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Abstract. The kinetic description of baroclinic Rossby  Rossby waves in a multi-layer ocean serve as an example
waves in multi-layer model ocean is analysed. Explicit an-of medium where several wave classes with different disper-
alytical expressions for the coupling coefficients describingsion relations but with comparable frequencies may interact.
energy exchange intensity between different modes are obiteractions of waves from different classes may provide an
tained and their main properties are established for the threeefficient way of energy redistribution in geophysical flows
layer model. It is demonstrated that several types of interwhere frequency domains often are interlapping (e.g. in-
actions vanish in the case of simple vertical structures of thderactions of two inertial waves with a Rossby wave, Wik-
ocean, e.g. when all layers have equal depth. These casésnd, 1999). The kinetic equation describing interactions of
correspond to a zero component of the eigenvectors of the pahree wave classes was already presented in (Zakharov and
tential vorticity equations. The kinetic equation always pos- Schulman, 1980). However, such systems have been stud-
sesses a fully barotropic solution. If energy is concentrateded in detail only in a particular case when frequencies of the
in the baroclinic modes, the barotropic mode will necessarilywaves are essentially different (Zakharov et al., 1992). In
be generated. Motion systems consisting of a superpositiothe general case of comparable frequencies and/or a larger
of the barotropic and a baroclinic mode always transfer eniumber of wave types, the properties of (multi-modal) ki-
ergy to other baroclinic modes. netic equations have not been analysed (Piterbarg, 1998) ex-
cept for Rossby waves in two-layer medium (Kozlov et al.,
1987; Soomere, 1995, 1996).

Barotropic and two-layer models of geophysical flows
1 Introduction often inadequately represent the vertical structure of the

oceans. In medium latitudes, the seasonal thermocline oc-

In the framework of weakly non-linear wave theory, natural casionally creates a three-layer structure. In some areas (e.g.
motion systems are treated as random wave fields with conin the Baltic Sea) the barotropic mode is damped and the
tinuous spectral density (spectrum) of energy (e.g. Reznikwave energy is mostly concentrated in the first and the sec-
1986; Zakharov et al., 1992; Komen et al., 1994). The waveond baroclinic modes. To resolve the vertical structure in
field evolution is determined by an infinite system of equa- such situations, at least three-layer model is necessary.
tions with respect to spectral cumulants. Under some restric- Application of a model with continuous vertical density
tions, this system can be reduced to a closed equation for thalteration (Piterbarg, 1998) is a possibility in numerical sim-
most important wave field properties. The resulting kinetic ulations. The advantage of the multi-layer model is that the
equation describes slow (as compared to the characteristicoefficients of the kinetic equation and many basic features
wave period) evolution of the wave system owing to resonantof the energy transfer can be found or proved analytically.
interactions between wave harmonics. Although the assumpAlso, the important question —whether specific spectral mod-
tions made in deriving of this equation are not perfect (Majdaels reproduce the properties of the governing equations — can
et al., 1997), applications based on the kinetic equation or itde clarified to some extent. For example, kinetic models are
simplified versions frequently show excellent and deeply in-irreversible and generally possess additional motion invari-
teresting results (e.g. Komen et al., 1994; Zakharov et al.ants. Moreover, their solutions may evolve towards princi-

1992; Zakharov and Pushkarev, 1999). pally different final states as compared to those of the gov-
erning equations (cf e.g. results of Carnevale, 1982; Vallis
Correspondence tof. Soomere and Maltrud, 1993; Reznik, 1986). One might argue that

(tarmo@phys.sea.ee) the kinetic framework is not a proper tool for describing
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evolution of multi-modal Rossby wave systems, because thédinal state consisting of purely barotropic zonal flow and an
barotropic mode generally is much faster than the baroclinidsotropic wave system (Soomere, 1995, 1996). Thus, an im-
ones. This is indeed true, and the analysis below additionallyproper choice of the model may result in a completely differ-
confirms that: a large number of interaction classes involvingent evolution scenario of the whole system. It will be shown
the barotropic harmonics actually do not redistribute energybelow that a number of interactions vanish in a specific case
because the corresponding coupling coefficients vanish.  of the three-layer model with equal depths of the topmost and
A large part of the analysis is valid for arbitrary wave the lowest layers. Such a stratification is not typical in open
classes. The detailed derivations have been performed foocean but frequently occurs in the Baltic Sea (e.g. Aitsam et
Rossby waves mostly because they form a convenient andl., 1984).
rich in content model system where it is possible to analyti- The present study focuses on the calculation of the cou-
cally establish many features of the kinetic equations and tgling coefficients between different modes or wave classes.
interpret the results in a simple physical framework. The role of the coupling coefficients in the energy exchange
The derivation of the kinetic equation in the multi-layer as well as their dependence on the particular physical back-
case is a straightforward generalisation of its derivation forground is analysed in detail. A novel compact representation
the two-layer case (Kozlov et al., 1987). Since an analogousf multi-layer potential vorticity equation in terms of a com-
equation has been found in (Piterbarg, 1998) on the basis dbination of bilinear forms is introduced. The analytic expres-
Hamiltonian approach and since the interaction coefficientssions for the coefficients of the three-layer model are derived
for Rossby waves are well known, the details of the proce-and the dependence of general features of energy exchange
dure have been omitted. on the physical background is analysed. Shown are that cer-
In order to use the kinetic framework, the equations musttain types of interactions totally vanish in several realistic
first be modified so that each linear part contains one unsituations. A new development in the kinetic theory is that
known function. Doing this (equivalent to introducing nor- particular Rossby wave coupling coefficients in the model in
mal modes or diagonalisation of the equations) is accompaguestion are shown to vanish if and only if an eigenvector of
nied by major changes of the nonlinear parts of the equathe governing systems of equations possesses a zero compo-
tions. Finally, they consist of certain linear combinations nent.
of nonlinear terms from various initial equations. The co- The paper is organised as follows. Section 2 describes de-
efficients at the nonlinear terms we call coupling coefficientscoupling of dynamical equations of large-scale motions in a
because they determine how different modes (wave classeshulti-layer ocean. General expressions for the coupling co-
are coupled with each other. (Notice that, at times, inter-efficients are found in Sect. 3. A part of the derivation is
action coefficients are also called coupling coefficients, e.gfairly general and can be applied for other multi-modal wave
Axelsson, 1998; the distinguishing is only important in mo- systems. The detailed expressions for the coupling coeffi-
tion systems described by two or more coupled equations)cients of the Rossby-wave kinetic equation in the three-layer
Their appearance depends on the structure of both the lineanodel and analysis of several their properties that directly
and the nonlinear part of the governing equations. In the ki-affect the kinetic equation and its solutions, are presented in
netic theory, they form a part of the interaction coefficients Sect. 4. Section 5 contains discussion and Appendix A — the
(another part of which represents the structure of the nonlinmathematical details of the derivations.
ear terms). Generally, coupling coefficients are not rational
functions of the coefficients of the initial equations, and they
have not been explicitly evaluated in earlier studies (exceptirg Three-layer model of geostrophic motions and the ki-
the two-layer model; e.g. Kamenkovich et al., 1986; Kozlov ~ netic equation
etal., 1987).
Since these coefficients first appear at the nonlinear ex2-1  The basic equations
pressions in the equations for the normal modes, their proper- . ) ) .
ties are of certain interest in studies into dynamical propertie?Ynamics of large-scale motions in the multi-layer ocean
of motions but in the kinetic theory they are particularly im- With & flat bottom on thg-plane is described by the potential
portant. Namely, they enter into the collision integrals of the VOrticity equation (Kamenkovich et al., 1986):
kinetic equation and determine the relative role of triads Ofag(f> 1
various types in energy exchange. For example, in the two- 4+ ——
layer model of Rossby waves with a proper scaling all types ot Jforo
of triads have equal relative energy exchange intensity, Xy here v is the number of layersy’ is the deviation of the
cept triads containing three baroclinic waves. The |nten5|typressure from its equilibrium state in thieth layer,
of self-interactions of the baroclinic mode crucially depends
on the _ratio of the d_epths of the layers and fully ceases in the ho 1 fo p;_l - p; fo p}+1 - p;-
most simple and widely used case of layers of equal deptf‘? = foro Apj+ By + oh
(Kozlov et al., 1987; Soomere, 1996). As a consequence, the !
baroclinic zonal flow and the following large-scale merid- is the potential vorticity in thg-th layer, fo - the mean value
ional anisotropy do not emerge, and the motion tends to af the Coriolis parametef = fo + By, po - the mean

