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Abstract. The quality of the prediction of dynamical sys-
tem evolution is determined by the accuracy to which ini-
tial conditions and forcing are known. Availability of fu-
ture observations permits reducing the effects of errors in
assessment the external model parameters by means of a fil-
tering algorithm. Usually, uncertainties in specifying inter-
nal model parameters describing the inner system dynamics
are neglected. Since they are characterized by strongly non-
Gaussian distributions (parameters are positive, as a rule),
traditional Kalman filtering schemes are badly suited to re-
ducing the contribution of this type of uncertainties to the
forecast errors. An extension of the Sequential Importance
Resampling filter (SIR) is proposed to this aim. The filter is
verified against the Ensemble Kalman filter (EnKF) in appli-
cation to the stochastic Lorenz system. It is shown that the
SIR is capable of estimating the system parameters and to
predict the evolution of the system with a remarkably better
accuracy than the EnKF. This highlights a severe drawback
of any Kalman filtering scheme: due to utilizing only first
two statistical moments in the analysis step it is unable to
deal with probability density functions badly approximated
by the normal distribution.

1 Introduction

Our ability to predict the state of the atmosphere and the
ocean highly depends on the accuracy to which initial condi-
tions and forcing functions are known. Various data assim-
ilation techniques have been developed to constrain models
with observations in order to reduce the influence of uncer-
tainties in these external model parameters on the forecast
skill. In parallel with the forecast errors of this type, there
are those caused by uncertainties in internal model param-
eters describing the inner system dynamics (such as mix-
ing and diffusivity coefficients, etc.). The so-called adjoint
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method borrowed from the engineering optimal control lit-
erature provides a tool to tune the model to available data
by adjusting those model parameters. However, this method
involves an assumption that the model structure is perfect
which is too restrictive for oceanographic and meteorological
applications. Accounting for model errors in the parameter
estimation problem dramatically increases the dimension of
the control space and is affordable only for low dimensional
models (ten Brummelhuis et al., 1993; Eknes and Evensen,
1997; Gong et al., 1998).

Commonly, the physical model is calibrated initially to
chose some “optimal” values of the external parameters.
Then a scheme of the Kalman filtering is applied for cor-
recting the prediction with available data. At this stage, the
model parameters are assumed to be known precisely. How-
ever, neglecting uncertainties of this kind leads to overesti-
mating the forecast skill. As a result, the data make a lesser
contribution to the analyzed system state and the true trajec-
tory of the system can be quickly lost.

A question arises of whether it is possible to embed param-
eter estimation into this scheme and to optimize the internal
model parametersm sequentially together with filtering the
system state. Though the model parameters are not dynami-
cal variables, we can easily augment the original dynamical
system

dx

dt
= M (t,m, x) , (1)

by the equation

dm

dt
= 0 . (2)

Filtering the extended dynamical system (1), (2) is a chal-
lenging task. First, the system becomes nonlinear even if the
original system (1) was linear. Second, the model parame-
tersm cannot take arbitrary values and usually are bounded
below by 0. Consequently, any probability distribution ex-
pressing uncertainties in the parameter space is essentially
non-Gaussian and even the Gaussian distribution is not abso-
lutely continuous with respect to it. Thus, the system (1), (2)
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provides a very sensitive test for evaluating of how a filtering
scheme deals with nonlinearity and with distributions badly
approximated by the normal one.

The aim of this paper is twofold. The first objective is
to demonstrate that sequential tuning of the internal param-
eters is allowable by means of Monte Carlo methods with
no additional computational cost. The other goal is to show
that accounting for the whole error statistics leads to notably
better forecast. Particle filters provide a tool for that. They
are introduced in Sect. 2. Section 3 contains an example of
filtering the Lorenz system with the well-known Ensemble
Kalman filter (EnKF) and with the so-called Sequential Im-
portance Resampling filter (SIR). An extension of the SIR
to sequentially optimize the model parameters and compari-
son of the SIR with an analogous extension of the EnKF is
presented in Sect. 4. In previous studies, to the best of the
author’s knowledge the particle filters were tested in applica-
tion to estimating unknown parameters of linear dynamical
systems only (Liu and West, 2001 and references therein).
Section 5 contains discussion and conclusions.

