen in the distribution
of them, the first-mode structure is accompanied by a sim4n time of energy-density, given by Eq. (14), see Fig. 5: al-
ilar but smaller third-mode structure, and an even smallermost half of the energy originally contained in the third mode
second-mode one (the former appears in Fig. 2 as an eldeaks away to the first two modes.
vation, the latter as a depression). In other words, during the In contrast to the Sulu Sea, which is located very close to
evolution energy has been transferred from the first mode tahe equator, in the Bay of Biscay Coriolis effects are not neg-
higher ones; the amount involved is small: less than 2%. ligible in internal-tide and solitary-wave dynamics. Hence

However, locally there may be noticeable effects. For ex-we repeated the previous calculation, now taking Coriolis
ample iny (given by Eq. 18) the ratio of amplitudes of con- effects into accountf = 1-10~%s™1). This requires an
secutive solitary waves is substantially different at differentadaptation of Egs. (4, 5), see Gerkema (2001). In this case
depths (in a uni-modal analysis the ratio would be the samdnot shown) the solitary waves are less prominent, and in any
for all depths), as can be clearly seen in Fig. 3; this is in qual-case much less form-preserving than in the previous case.
itative agreement with the observations (Apel et al., 1985).The energy transferred from the third mode to the first two
Put into quantitative terms, the difference is as follows: atis still significant, though smaller: being about one-quarter.
200 m depth the ratio of the first solitary wave to the secondAll in all, the qualitative conclusions are the same as without
is 1.54, and of the first to the third 2.68; at 100 m depth theseCoriolis effects.
ratios are smaller: 1.27 and 1.89. To summarize, in a multi-modal analysis a clear contrast

Apart from these effects, we can conclude (given the smallis seen between the evolution of the “thermocline modes” in
amount of energy-transfer) that a uni-modal approach, i.ethe Sulu Sea and Bay of Biscay (first and third mode, respec-

3
n=Y bu(t, \)pu(2), (18)
n=1
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Fig. 5. The time-development of energy-density for each of the Fig. 6. Modal structures for the 2c-layer model, defined by (15),

participating modes; the upper line represents the total energy.  for three typical stratification regimes, in which the thermocline is:
weak or absent(d), ¢’ = 0); very strong (b), g = 0.4); and
moderate (), ¢ = 0.02). Recall that the first, second and third

tively; other choices will be considered in the next section). modes are indicated by thin, dotted and thick lines, respectively.

Whereas in the Sulu Sea the first-mode depression develops

mto a well-defined train of persistent solltqry waves with N9 tion with the previous section is that Fig. 6b is reminiscent of

significant loss of energy to other modes, in the Bay of Bis- _: . .

) : Fig. 1b, and Fig. 6¢ of Fig. 1d.

cay the pattern is much more blurred, the solitary waves less Bv varvina ¢’ we also vary th ntit

steady, and much energy is transferred to the first two modes. yvaryingg  we aiso vary the quantity

In the next section we will generalize these results by pin- (g'd)V/?

pointing the essential difference between the two cases: th& = N.H

thermocline strength.

, (19)

which in fact is the determining factor in distinguishing the
regimes (see Gerkema, 2001); this shows how we would go
from one regime to another if for instangdewnere varied in-
stead ofg’. As before, quantities referring to the first, second

. . e and third mode will be plotted in thin lines, dotted lines, and
In this section we use the 2c-layer stratification model, S€&hick lines respectively

Eq. (15), which despite its simplicity captures the two key
elements of the oceanic stratification: the presence of athery 1 pevelopment of first-mode depression
mocline and a weak abyssal stratification. The model is gov-
erned by only four parameters, three of which will be kept In this section we study the development of a first-mode de-
fixed: d = 50 m (thermocline depth)f = 4000 m (water-  pressionbs, with a1 = c1b1 (initially) which makes the de-
depth),N. = 0.002s! (abyssal stratification). Only’, the  pression move to the right. We consider each of the three
thermocline strength, is varied (units are Tés- for brevity  regimes of stratification indicated in Fig. 6, but notice that
we will not repeat them below; for a simple geometric inter- the first-mode depression can be associated with a distinct
pretation ofg’, see Gerkema, 2001). thermocline depression only in regime B. In all cases the first
Following Baines (1982) and Gerkema (2001), we canthree modes are taken into account.
distinguish three regimes A, B, and C, in which the ther- For weak and moderate regimes (i.e. A and C) no solitons
mocline is weak, strong, and moderate, respectively. Thissmerge and the profile develops only a dispersive tail (not
corresponds to a distinction in modal structures, see Fig. 6shown), which is due to the dynamics of the first mode itself;
in A, the modal patterns are very similar to those in a con-virtually no energy is transferred to the higher modes. Only
stantly stratified fluid (i.e. sinusoidal); in B, tHist mode  for sufficiently strong thermoclines, regime B, do solitons
has its maximum near the thermocline (much like an inter-emerge, see Fig. 7. Associated with each soliton is a small
facial mode in a two-layer system); finally, in a range of in- elevation of the third mode (and to a lesser extent, of the sec-
termediate values (C), theird mode has an extremum near ond mode too), but the contribution to the interfacial (ther-
the thermocline, while the first and second modes look muchmocline) excursion remains negligible because of the small
like those in A. (There is of course a smooth transition of thelocal values otpz and¢s,.
modal structures from one regime to another, but here we will For all three values of’ the amount of energy transferred
focus on the distinctive ones shown in Fig. 6.) The connec-from the first mode to higher modes is insignificant, be-