J(p; €9 =0 j=1.N, (1)

8pj ghj  8pj+1
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2.2 The normal modes

In order to derive the kinetic equation for wave systems de-
scribed by Eq. (4), it is necessary to decouple the equations
so that the linear part of each equation contains only one un-
known function. Formally, doing this is equivalent to intro-
ducing normal mode&Ry, ...., Ry) = R through the substi-
tution

v =SR, y =RTS", (5)

followed by multiplying the resulting equation from left by
S HereSis aN x N-matrix hereafter called transfer ma-
trix. The procedure (also called the diagonalisation problem)
is classical but in systems containing three or more layers
the coefficients of the resulting equation generally are not ra-
tional functions of the coefficients of Eq. (4) (cf. Piterbarg,
1998).

Substituting Eq. (5) into Eq. (4) results

-H
X,y 9 9
[E(A +A)+ ﬁa—x] SR =

Fig. 1. Three-layer model ocean.

=—RTSTB[j(-, A) + AJ(-, )ISR. (6)

n " The matrices8") andB/)A of the bilinear forms have been
th layer, /(. g) = 0f/dxdg/dy — 3f/0ydg/ox, dp; = multiplied by the transfer matri$ from the right and by its

pj—pj-1: 2 < j < N; 8p1 = Spny1 = o0 andg;; is the : o .
Kronecker delta. The- andy-axes are directed to the North transpos_ed matrix form th? Igﬁ. Ehmmatmg from tl?e
th equation all ther;; j # i, is equivalent to multiplying

and the East, respectively and only small deviations from the 1 .

geostrophic balance are considered. Figure 1 shows verticard (6) from left byS™ and yields
structure of the ocean in the three-layer case. In terms of 3 1 9 .
stream fUnCtionﬂfj = p;.(fopo)fl Eq (1) reduces to E(A +S AS) + ﬁa R=-S"x

density,;, p; - the mean thickness and density of the

, TT TT —1

DA W= o)+ dj s —yp] + pay XIRSBSIG AR RESTBSS TASC R ()

atJ AU T . 0x The expression in square brackets at the right-hand side of
I AV + e w’fl VT Eq. (7) is a vectorj-th component of which is a sum of two
+djJ (b, Vi1 —vj) =0, j=1.N, (2)  pilinear forms. Notice that the matrix multiplication 1872
where does not commute with other operators and consists in sum-

2 5 mation of the elements of the right-hand side of Eq. (7).
foro _ ¢, _Joro  _ d;, j=1.N. ©) Equation (7) is a solution of the decoupling problem pro-

ghjdp; ghjdpj+a videdS~1AS is a diagonal matrix. For any finit¥, the ma-

trix A hasn different eigenvalues; < 0 (Kamenkovich et
al., 1986) and51AS = diag | »; || indeed is a diagonal
matrix provided the column vectors 8fare eigenvectors of

A (equivalently, ifSis the transfer matrix of\ to the normal
=—y BJ(, Ay — ¥ BAJ(C, )Y, (4)  form). Itis convenient to introduce nondimensional variables

* * * Y . — * . — ke —_ * *
wherey” = (Y1, ..., ¥y), symbol ()7 means the trans- Ri*! MR f{ = RjRo: 1 =1"1o; (x_’y) =%y )l_"
posed vector or matrixA is the three-diagonal matrix with Whererno = (8L)™", Ro, L, are the typical scales of time,
nonzero elements;, —c; —d;, d; onthej-thline, 2< j < the stream function and the horizontal scale, respectively. In

N; —d;, d on the first line and'y, —cy on theN-th line,  terms of the new variables, in Eq. (Z) are replaced by
B = B, ..., B™) s interpreted as a vector, theth com- kjL—Z, the factorg at the termdR/dx disappears and at the
ponent of which is th&V x N-matrixBY) =|| §;,,6;, | with  right-hand side of Eq. (7) the facter= Ro/(BL%) arises.
the only nonzero elemem,, = 1. The right-hand side of After skipping the star index, we reach:

each equation from Eq. (4) can be interpreted as the sum of; 9R:

bilinear formsy’BY J (-, A)y andyTBOAJ(-, )¢ with &(AR/' - ajzR,/) + a—x] =

N x N-matricesB“) andB/)A, where the Jacobi operator

J (-, -) or the composed operatdi(-, A) stands for the mul-
tiplication operator.