2 Particle filters

It is well known, that the classical Kalman filter (KF) is op-
timal in the sense of minimizing the variance only for lin-
ear systems and the Gaussian statistics. A linearization of
the error covariance evolution used in the Extended Kalman
filter (EKF) (Jazwinski, 1973) often turns out to be inade-
quate. Unbounded growth of the computed error variances
due to neglecting nonlinear saturation effects causes the up-
date procedure to become unstable (Evensen, 1992). Miller
et al. (1994, 1999) showed poor performance of the EKF in
application to the Lorenz system when the data are too sparse
or too inaccurate.

To go around the closure problem for the error statis-
tics propagation, Evensen (1994) proposed the Ensemble
Kalman filter (EnKF). The heart of the method is Monte
Carlo integration of the Fokker-Planck-Kolmogorov (FPK)
equation governing the evolution of the probability density
function (PDF) that describes the forecast error statistics. In
the analysis step, each ensemble member is updated accord-
ing to the traditional scheme of the KF with the use of the
forecast covariance matrix derived from the ensemble statis-
tics. Then, if the data are randomly perturbed, the updated
ensemble is shown to have the proper mean and covariance
matrix (Burgers et al., 1998).

However, two potential problems for the EnKF are worth
to mention. First, though the EnKF uses the full non-linear
dynamics to propagate the forecast error statistics, it mim-
ics the traditional KF in the analysis step and uses only the
Gaussian part of the prior PDF. Bennett (1992) pointed out
that “one thing is certain: least-squares estimation is very in-
efficient for highly intermittent processes, having probability
distributions not well characterized by means and variances”.
Second, the updated ensemble preserves only two first mo-
ments of the posterior. Consequently, the initial condition

for the further integration of the FPK does not coincide with
the posterior PDF. In the case of a small system noise when
the “diffusion” of probabilities is small compared with the
“advection”, the system does not forget its initial state for a
long time and the ensemble becomes non-representative for
the forecast error statistics after few analysis steps.

Particle filters provide a tool to solve these problems. As
the EnKF, they rely on Monte Carlo integration of the FPK
equation. However, instead of updating ensemble members
in the analysis step they update their probabilities accord-
ing to the fitness to observations. Consequently, they do not
involve any model reinitialization that usually injects imbal-
ance in the model state and leads to a shock in the system
evolution. Another advantage of these filters is that they
make use of the full statistics of the forecast and data errors
and thus are truly variance minimizing methods.

The basic algorithm of the particle filtering consists of the
following steps:

1. An initial ensemblexn, n = 1, . . . , N is drawn from a
prior distributionρ(x).

2. Each ensemble memberxn evolves according to the dy-
namical equations.

3. At t = tk when the datadk become available, weights
wn(tk) expressing “fitness” of ensemble members to the
data are computed

wn(tk) = wn(tk−1)ρ(dk|xn(tk)) (3)

and normalized so that

N∑
n=1

wn(tk) = 1 .

Here ρ(dk|xn(tk)) expresses the conditional PDF for
the datadk to be observed when the system state is
xn(tk) or, in other words, describes the statistics of the
data errors.

4. The final prediction is calculated as the weighted en-
semble mean.

This scheme was called as the direct ensemble method in
van Leeuwen and Evensen (1996). They found that the vast
majority of the ensemble members got negligible weights af-
ter few analysis steps and thus only a tiny fraction of the
ensemble contributes to the mean. In this case, to obtain a
reasonable approximation of the posterior PDF one needed
to use an ensemble of about 104 members. This drawback of
the method is explained by a Kong-Liu-Wong theorem (Kong
et al., 1994) which states that the unconditional variance of
the importance weightswn, i.e. with observations treated as
random variables, increases in time. Thus, the algorithm be-
comes more and more unstable.