4 Classification in terms of 2c-layer model
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Fig. 7. The development of an initial first-mode depression in Fig. 8. Development of initial third-mode depression when all other
regime B (strong thermocline). Time-lapse between subsequentnodes are excluded (uni-modal approach), for regime C (moderate
stagesis 4.5h. thermocline). Time-lapse between subsequent stages is 4.5 h.

ing less than 0.1%; in other words, a uni-modal approach Ov

would have been appropriate here. Notice that we deal

here only with a “free” exchange of energy; the presence \“ﬁﬁ .
of topographic features may lead to a different outcome, —»0
as was shown numerically and in laboratory experiments W

by Vlasenko and Hutter (2001), where a first-mode profile, —vaﬁ
when encountering a sill, lost much energy to the secondnz4 _

mode. % “Hiad ™ I
4.2 Development of third-mode depression .

-600 A >
We now study the development of a third-mode depression "W W
b3, with az = c3b3 (initially) which makes the depression _-WW W
move to the right. We consider each of the three regimes )

of stratification indicated in Fig. 6, but notice that the third- 2% 50 100 150 200 250 300 350
mode depression can be associated with a thermocline de- X (km)

pression only n reg'f“e C Furthermore, in .none of the Case‘IQL—ig. 9. Development of initial third-mode depression when the first
does the profile manifest itself as a depression throughout thg |+ <04 mode are taken into account t00, again for regime C

water column; the change of signgg turns itinto an eleva-  oderate thermocline). Time-lapse between subsequent stages is
tion in part of the column. oh.

For comparison, we first show the development of the
third mode in auni-modal approach, here fa&' = 0.02
(regime C), see Fig. 8: the depression evolves into a patterfrom a small but persistent oscillation. Although the first
of amplitude-ordered solitary waves, like in common soliton mode seems least important here, it turns out that it plays a
equations (e.g. KdV). crucial role in keeping the “twins” together (this was checked
Since it is rather artificial to exclude other modes from tak- by performing a calculation with the second and third mode
ing part, we now allow the first and second modes to interactalone). Interestingly, “twin” patterns have indeed been ob-
with the third, see Fig. 9. These modes are seen to developerved in the Bay of Biscay (New and Pingree, 1990). The
oscillations at the expense of the third mode. In particular,possibility to describe this pattern analytically by Egs. (4, 5)
the first mode manifests itself as a group of high-frequency(or a simplified version of it) will not be probed here. To our
waves, which will be most prominent half-way down the wa- knowledge, the only analytical description of multi-modal
tercolumn, because the first mode has its maximum theresolitons was made by Vlasenko (1994), but this involved a
This, apparently, is the origin of the oscillations noticed in correction to the known uni-modal KdV soliton (square hy-
the more complicated context of earlier numerical experi-perbolic secans; the paper states céthan apparent mis-
ments (Gerkema, 2001). A conspicuous feature in Fig. 9 is grint), rather than an entirely new structure.
“twin-type” solitary wave, which propagates steadily apart The appearance of a multi-modal twin-type solitary wave
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Fig. 10. Same as in Fig. 9, but for a slightly weaker thermocline Fig. 11. The loss to the first two modes of the energy originally
(¢’ = 0.015). Time-lapse between subsequent stages is 4.5 h. contained in the third-mode alone, as a function of the thermocline
strengthg’.