It is convenient to write Eq. (2) in the matrix representation

9 9
[E(AJFA) +ﬁa} V=

N .
=—¢ Y Viud (Rm. ARy —a?Ry), j=1.N.,  (8)

m,n=1
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wherea; = /—A; are the nondimensional Rossby radii.
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The coefficients.;,, we call coupling coefficients because _ b ()P (k1) by (K 2) o (1€ 3) >=

they describe the intensity of coupling between different
modes (wave classes). As different from (Kozlov et al., 1987) ™ Q./'mnv

9123 (4 11, K2)8(K + K1 + K2 + K3)+

where an analogous equation has been derived for two-layet Fjm (k)8 (k + k1) Fny (£2)8 (k2 + Kk3)+
ocean, it turns out that interactions between modes can be-F;, (k)8 (k + k2) Fyy(k1)8 (k1 + k3)+

described with the use of one set of coefficien}s,. Be-
low it will be demonstrated that, from total3 coefficients,

+Fjy(k)8(k + K3) Finn(k1)8 (k1 + K2) €tc (12.3)

several are identically zero and several always nonzero, but_The semiinvariant’; (k) has the meaning of spectral den-
some of them may vanish depending on the vertical structur&ity of energy of thej-th mode. With the use of Eq. (10),

of the ocean. However, for each mogi¢here exist nonzero
Ahns, m # j, n # j, thus, decoupling of Eq. (8) into inde-

pendent subsets in the case of Rossby waves does not oc

and vanishing of certain coefficierit$,, only leads to minor
simplifications of Eq. (8).

2.3 The multi-wave kinetic equation

If the parametee in Eq. (8) is small (i.e. the motions are

it is straightforward to obtain a coupled infinite system of
equations for the sequence of semi-invariants (12.1-3). The

cSimplest way to close this system consists in neglecting the

fourth-order and the higher order cumulants (Hasselmann,
1962; later on Reznik, 1984; showed that much weaker clo-
sure hypothesis may be used). Asymptotic analysis of the
system of equations for the cumulants,,, F?,}fl(x, K1),

is described in detail e.g. in (Kenyon 1964; Benney and

Newell, 1969; Reznik, 1984). Analysis of the main points

weakly non-linear), it is possible to derive an equation thatof the derivation and the validity of the underlying approx-
describes slow temporal evolution of the spectral densityimations is presented in (Majda et al., 1997). The quite te-
(spectrum) of energy of the motions. The derivation proce-dious analysis is omitted here, because it contains nothing
dure is well known (e.g. Benney and Newell, 1969; Reznik, instructive. The following system of equations (multi-modal
1984; Kozlov et al., 1987) and we only shortly recall its main or multi-wave kinetic equation) with respect to the spectral

points. It is convenient to use Fourier transfogik, r) of
the functionsR; defined as

Rj(x,y, 1) = / ¢, e EF gy, 9)

wherekx = (k, 1) is the wave vector andk = dkdl. Substi-
tuting Eq. (9) into Eq. (8) yields

iwj¢j=¢ / Diltiesm (k1) b (162)
x8(k1+ k2 —Kk)SKk12, j =1...N, (20)

wherew; = —pk/ (k2 ~|—a]2.) is the dispersion relation for the
j-thmodex =| k |, 8(k) = 8(k)5(1), dic1p = dic1diz and

_a%)

‘ - (kalp — koly) (k2 + a2 — i2
DI, =y, W2 RS+ i (11)
2(k2 + al-)

are the interaction coefficients. For the particular case
m = n the coupling coefficienpj’j = 1 is trivial and the

coefficients Dy, were found already in (Kenyon, 1964;
Longuet-Higgins and Gill, 1967). Cage# m = n was anal-
ysed by Jones (1979). The expressionfgf,, in Eq. (11)
differs from that used in (Reznik, 1984; Kozlov et al.,
only in that the indexeg, m, n may now vary from 1 tav.
Assume that the function®; represent homogeneous
statistically stationary random fields.

Fjm(), TO2 (icy 1e1), Q923 (e, k1, ke2) etC.:

Jjmnv
< @j)Ppm (k1) >= FjmK)S(k + K1), (12.1)

< & (1)Pm (K1) Bn(K2) >= T2 (1, k)8 (K + 11 + k), (12.2)

jmn

Then it is possi—]c
ble to introduce the spectral cumulants (semi-invariants)

density of energy (spectrum) of theth modeF; = F;(«k, t)
(the double index;j’ has been replaced by the single one)
can be obtained:

IF; 3 , .

W =47 Z Ijmn, J = 1N,

m,n=1

i = [ DEaK b @323 (or2di (13)

Heret = &% is slow time, I,,,,, are the collision inte-
grals describing energy exchange between harmonics be-
longing to the modes with numbers m, n, the integrals

are taken over the four-dimensional sp@&3%i1) x R%(k2),

@2 = (k) + 0 (k1) + 0, (K2), K012 = K + K1+ k2 and

jmn
ijn = Dl{ZTKQ Fo (k1) Fry (102)+

+ D1y Fn(k2) Fj (1) + Digygrey Fj () Fry (s 1). (14)

The derivation is valid for any set of wave classes possess-
ing triad interactions provided the double resonance does
not occur (Reznik, 1984). The sign indices in Egs. (13, 14)

are avoided through allowing negative frequencies of Rossby
waves withk > 0. Equation (13) is equivalent to the analog-

1987) ical equation with respect to wave action derived on the basis

of the Hamiltonian approach (Piterbarg, 1998). The proof of
basic properties of the Eq. (13) such as conservation of en-
ergy and wave momentum, and thetheorem, is straight-
orward.