To go around the degeneracy of the algorithm several ap-
proaches have been put forward. One of the most popu-
lar schemes is the Sequential Importance Resampling filter
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(SIR) proposed by Rubin (1988) and applied to filtering the
dynamical systems in Gordon et al. (1993). The basic idea
of the method is that there is no need in computing further
evolution of ensemble members having bad fitness to the
data. It is achieved by generating a new ensemble of equally
probable members at each analysis step by means of sam-
pling from the old ensemble with replacement. Probabilities
for the members to be sampled att = tk are assigned to
their normalized weightswn(tk) calculated by Eq. (3) with
wn(tk−1) = 1. Smith and Gelfand (1992) have proven that
a discrete approximation tends to the posterior PDF when
the sample size tends to infinity. This is just opposite to the
EnKF which does not produce an approximation to the pos-
terior PDF and preserves only the mean and the covariance.

3 Filtering the Lorenz system

To compare the EnKF and the SIR filter, an identical twin
experiment with the Lorenz system

dx

dt
= γ (y − x) ,

dy

dt
= rx − y − xz , (4)

dz

dt
= xy − βz ,

with commonly used parametersγ = 10, r = 28, andβ =

8/3 was performed. Each of Eqs. (4) were perturbed with
white noise stochastic forcing having variances 2., 12.13 and
12.13 correspondingly. The reference solution fort ∈ [0, 20]
was computed starting from an initial condition obtained by
adding a noiseN(0,

√
2) to the first guess

(x0, y0, z0) = (1.508870, −1.531271, 25.46091) .

The observations for thex− andz− components were gen-
erated at eachδt = 1 by adding theN(0,

√
2) noise to the

reference solution.
The experiment design is almost identical to that of

Evensen and van Leeuwen (2000). The major differences
are the distance between observations which was made twice
larger and that only 2 components of the model state were
observable. Observability of the whole system state is the
case standing far away from that we deal with in meteoro-
logical and oceanographic applications. For the same reason
of making the system less constrained by the data the data
frequency was lowered. In addition, for more pictorial pre-
sentation of results, the assimilation period was chosen to be
twice shorter than that in Evensen and van Leeuwen (2000).

Table 1 summarizes results of experiments made with use
of the SIR and EnKF for 250 and 1000 ensemble members.
As it is seen, performance of the filters improves with in-
creasing the ensemble size. However, this improvement is
less than 20% with four-fold increasing the ensemble size
and is mostly achieved due to better representation of system
oscillations near the attractor withint ∈ [7.5, 11.5] (compare
Fig. 1 and Fig. 2). This reflects the very slow convergence of

Table 1. RMS deviation of the filtered solutions with the fixed
model parameters from the true trajectory

Filter EnKF SIR EnKF SIR

Ensemble size 250 250 1000 1000

x 7.4 6.5 6.5 5.8
y 8.9 8.1 8.4 7.3
z 8.0 7.8 7.1 6.6

Monte Carlo methods which is of the order ofO(N−1/2),
whereN is the amount of the ensemble members. Another
important point worth to be mention is that the SIR for the
smaller ensemble is almost as effective as the EnKF for the
larger ensemble.

The main problem of the SIR with 250 ensemble mem-
bers is its inability to capture the true trajectory withint ∈

[7.5, 11.5]. The reason for this failure is bad scores of all
ensemble members and consequently poor representation of
the forecast error statistics. This problem for the SIR is re-
covered by enlarging the ensemble. One can notice that the
EnKF with the smaller ensemble does a better job within this
interval. Seemingly, it is a general point. If all ensemble
members deviate much from the observations, the EnKF up-
dates the ensemble trajectories and improves their fit to the
data, while the SIR changes the ensemble probabilities and
do not do anything with fitness of the ensemble members.

The filters for the both ensemble sizes lose the true tra-
jectory att = 3 when they assimilate a bad data on thex

component coming just after the transition point. Before the
analysis step, both filters predict a transition, but the data
wrongly tells about the absence of the transition point. The
filters accept this information and delay the transition for a
while. Then the EnKF predicts the next data att = 4 much
better than the SIR. However, it propagates the information
provided by the data to the unobservedy-component much
worse. As a result, the SIR solution fort ∈ [4, 5] is almost
identical to the true trajectory, while the EnKF catches it only
at t = 5. This situation is a stable feature which do not de-
pend on the ensemble size.