as shown in Fig. 9 is not typical of regime C, since it appears

only in a small range of’. For example for a somewhat cay pecause it loses energy to other modes. As is clear
smaller valueg” = 0.015 the pattern is entirely absent, see from Fig. 11, this decay occurs for thermoclines of moderate
Fig. 10. Here solitary waves, if present at all, are certainlystrength — which is indeed the regime of the Bay of Biscay
not well-defined. Like in Fig. 9, the first mode manifests (in summer). By contrast, for strong thermoclines, the mode
itself as groups of modulated high-frequency waves. dominating the thermocline motion (the first mode) loses no
For very weak or very strong thermoclines (not shown), significant amount of energy to other modes; this explains
i.e. regimes A and B, we find that the depression underhe persistence of the solitons observed in the Sulu Sea.
goes only a minor distortion and does not develop into soli- ¢ jitterent behaviour in different stratification regimes

tary waves. Also, virtually no energy is transfer-red to Othercan be understood intuitively as follows. For a weak ther-
modes. For the whole range of thermocline regimes, the re-

- : . ~mocline (regime A) the modal structures are nearly the same
sults are collected in Fig. 11; we see indeed that the thlrdm (reg ) y

. as for constant stratification, and hence interaction terms are
mode loses energy only for moderate values of thermocllnquak (though not absent, see Eq. 6). For a strong thermocline

strE_ngtlT, |:te.hregé)me C.h ked whether the ab it regime B), the first mode has an interfacial character while
inaty, | has' elen'c ei ed whether g above fresuhs althe other modes, which have a much lower phase speed, are
sensitive 10 the inclusion of even more modes (i.e. fourth an imilar to those of constant stratification (see 6a, b: the sec-

ond and third modes in b have an overall similarity to the first

higher). It turns out that the results undergo at most only mi-
nor quantitative changes, and that the qualitative conclusionand second modes in a); again one expects little energy ex-
change between modes. It is only for moderate thermoclines

remain the same.
(regime C) that a significant exchange is to be expected.

5 Conclusion From a modelling point of view, the conclusion is that a
uni-modal approach is not well suited for describing the evo-
As discussed in the introduction, oceanic observations on infution (i.e. generation and propagation) of internal solitary
ternal solitary waves have brought to light a remarkable con-waves in the regime of moderate thermoclines (C), like in the
trast between tropical regions, like the Sulu Sea, and the Baay of Biscay. For strong thermoclines (tropical regions), by
of Biscay. First of all in their generation: in the Sulu Sea they contrast, a uni-modal approach is justifiable. It should be em-
stem from a disintegration of the internal tide which itself is phasized that the terms “moderate” and “strong” are relative
generated by a direct forcing at the thermocline, in the Bay ofin the sense that they are weighed by the other factors making
Biscay they arise when an incoming internal-tide beam hitsup the stratification; this is expressed by Eq. (19). The value
the thermocline. of g/, the thermocline strength as used in the 2c-layer sys-
In the latter case the waves thus forced at the thermotem, can be obtained from empirical profiles by measuring
cline would decay during their propagation even in the linearthe area enclosed by thé? versusz graph (see Gerkema,
regime, because they consist of a number of modes and thua001); hence not only the amplitude &f plays a role but
give rise to downward “leaking” (Gerkema, 2001). But, as also the thermocline thickness. It is precisely the latter factor
is shown in the present study, in the nonlinear regime everthat creates the difference in thermocline regimes between
the dominant (third) mode, taken in isolation, tends to de-the Sulu Sea and the Bay of Biscay (compare Figs. 1b, d).
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Two interesting features stand out in regime C. The first by strong tidal flow across a finite amplitude bank edge, J. Geo-
one is the occurrence, in part of the regime, of persistent phys. Res., 99, 843-864, 1994. _ _
multi-modal twin-type solitary waves (Fig. 9), which deserve LeBlond, P. H. and Mysak, L. A.: Waves in the ocean, Elsevier,
further (analytical) study. The second one is of interestina 1978 . . S
wider oceanographic context. It is the co-occurrence of first--€€: C- and Beardsley, R. C.: The generation of long nonlinear in-
mode modulated wave groups which arise at the expense of ternal waves in a weakly stratified shear flow, J. Geophys. Res.,

.. . . . 79, 453-462, 1974.
t,he original third-mode depres_slon (F_Igs' 9, 10). It under_Liu, A. K., Holbrook, J. R., and Apel, J. R.: Nonlinear internal
lines the fact that the thermocline region and abyssal ocean . e evolution in the Sulu Sea. J. Phys. Oceanogr., 15, 1613—
are closely connected dynamically, and that the occurrence 164 1985, ’ T

of solitary waves near the thermocline may be accompanieqaxworthy, T.: A note on the internal solitary waves produced by
by high-frequency wave trains in the deeper parts, and may tidal flow over a three-dimensional ridge, J. Geophys. Res., 84,
thus affect at once the abyssal internal-wave spectrum. 338-346, 1979.
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