3 The coupling coefficients

The coupling coefficients,j;n form a part of dynamical equa-
tions (8) for the normal modes. They explicitly depend on the
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. . N
vertical structure of the model (but are independent of prop-gjnce " Ajisij is the determinantS|, expressed in terms
erties of particular wave harmonics) and control general en- i=1 '

ergy exchange intensity between and within the modes. Th@f the elements of thg-th line of S and the corresponding
remainder of the coefficient®yy,, represents the structure cofactors: . . _

of nonlinear terms of Eq. (8) and describes energy exchange A Specific property of Rossby waves is that the eigenvec-
details in particular triads. Obviously, in wave systems con-{ors of A (columns of the transfer matri%) are orthogonal
taining one type of waves only, distinguishing of coupling With respect to the vectdr = (hy, h2, ..., hy), wheren; is

coefficients is unessential. the thickness of theé-th layer (Kamenkovich et al., 1986).
The coupling coefficients can be found a straightforward ' NS Property yields

manner from Eq. (7). Let us use the traditional notation L, — J/lls = y213 =0. (19)

for line sl.T =| si» I, 1 < n < N, and column vectors

The Hamiltonian structure of baroclinic Rossby wave sys-

s/ =l swj ||, 1< m < N, for the transfer matrig =|| si; || tems yields that the (Jacobi) identities

The vectors/ are defined agA — A 1)s/ =0,1<j <N, . , _
wherel is the unity matrix. The produ®®Sis a matrix in Diliric, Dtk Dy
wh|c_h th_e; -th(l_|)ne Vector iss; ar;d gll other entries are zeros. Vin @ (1) Vajom (1) ¥, 0n(K2)
Multiplying B S from left by S' gives

= ijgzlcz, j,m,n=1.N, (20)
T - .
STRMs SitS; are satisfied at the resonance curm%zn =0, koi2 = O.
= =|| 5i1S ... SinS || . . ) . .
sinst oS s | The quantityVi/,,«, is called the matrix element of the wave
l 1

system. (Studies of the kinetic equation based on Hamilto-
nian approach (e.g. Balk et al., 1990; Zakharov et al., 1992,
among others) ascertain these features proceeding from the
conservation laws of the corresponding weakly non-linear

The remaining multiplication in Eq. (7) from left b1
leads finally to

, N ‘ systems. For Rossby wave systems it is traditional to ob-
Iyl = ijiSTB(l)S, (15)  tain them in a straightforward way; Piterbarg, 1998). Equa-
i=1 tions (20) yield that the coupling coefficients are invariant

with respect to cyclic permutationjs— m — n — j of the
wheres,,,, are the elements of the mat@™. From Eq. (15)  mode numbers, i.e. that

it follows that a coefficient,,, is the scalar product of the

Jo_m _n —
column vectorss? ands! under the metric defined by the Y7 = Ynj = Vjm> J- 110 = L.N.

Jj-thline vectors ; of the matrixS—1: (Notice that this property for nonzero coefficients only holds
if lengths of the eigenvectors @& are chosen properly; see
; N . below.). In particular, this property together with Eq. (17)
Vi = )_ $jiSimsin. jom.n=1..N. (16)  results thay2 = y3 = y3 = 0. Physically, it means that
i=1 in the three-layer ocean model only two classes of interac-

Direct evaluation of the coupling coefficients is quite tedious ions involving the barotropic mode are energetically impor-
even in the simplest case of the two-layer model. Howeverant: triads of barotropic waves and triads consisting of one

there exist several general properties of these coefficientarotropic and two baroclinic waves from a fixed mode. All
First notice thatSTB"'S)T = S'B®S, consequently, all other interactions involving barotropic components vanish.

the resulting matrices in Eq. (15) are symmetric and Therefore, within the three-layer model there is no energy
exchange within triplets representing three different modes.
Yion = Yam» j.m,n =1...N. (17)  The physical reason is that all such interactions are of the

order of the vertical density alteration (Kozlov et al., 1987).

A specific property of the coefficienljs,’;,, in the case of
wave systems possessing a zero eigenvalue= 0 allows 4 The analytical expressions for the coupling coeffi-
to simply evaluate several coupling coefficients between the  ianis
first and the higher modes. It is easy to establish that the co-
ordinates of the eigenvectst corresponding td; = 0are 4.1 The coupling coefficients for the two-layer and the
equal, e.gs;1 = a. Denoting the cofactor of;; asA;;, we three-layer models
have:
N N In the two-layer case the eigenvalugs= 0, Ay = —hIl —
. n n _1 P . _
yllj _ Zsjlsilsij —a Zsjlsij _ hz_ can bg gxpllcnly calculated (Appendix A) and the cou
= = pling coefficients are

0 a

a btho—h1) |’ (21)

N
=alS'Y Ajsij=a, j=1.N (18)  llymll = Myl =

i=1

b2h1ho
O a
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wherea, b are arbitrary nonzero coefficients. (Notice that a
tpartlcular scghng does not change general mteract!on proper—3 s - bz)%(kz +d1)(hz + c3)
ies and basically reduces to changes of the slow time scale)j3 = y31 = a, v5o = 05 —i)diOa T )’
. . i . . . . C - C
The coefficients;, coincide with those used in (Kozlov et 3iAs 2)a1A2 T €3

al., 1987, Soomere, 1996) if Vo= v = %,
3—A2)d1
a:hl—i-hz’ b:hl—zhz. 3 _, Ag(kg—i—dl)_cg()\a—i-dl)_l 27)
h1 h3 BT G- radi  di(ha+ca) '

The most convenient scaling is Equations (25)—(27) explicitly demonstrate that the property
j _ m n . .pe .
a=1 b=1//hthy 22) Yim = V,j = Y, requires a specific adjustment of the

lengths of the eigenvectors Af
that yieIdSyll1 = y212 = y122 = yzzl =1, y222 = ha/h1 —
1/ T. The advantage of this scaling is that it explicitly ex- 4-2 Equal reduced depth of the topmost and the lowest lay-
presses the invariance of the dynamics of the two-layer model €S
with respect to the numbering of the layers. Indeed, the ki-

netic equation does not change if the transpositipn> Az The coupling coefficients of the two-layer model in Eq. (21)

is made because onlv products of counling coefficients ente&"€ always well defined. The transfer matrix in the case of
yp piing fhe three-layer model is regular in the physically meaningful

into each collision integral. S
. : - cases when all the layer depths are finite and nonzero. The
The expressions for coupling coefficients are much more : . . :
. expressions for the coupling coefficients in Egs. (25)—(27)
complex in the case of the three-layer model because gener- : . .
) . may be improper if and only if the produ¢t, + d1)(A3 +
ally they cannot be expressed as rational functions of the co, )% x(ha+ca)(ha-+cs) = 0. Sincers Ay, this may ha
efficients of the governing Egs. (4). The matfixin Eq. (5) D2 22T 33T C3 ' 37 /2 1ay hap
. ; pen if and only if one of the components of the eigenvectors
has a zero eigenvalug = 0 whereas other eigenvalues sat-

2 or o3
isfy the characteristic equation §7 Ors71S 2€fo. .
If A2+ d1 = 0o0riz+c3 =0, Eq. (A3) yields, = O.