There are two more examples of inadequate transmission
of the information provided by the data onx andz to the un-
observedy. Let us consider the analysis step att = 19 for
the smaller ensemble. Both filters lost the system trajectory
at aboutt = 18.5. With the analysis step, they recover the ob-
served components of the solution. However, the SIR makes
a better inference abouty and is capable to follow the sys-
tem trajectory further while the EnKF loses it immediately
after the analysis step. The same situation occurs att = 7
for the larger ensemble. Inspite large deviations between the
forecast and the data, the SIR places the analysis just at the
system trajectory. The EnKF updates only the observed com-
ponents in a proper manner while they-component is pulled
even in a wrong direction.

This does not mean that the EnKF makes the update of the
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Fig. 1. Filtered solutions for 250 ensemble members with the fixed
model parameters: the SIR – red, the EnKF – green. The blue curve
is the true trajectory, circles are observations.

unobserved part of the system state always wrongly when it
faces large data misfits. For example, the analysis att = 12
was made by the EnKF very precisely. However, keeping
in mind that the EnKF does not make use of the whole er-
ror statistics one can conclude that the filter has problems in
transferring the information from the data to the unobserved
part of the system and they cannot be resolved with enlarging
the ensemble size.

An interesting point is the reaction of the filters on chang-
ing observability of the system. To investigate this issue, a
series of experiments with different data errors and distances
between observations was performed. First and foremost, the
SIR outperforms the EnKF for the larger ensemble in any
case. Seemingly, 1000 species are enough to sample properly
the system phase space and, when this is the case, employing
the whole error statistics is superior to using only the Gaus-
sian part. However, the situation changes for the smaller en-
semble. Increasing observability of the system (reducing the
distance between observations and data errors) has a signifi-
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Fig. 2. The same as Fig. 1 for 1000 ensemble members.

cant positive impact on the performance of the EnKF while it
surprisingly degrades that of the SIR. For example, doubling
the data density with keeping the data error variance fixed
results in better performance of the EnKF compared to the
SIR. Assimilating less accurate data of the error variance of
σ = 3

√
2 recovers better performance of the SIR.

To explain this behavior one should keep in mind the fol-
lowing. When the data errors are distributed according to
the Gaussian statistics as in the particular example consid-
ered here, the analysis step pushes the forecast error statis-
tics towards the normal distribution. The better are the data
and the more components of the system state are observable
the higher is this effect. Further, we start initially from the
Gaussian PDF. Consequently, reducing the distance between
observations and the data errors prevent the forecast error
statistics from moving far away from the normal distribution.
Thus, one can expect higher skills of the Kalman filter in this
case.

Degrading the performance of the SIR for the ensemble
of 250 members points out to some undersampling the sys-
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Table 2. RMS deviation of the filtered solutions with the adjusted
model parameters from the true trajectory

Filter EnKF SIR EnKF SIR

Ensemble size 250 250 1000 1000

x 9.2 7.1 9.7 5.6
y 10.6 8.2 11.0 7.1
z 14.2 7.7 14.7 6.6

tem phase space in this case that becomes more pronounced
with increasing the data density and data quality. In addition,
resampling artificially decreases the ensemble spread. This
may cause the deterioration of the filter performance with
extending the assimilation period. Indeed, whenδt = 0.5
andσ =

√
2, the SIR still works better than the EnKF for

t ∈ [0, 10] but then its skills drastically fall down due to the
ensemble collapse.

4 Sequential combined parameter- and state estimation
with the SIR filter

Extension of the SIR and the EnKF for the system (1), (2)
is straightforward. To examine their potentialities, the ex-
periment described in Sect. 3 was repeated with the initial
ensemble in the parameter space drawn from the uniform dis-
tribution for γ ∈ [0, 30.] andr ∈ [0, 44.8]. While evolving
each particular ensemble member,γ andr were kept equal to
their initial values and the data choose whether these values
are close to the truth (and the ensemble member survives at
the analysis step) or not (the ensemble member dies).

Estimating static parameters is a tough problem for the
SIR. If the major part of the ensemble has bad fitness to the
data due to undersampling or wrong prior statistics, only few
members will be resampled while the absence of the noise in
the parameter space will not allow the ensemble to regain the
spread. As was mentioned in Sect. 3, it may cause difficul-
ties for the SIR. A possible solution is to add some noise to
the resampled parameters to stabilize the filter analogous to
introducing the forgeting factor (Pham, 2001). However, this
procedure involves an arbitrary regularization parameter (the
noise level) to be tuned that complicates the comparison of
two filters.