A4 Ad1+ do + c2 + ¢c3) + d1do + d1c3 + coc3 = 0. (23) From the characteristic equation (23) it follows that =
) . ) —c2—c3—d2 Or A3 = —d1—d2—c3. Sincecy # 0, this is pos-
Equation (23) generally QOes not have.ratlonal eigenvaluesiple only ifd, = c3andiz+di = Az+c3 = —da—cp £ 0.
except in the case, = 43 (including the simplest case when Tpe caseAz + d1)(A3 + c3) = 0 also yieldsd, = c3 but
all the layers have equal depths) when givesis = —dy —do — ¢2 < Az and is implicitly excluded in
Mo = —di. ha=—do—cy—c3= o —do—co. (24) the t_raditipnal qpproach, becaus_e it is assumedithat Aj o
providedi > j. Thus, expressions (25)—(27) may fail if
The solutions of Eq. (23) are invariant with respect to theand only ifd; = ¢3, or in models where the reduced depths
transposition(ds, d2) <> (c2, c3) that causes only, < A3 h18p2 andhssps of the uppermost and the lowermost layers
and is equivalent to reversing of the counting order of theare equal. This case includes the simplest three-layer model
layers. Thus, the coupling coefficients are independent owith equal depths and equal density differences between lay-
the direction of counting the layers. This property is a gen-ers. In realistic problems, such situation may occur either in
eralisation of the fact that the two-layer kinetic equation is atmospheric dynamics or in studies into motions in relatively
invariant with respect to the transpositibn < ho. shallow strongly stratified basins like the Baltic Sea.
In the general case, the transfer matrix and its inverse are As for the coupling coefficients, notice first that Egs. (16)—
given by Eq. (A7) and the nontrivial coupling coefficients are (19) are valid for any combination of the parameters of the
(see Appendix A for details): original Egs. (2) and (4). The expressions for the remain-

ing coefficients simpli reatly and can be obtained from
L BP0 — A3)(a + di)es Y Plify greatly

1_, — Egs. (16) and (A18) in a straightforward manner:
Y11 » V22
alz(A2 + c3)d1 2
03— 22) (3 + di)es vh=a yh= 2\t
Vi = @5) M7 P27 a(ditda+ co)da’
ara(A3 + c3)d1 2
1 ¢“(d2+c2)
2 2 T e
y12=y21:a’ y22=y22 =a J/222=bd2_cz
2 — [03(?»2 +dy) . ?»2(?»2+d1)} e d
22 di1(A2 +¢3) (A3 —A2)d1 |’ v=vhp=c riz=0,
A2(A3 +d1) b2d
2 2
Ya3=VY2 = o 0 Vis= Vi =a, V3= -2 ,
(A2 = A3)dy c(d1+ dz + c2)d2

, 503 +d)(h2+c3)
Va3 bro(Az — A2) (A3 + c3)d1’

di—dy—c2

(26) v =75=0 ri=c 7
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models with equal reduced depths of the uppermost and the

z .
[m] lowest layers. In such models, there is no energy exchange
20 in triplets containing one wave from the first baroclinic mode

and two waves from the second baroclinic mode. There still
exists energy exchange between the baroclinic modes in tri-
40+ ads containing two waves from the first baroclinic mode and
one from the second mode, becal;yg"g = ¢ and the coef-
ficient y223 never vanishes. The coef‘ficiepf’2 may vanish
-60 provided(A3z+d2 + c3)(A3+c¢3) = 0. The casez+c3 =0
yieldsd; = c3 Whenyz?’2 is definitely nonzero. The other con-
dition A3+ d> + c3 = O is equivalent to.o +d1 +c2 = 0 and
yieldsdoco = 0 that is impossible. Thu$/2,32 never vanishes.
The modal structure of the flow can be found from Eq. (5)
-100 b) asR = Sy in the particular caséy = c3 it can be ex-
c) pressed with the use of Eq. (A18) & ~ coyr1 + d1yro +
dayr3, Ro ~ y1—y3, R3 ~ coyri—(c2+d2)y2+dzir3. NO-
-120 | tice that motions in the intermediate layer do not enter into
P the equation for the first baroclinic mode whereas its struc-
[kg/m3—1000] ture does not depend on the depth of this layer. This equation
L L L L L L L is perfectly symmetric with respect to motions in the topmost
5 6 7 8 9 10 11 and the lowest layers.
The coefficients/2, andy2, may vanish for certain com-
Fig. 2. Vertical density profiles in the Gotland Basin, Baltic binations of the parameters of Eq. (2). However, we were
Sea, 26.-28.08.1986(a) 57°31,6N, 20°34,2E; (b) 57°37,0N,  not able to find a simple and exhaustive analytic criterion for
20°32,4E; (c) 57°38,5N, 20°36,1E; (d) 57°38,0N, 20°42,5E.  these coefficients to vanish. With the use of the characteristic
The distance from the gnd of a profile tp the.bottom is aboqt 10 m.Eq' (23) it is possible to exclude from the conditiq@ -0
The total density alteration about 0.5% is typical for the Baltic Sea. 2 . . .
The profiles (b), (c), (d) are shifted to the right by 1, 2 or 3 density and Y33 = 0 all cubic and quadratic terms with re,s_peCt to
units, respectively. the eigenvalues, andig, and to_ reduce_ these cor_1d|t|or_13 to
Ao = G(d1, d2, c2, c3), whereG is a rational function with
respect to all its arguments. Therefore, the coeﬁici@ﬁﬁs

The performed analysis reveals that there are no other casé?é\dl/g,zg only may vanish provided Eq. (23) has rational solu-
when the derived expressions for the Coup”ng coefficientglions. It has been shown in Sect. 4.1 that the solutions indeed

might fail. are rational in the casé; = c3 but there may exist other
solutions.
4.3 Vanishing coupling coefficients and eigenvector com- From Eqg. (26) it follows that the coefficier;}fczz2 vanishes
ponents exactly and energy exchange within the first barotropic mode

is idle if alsod> = ¢». This condition means thdp, = dp3
In the case of two-layer model the energy transfer within the(the changes in density are equal and, consequéntly, /13)
baroclinic mode ceases in the frequently used particular cas@hereas the spectral evolution of the first baroclinic mode is
h1 = ho (Kozlov et al., 1987; Soomere, 1996). This happensfully governed by interactions with the other modes. The
exclusively owing to the fact that the corresponding coupling structure of the first baroclinic mode does not change but the
coefficient vanishes and leads to a specific situation wherdarotropicR; ~ vr1 + hovr2/ h1 + w3 and the second baro-
energy redistribution within the baroclinic mode is governed clinic modeR3 ~ 1 — 2y + 3 contain an equal portion
exclusively by intermodal interactions that do not supportof the motions in the topmost and the lowest layers.
baroclinic zonal flow (Soomere, 1995, 1996). Energy exchange within the second baroclinic mode is idle
Within the three-layer model the conditions for vanishing (equivalently,y333 = 0) on condition that/;y = dy + ¢ or, in
certain coupling coefficients are more complex. The analysighe case in questiorky = k1 + k3. The barotropicRy ~
in Sect. 3 demonstrates that the coefficients y2 andy,  spgyrq + (8p2 + 803)¥2 + 8p2vr3 and the second baroclinic
are always nonzero. From Eq. (25) it follows th@% and modeR3 ~ §p31 — (8p2 + 8p3)¥2 + Sp21r3 again contain
)/313 might vanish provided ; + d1 = 0 but Eq. (28) confirm  an equal portion of the motions in the topmost and the lowest
that they are always nonzero. This is not surprising becauséayers.
otherwise the evolution of the barotropic mode would be not  Further, in the particular case, = 8p3, h1 = h3, hy =
coupled with the other modes. 2h1, interactions within both the baroclinic modes do not
The coefficients/223, y323 andy233 also may vanish only if  cause actual energy redistribution. The modal structure is
Aj+d1 =0, j =2 3. The above has shown that indeed particularly simple:Ry ~ 1 +2y2+v3, R3 ~ ¥1—2¢y2+
the coe1‘ficient:3y323 = )/233 = 0 providedd; = c3, i.e. inthe 3. Thus, the rather realistic case when the density changes
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between layers are equal, depths of the lower and the upper, 4 A3 \/)»3()»2 4+ c3)(A2 + d1) (29)
A3 '

layers are equal, and the intermediate_laygr is twice as thﬁcll/33 =7Y23= Ao — (A2 — A3)cady
as the other layers, serves as “generalisation” of the classical

two-layer mo.d.el with equalldepths where sellf—interac.ti'ons-rhe expressions f0,7222 and y333 remain quite tedious. The
qf the baroclinic mo_de are idle. Such a vertical s_tratlflca- advantage of this scaling is that the coupling coefficients
tion seldom occurs in the open ocean (where typically the, / are explicitly invariant with respect to cyclic permuta-
depth of the lowest layer greatly exceeds that of the Othe'iionj — m — n — j of the mode numbers. Its another

ones) but frequently appears in the Baltic Sea. The densityynortant benefit is that simply the sum of energies of the
structure of its the central part often consists of a mixed Up-yodes enters into the energy conservation law.

per layer, well-defined seasonal thermocline at a depth about
20-40 m, an intermediate layer and main halocline at a depth 5 Specific flow regimes
about 80—100 m whereas the total depth is about 120-140m

(Fig. 2) and density changes between the layers are more GSeveral interesting properties of the multi-modal kinetic

less equal. equation (13) become evident directly from the analysis of
From EqS (AS), (A18) it follows that in the particular case the Coup”ng coefficients. The fact tha&lz and yél-s are

Aj +d1 = 0 (i.e. when several coupling coefficients vanish nonzero means that the barotropic mode, if not present ini-

from those that normally are nonzero, see Table 1) the eigentally, will always be generated. Indeed, if at some time mo-
vector(s) possess zero components. Further, it can be showfentr = 1 the barotropic energy; = 0, then

that maximally one of the eigenvector components (equiva-
lently, only one of the entries of matrRor its inverseS—1) dF1(t0) 1 A1jj
=7 ‘22:3 (vj;€
J=4

2

may vanish, and that exactly one component vanishes if an 9z wicr)"Fj (1) Fj(le2)

additional coupling coefficient is zero. This observation in- 012

dicates that vanishing coupling may occur solely if eigen- x8 (w8 (ko12)dK12 = 0,

vectors ofA have a zero entry. This property allows to detect

specific flow regimes (that correspond to vanishing of certainWhere

types ofnteractions)dirctyfrom the analysis of 69EMEC: i (11, — ko) + —F — )%+~

From the analysis in (Kozlov et al., 1987; Soomere, 1996)

it follows that the two-layer model may contain a purely

" parameters (thgarotropic flow (that exists only owing to specific form of
{£0d. (2) and is unstable with respect to small baroclinic dis-

turbances). It is also easy to show that, formally, a purely

Eq. (4) is given in the formR; = 1 + ..., i.e. through barotropic flow may exist in the three-layer model. Indeed,

the matrixS, the first column of the inverse matrix of which if at some time moment the energy of the first and the second

is a unity vector (Kozlov et al., 1987; Kamenkovich, 1986). baroclinic mode is zero, then