One can easily verify that the system trajectory is more
sensitive to the choice ofr. Thus, it is not a surprise that the
SIR catches the value ofr after the first analysis step (Fig. 3).
The next analysis step produces a very good estimate forr.
However, it is impaired with time until the filter collapses
in the parameter space. Since the trajectory of the system is
tolerant to variations ofγ , the quality of the filtered solution
(see Table 2) which is of our primary interest still remains
almost identical to that presented in Sect. 3.

It is not the case for the EnKF. In the parameter estimation
problem, the EnKF has to deal with the PDFs badly approx-
imated by the Gaussian distribution. Such a modification in

the problem formulation completely corrupts the filter per-
formance. The solution produced by the EnKF has very little
common with the true trajectory and its quality does not de-
pend on the ensemble size (see Table 2).

The failure of the EnKF is caused by its incapability to re-
cover the true values of the model parameters (see Fig. 3).
The evolution of estimates forγ resembles a random walk
over the parameter subspace. As we can expect and it was
the case for the SIR, this parameter is derived from the data
with a lower accuracy compared to that forr. It is astonishing
that the EnKF does even a much worse job when estimating
the more crucial parameterr. After removing fluctuations
from the corresponding curve presented in Fig. 3, one can
easily see a pronounced tendency of pushing the estimates of
r in the opposite direction with respect to the true value. It is
worth noting that the parameter estimates obtained with the
EnKF for the both ensembles are indistinguishable. These
point out that the EnKF is completely unable to deal with the
PDFs defined over constrained sets. An additional evidence
for this conclusion is that the EnKF was permanently trying
to produce negative analyzed parameter values for some en-
semble members and the condition of non-negativeness had
to be imposed by force.

In the experiment described above the true value forβ was
specified. Results remain similar to those presented when the
truth deviates from the prescribed value within the 10% error.
Otherwise, the SIR was unable to locater andγ properly and
to follow the system trajectory. This points out to necessity
of a preliminary sensitivity analysis to detect the most crucial
model parameters to be adjusted before running the filter.

5 Discussion and conclusions

Data assimilation for high-dimensional nonlinear ocean and
atmospheric models is a challenging task. On the one side,
high-dimensionality forces us to use simplified representa-
tion of the error statistics and thus to neglect some sources of
uncertainties. Developing approaches for low dimensional
representation is an active area of research. On the other
side, nonlinearity of the models raises a fundamental ques-
tion of the potentiality of using generalizations of the tradi-
tional Kalman filter which is optimal only for the liner sys-
tems and for the Gaussian statistics is studied much less. Ap-
plication of particle filters is attractive from two viewpoints.
Though they converge rather slowly with increasing the en-
semble size, their convergence rate in estimating the mean
state, as for any Monte Carlo method, does not depend on
the dimension of the system phase space. In addition, they
use the full error statistics and thus are truly variance mini-
mizing schemes.

In a recent paper Verlaan and Heemink (2001) demon-
strated better performance the EnKF compared to the EKF
for the Lorenz system and hence the SIR was not compared
with the EKF in this study. The SIR was also not con-
fronted here with the Ensemble Kalman Smoother (EnKS)
that outperformed the EnKF (Evensen and van Leeuwen,
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Fig. 3. Evolution of the parameter estimates: the SIR – red, the EnKF – green, 1000 ensemble members – solid, 250 ensemble members –
dashed, the true parameter – blue.

2000). Comparing a filter and a smoother which are based
on different analysis steps would make it difficult to distin-
guish between what is caused by smoothing what is due to
differences in the analysis step. Hence, it would be more
logical to compare the EnKS with a smoother based on the
SIR that also exists (Fong et al., 2002). This issue is left for
the future.