From the analysis above it becomes clear that it is alwaysy F;(t0)

possible to choose the lengths of the eigenvectorsS of

(equivalently, the parametets b, ¢) so that this represen- o

tation can be used. However, this scaling leads to many non= 4x / Dﬁ]yfzKjljS(w%jZ)S(sz)dKlz =0, j=23

trivial (i.e. other than zero or unity) coupling coefficients at

the collision integrals and requests the baroclinic mode to beand there is no energy flow into baroclinic modes although

rescaled in the energy conservation law (Kozlov et al., 1987)the coupling coefficienty, and y3; are nonzero. The ab-
The most convenient scaling apparently is the one thakence of the energy flow results from the structure of the ker-

leads to maximally simple form of the coupling coefficients. nel of the collision integralg;;; that are proportional to the

A possibility is to choose the parametersh, ¢ so that as  energy of the baroclinic mode. However, in a certain sense

many as possible coefficienys,, = 1. The analysis of the this asymmetry results from the fact that the coupling coeffi-

4.4 The convenient scalings

In the derivations above there are three “free
lengths of the eigenvectors) that can be chosen in many di
ferent ways. Traditionally, transfer to the normal modes in

=4JTIj1j =

two-layer model and Eq. (22) suggests the scaling cients;/fl andyf1 vanish. Notice that analogical coefficients
5 A3(h2 + c3)d1 Vljl vanish in the model with an arbitrary number of layers;
a=1 b= (ha — 73)(ha + d1)cs’ thus, the asymmet_ry_ of the energy flow from the barotropic
) Ao(Aa + c3)ds mode to the baroclinic modes is a general property of models

¢t = (28) of this type.
(k3 = 22) (A3 + d1)es It is also interesting to notice that solely the barotropic
that results ir1|y,%n|| =1l and mode may evolve uncoupled with other modes whereas a su-
perposition of the barotropic and the first baroclinic mode
A3 \/)»3(%3 + ¢3)(A3 + d1) may not. If at some time moment the barotropic and the first

2 _ .3 _
V3T V2= 55, (A3 — Ao)cady barotropic motions are present and only the second baroclinic
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Table 1. Conditions of vanishing of the coupling coefficients. Symbol “+” means that the corresponding coefficient never vanishes and “0”
means that it is identically zero

Mode Interaction with Barotropic mode Stbaroclinic mode % baroclinic mode
Barotropic Barotropic mode + 0 0
18t baroclinic mode 0 + 0
2"d paroclinic mode 0 0 +
1t baroclinic Barotropic mode 0 + 0
18t baroclinic mode + h18p2 = ha3dp3 & hq = h3 +
2"d haroclinic mode 0 + h18pp = h3dps
2"d paroclinic Barotropic mode 0 0 +
18t baroclinic mode 0 + h18p2 = hadps
2"d baroclinic mode + h18p2 = h3dp3 h18p2 = h36p3 & ho = h1 + h3
mode is void of energy, then tional symmetries&i1 = h3 or ho = h1 + h3 cause vanishing
o F of some other coefficients.
3 i i i i -
— 2 =7 /(J/ZB’ZC%fxz)ZFZ(Kl)Fz(Kz)>< An mtere;tmg pro'p'erty is thgt the Iarge;t poss.|bl'e num
ot ber of coupling coefficients vanish in the fairly realistic case
X8 (09328 (ko12)dr12 > 0 when the density changes between layers are equal, depths of
the topmost and the lowest layers are equal, and the interme-
because the coe1‘ficie|p:§2 never vanishes. diate layer is twice as thick as the other layers. This leads to

a delicate situation where energy redistribution is governed

by a few classes of interacting waves. The absence of a part
5 Discussion of interactions may lead to basically different evolution sce-

narios of the whole system as suggested in (Soomere, 1995,
Although the kinetic equation has been derived for the par-1996).
ticular system of Rossby waves in a multi-layer ocean, most The analysis reveals that in the three-layer ocean model
of the analysis remains valid for any set of wave systemspne class of interactions is implicitly neglected. Indeed, en-
possessing mutual interaction described by the m&riR  ergy exchange within triplets consisting of waves from three
Eq. (4). The basic properties of kinetic equations in the threegjifferent modes is idle since the corresponding coupling co-
layer model are mostly direct generalisations of those ofefficient is zero. This property reflects the fact that the eigen-
two-layer model. This equation possesses a fully barotropiGectors corresponding to the nonzero eigenvalues are orthog-
solution in consistence with the possibility of the purely onal with respect to the remaining eigenvector. The physical
barotropic flow to exist in the framework of the govern- reason is that the intensity of such interactions is of the order
ing equations. If energy is concentrated in the baroclinicef the vertical density alteration (Kozlov et al., 1987). Thus,
modes, the barotropic mode will necessarily be generatetthe three-layer model implicitly excludes a whole class of in-
An important feature is that motions initially consisting of teractions and at least four-layer model should be introduced
the barOtrOpiC and one baroclinic mode always transfer €Nto obtain a Comprehensive picture of energy exchange pat_

ergy to the other baroclinic mode. Thus, a solution consistingerns due to various types of resonant interactions of Rossby
of a superposition of the barotropic and the first baroclinicygyes.

mode does not exist in the three-layer model.

Although a number of external parameters enter into
Eqg. (1), basic properties of a particular three-layer modelAPPendix A The analytical expressions for coupling co-
only depend on four external parameters: density changes €fficients
between the layers and the ratios of the depths of the Iayerﬁ. _ - iy
The structure of Egs. (3) and (4) confirms the well-known h the s_|mplest baroclinic two-layer case the mathixn
fact that only changes of the vertical structure of the motionEq' (4)is
may alter the modal structure. Changes of other external pa., fZpo
rameters only lead to multiplication of all the entries of the = %
matrix A in Eq. (4), its eigenvalues and eigenvectors by a cer-
tain factor. The above has shown that degeneration of certaits eigenvalues, eigenvectors, and matrieS—* can be ex-
coefficients only occurs, as it may be expected, in partiallyplicitly calculated:
symmetric situations where o2 = h3dps (i.e. the reduced 1 1
depths of the topmost and the lowest layers are equal). Addi¢1 = 0, A2 = hi  hy

-1 1
hi R
EER )
h2 h2
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hy

1
—1
ﬁ.
b

= h1+ ha

H _ where

Q
|
S
>
3
i |F

dycz | c2 | O2+d)? | c3a(ho+dy)?
i 1(h2) = — + + - (A6)
Herea, b artle arbltzrary nonlzero clonstants. 12'he algove has’ A2A3 |:d2 dida di(Ag + c3)2
shown thayj; = yi, = a, yi, = vy = 0 andyj; = y53. It

is straightforward to evaluate the remaining coefficients: Itis convenient to subsequently simplify the expression for

G1(12). From Eq. (A2) it follows that
1 b%hihy
V22 =

vz = blhz = hy). AL (a4 ca)(hs + ca) = da(d1 — c3).

From Egs. (16)—(19) it follows that only 8 of total 27 cou- *2 T d1)(3+¢3) = Gz +di+ c2)(c3 —dy). (A7)
pling coefficients in the three-layer model have to be evalu-jith the use of Eq. (A7), the ratio in the third additive of
ated. The matriA obviously has a zero eigenvaliig = 0 3, (5,) can be evaluated as
because the sum of elements of each line is zero. Other

eigenvalues satisfy the following relations hotdi  letditer (A8)
A2+ c3 d>
A2r3 = didp 4 dic3 + coc3, N . .
23 e T AL T eets Substituting Eq. (A8) into Eq. (A6) and rearranging the ad-
A2+ Az =—(d1+d2+c2+c3). (A2) ditives yields
The componentsy, s2, s3 of the eigenvectors can be found c2c3 c3(ha + dr)
from equationsA — A;1 =0, j =1, 2, 3 Gi1(k2) = s [ - dl(x2+(:3)}
—5100 + d1) + d1s2 = O, calra + dy)” (1 I ) (A9)
c251 — 2852 — dosp — Asp + dasz = 0, dir2h3 A2 +c3

c352 — (A +c3)s3=0. (A3) Simplification of the expressions in brackets of Eq. (A9)

) ) _ yields thatG1(A2) contains the factoi, and can be ex-
The eigenvector corresponding 1@ = 0 consists of equal pressed as

elements; = sp = s3 = a (herea is an arbitrary constant)
whereas the second equation of Egs. (A3) is identically satg, (1,) = 3 [
isfied. In the case; # 0 (i.e. j = 2, 3) Eq. (A3) yield d1r3(r2 + ¢3)

Substituting the equality

c2(dy —c3) + (A2 + dl)z] .

s1h1 + s2ho + s3h3 =0 (A4)

r2+d))(A3+d1) = —d A10
Equation (A4) is a particular form of a general result say—( 2+ d)(s+dy) = cales —dy) (A10)

ing that the eigenvectors of the matrix are orthogonal withinto Eq. (A9) reveals that
respect to the weights, ..., Ay (Kamenkovich, 1986).

It is convenient to represent the eigenvectsrands®in - G, (1,) = c3(h2 — A3)(ha + d1)

terms ofi;, j = 2, 3. The resulting transfer matr&and its Azdi(A2 + c3)
inverse are 1 b2 —r3)(A2 +d1)es
)/ =
a b c 2 arz(rz + c3)d1
2
S=|a bAZd—t‘{l c% , 7/3132 c“(A3 — A2)(A3 +d1)c3 (ALD)
a pUatdics (Ag+di)cs ar2(A3 + c3)d1
(A2+c3)da (A3+c3)d1
didy (% a The coefficienty2;, yZ;, y3, andy3; are:
alor3z \ dido’ do’
—1 _ dydp Aztdr  c3—di cd1do(A3 + d1
S bra(hz—A2) <)~3+63’ Az+c3’ 1) ’ (AS) )/223 = (A3 ) G2a(A2),
didy (_ hptdy  ca—ds ) A2(A3 — A2)(A3 + ¢3)
cA3(A3—A2) Ap+c3’ Ap+c3’ )/2 B Czd]_dz()\3 + dl) Gz(kg)
. . 33 = .
whereb, ¢ are arbitrary nonzero constants. In the particu- br2(rz — A2)(A3 + c3)
lar case of Rossby waves, the expressionsforeduces to 3 b2didr(A2 + dv) Golh
8 = (h1, ho, h3)/[a(h1+ h2 + h3)] thatis just a variation of Y22 = _Cks(?»s — 22)(A2 + c3) 2(A2),
Eqg. (A4). 3 bdydz (A2 + d1)
Among the coupling coefficients of the barotropic mode, Y23 = T 730 — ha) Oz + ¢3) G2(23),
only expressions foy/zl2 and y313 have not been found yet.
From Egs. (16) and (A5) it follows that where
2 2 (2 +d)(ca—d1) (2 +d1)ej (A12)

b c _
1 _ 1 _ Go(h2) =1+ - .
Y22 = _a G1(A2), y33= _a G1(r3), d% (A2 + 03)d12
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Splitting the second additive in Eq. (A12) and regrouping the,,2 — , [C3(’\2 +d) +1 Aa(r2 + dl)] ’

terms gives di(A2 +c3) (A3 — A)dy
c3(A3 +d1) A3(A3 +d1)
(A2+d1) | c3(h2+d1) c3 S=c [ 1 ] ) Al7
Galho) = 1— t (1 - ) = BT dGst e (3 — Ap)ds (AL7)
d1 ds A2 +c3 . ) _
N ot d The expressions for the coupling coefficients are much
_ 22 [M _ ] simpler in the particular casg = d3 and can be obtained
di L di(h2 +c3) in a straightforward way from the following representation
Making use of Eq. (A7) yields of the transfer matris and its inverse:
a b c
M(ca—d)  A3(h3+ca) c(da+c)
Ga2(r2) = — = S=|a il B
dl (A2 +c3) d1d2 a _be c
2 Chalatd) s bhaGetdy % .
BT Os—ipdi BT O3—Apdr @ driey (€2 41 42)
— 2
o, A30s+d)0a+ca) st= pyveg (b0 D : (A18)
‘}/ = 5 d > d
B bra(a — 22) a3+ c3)ds CWrtditeD (d;fczv -1 d2+2cz>
2,2
3 b"h502 + d1) (A3 + c3) (A13) AcknowledgementsThe study has been supported by Estonian Sci-

Y22 = _ck3(A3 —22)(A2 +c3)dr’ ence Foundation, Grant No 4025. J. Laanemets and M.-J. Lilover
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