It was clear a priori that the EnKF is subject to two prob-
lems. One of them is common for all Kalman filtering
schemes in application to non-Gaussian distributions: they
do not produce the variance-minimizing estimate in the anal-
ysis step. In addition, though the EnKF propagates the error
statistics more accurately than the EKF, it initializes the FPK
equation with an ensemble that preserves only first two mo-
ments of the true analysis error statistics. The SIR is free
from these drawbacks and, as the results presented in Sect. 3
reveal, recovers the trajectory of the stochastic Lorenz sys-
tem with the higher accuracy. There is one more point that
should be emphasized. Though the EnKF is based on the
Monte Carlo integration of the FPK equation, its conver-
gence rate, contrary to the SIR, for linear Gaussian prob-
lems (as it was mentioned above, the EnKF does not con-
verge in the general case) depends on the dimension of the
phase space. That is because of using the forecast error co-
variance matrix in the analysis step. Sampling the covariance
matrix of the rank ofK requires at leastK+1 species (Pham,
2001).

The fact that the convergence rate of the Monte Carlo
methods does not depend on the dimension of the phase

space should not produce an illusion that the number of
species needed for proper sampling is independent on the
dimension of the phase space. The numerator in the error
estimate may explode exponentially with this very same di-
mension. The situation could be notably better if the system
evolved on a low dimensional manifold in the high dimen-
sional space. However, as it is discussed in Smith et al.
(1999), the sampling problem still remains intractable with-
out estimating that manifold.

One could expect that since the system noise plays a very
important role in implementation of the SIR, the filter would
be outperformed by the Kalman filter in application to a de-
terministic system. As the results presented in Pham (2001)
suggest, this is not the case if the ensemble size is big enough.
However, one has to keep in mind that though only thex-
component was observed in that study, the data set used was
extremely dense (δt = 0.05). The experiments performed
here revealed that the lesser is the system state constrained
by the data the poorer is the performance of the Kalman fil-
ter in tracking the evolution of nonlinear systems compared
to that of the SIR. This issue is of high importance for at-
mospheric and oceanic data assimilation when only a tiny
fraction of the system state is observed.

Superiority of the SIR to the EnKF becomes especially
pronounced when they are applied to the parameter estima-
tion problem. The SIR adjusted the most crucial model pa-
rameter very closely to its true value after a couple of analysis
steps and the quality of the solution appeared to be indepen-
dent on whether the model parameters are initially known
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exactly or with some uncertainty. There is a distinguishing
feature of the case considered in Sect. 4 in comparison with
numerous applications of the the nonlinear Kalman filters
where they showed high skills. Namely, the EnKF faced here
a distribution badly approximated by the Gaussian curve. In
this situation it demonstrated total inability to cope with the
problem. This point can be of high importance for atmo-
spheric and ocean data assimilation where many state vari-
ables such as tracer fields are distributed similarly. In this
situation, the Gaussian approximation to the error statistics
utilized in the Kalman filter yields totally wrong transmis-
sion of the information from the observed variables to the
unobserved ones. This failure cannot be avoid by increasing
the ensemble size since no convergence exists.

The SIR makes the analysis computationally simpler and,
due to utilizing the whole error statistics, much more accu-
rate than the Kalman filter. In addition, it offers more flexi-
bility allowing one to tune poorly known model parameters
and easily to consider observations having non-Gaussian er-
ror statistics (as it is the case for the tracer fields) and nonlin-
early related to the state variables. The main problem of the
method is that the solution becomes unstable when the most
part of the ensemble members have bad fitness to the data due
to undersampling. As it was noticed in Sect. 3, the EnKF per-
forms better in this situation. This weakness of the SIR can
be especially pronounced in the parameter estimation prob-
lem when all but one of the members die at the resampling
step while the lack of the noise in Eq. (2) prevents the en-
semble from regeneration in the parameter space with time.
A possible solution could be adding a noise to the ensemble
if it is nearly to collapse. This procedure makes it possi-
ble to restore the ensemble size and even to detect regular
temporal oscillations of some model parameters (Losa et al.,
2003). Though any procedure of this type (such as the for-
getting factor) aimed to stabilize the filter cannot be justified
from a rigorous probabilistic viewpoint, it can significantly
improve the filter performance and reduce the number of en-
semble members necessary to track the true system trajectory
(Pham, 2001). This problem will be studied in the future.
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