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Abstract. The geometric aspects of HF-generated Langmuir
turbulence in the ionosphere and its detection by radars are
theoretically discussed in a broad approach, including local
modelling (damped and driven Zakharov system), basic para-
metric instabilities, polarization and strength of the driving
electric field, and radar configurations. Selected examples
of numerical results from the local model are presented and
discussed in relation to recent experiments, with emphasis on
recent experiments at the EISCAT facilities. Anisotropic as-
pects of the cavitation process in the magnetized plasma are
exhibited. Basic processes of cascades and cavitation are by
now well identified in these experiments, but a few problems
of the detailed agreement between theory and experiments
are pointed out.

1 Introduction

The outdoor experimental studies of parametric instabilities
in a plasma, by transmitting powerful HF radio waves into
the ionosphere and using VHF and UHF radars as diagnos-
tics, started long ago (Carlson et al., 1972; Wong and Tay-
lor, 1971). Experimental configurations have, up until re-
cently, been in active use at Arecibo, Puerto Rico, and since
the early 1980s at EISCAT, northern Scandinavia (Hagfors
et al., 1983). Since about 1988, there has been a remarkable
development of experimental techniques, leading to options
of space-and time-resolved experiments with simultaneously
high spectral resolution (Djuth et al., 1990; Fejer et al., 1991;
Sulzer and Fejer, 1994; Kohl and Rietveld, 1996; Rietveld et
al., 2000; Cheung et al., 2001; Djuth et al., 2002). This has
allowed for a detailed comparison between experiments and
theoretical predictions.

These studies may be said to occupy a position between
controlled laboratory experiments and geophysical observa-
tions. DuBois et al. (1996) discuss connections between
these experiments and studies of parametric processes occur-
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ring in laser experiments. In the addition, these studies may
open the road to using radars in studies of naturally occurring
Langmuir turbulence in the ionosphere (Forme, 1999).

Early saturation theory was based on weak turbulence for-
malism (Perkins et al., 1974; Fejer and Kuo, 1973; Rypdal
and Craigin, 1979; Das et al., 1985). Recent theoretical ef-
forts have been based on numerical solutions to full wave
models of the Zakharov type with damping and parametric
drive included (Nicholson et al., 1984; DuBois et al., 1990,
1991; Hanssen et al., 1992; Hanssen, 1992; Sprague and Fe-
jer, 1995; DuBois et al., 1993a, 2001). This allows for the
inclusion of phenomena not describable in weak turbulence
theory (e.g. cavitation) and also for a more precise descrip-
tion of the phenomena that weak turbulence theory includes,
such as cascading.

A main issue of debate in the early stage of the period after
1988 was the mutual role of cavitation and cascade (Stubbe
et al., 1992a, b; DuBois et al., 1992). Theoretically, a picture
emerged (Hanssen et al., 1992; DuBois et al., 1993a, 2001)
that cascading was to be expected in most of the height range
below the O-mode reflection height, but that near the reflec-
tion height, Langmuir cavitation was to be expected. Predic-
tions of radar spectral features resulting from the numerical
studies (DuBois et al., 1988, 1990; Hanssen et al., 1992),
were confirmed qualitatively in experiments at Arecibo (Fe-
jer et al., 1991; Sulzer and Fejer, 1994; Cheung et al., 1989,
1992, 2001) and later also at Tromsø (Kohl and Rietveld,
1996; Isham et al., 1999b; Rietveld et al., 2000; Djuth et al.,
2002), thus, strongly supporting the existence of Langmuir
cavitation in these experiments.

However, these numerical studies still had several limi-
tations: the one-dimensional model used by Hanssen et al.
(1992) is very useful for obtaining an overall view of the pa-
rameter dependencies of features of HF driven Langmuir tur-
bulence, but the geometric aspects of the observability of the
turbulence cannot be addressed in such a model. The two-
dimensional studies of DuBois et al. (1990, 1991, 1993a,
2001) were confined to the case where the driving electric
field is polarized along the ambient magnetic field, which
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is relevant for the case of the Arecibo experiments; in the
EISCAT experiments other polarizations must also be con-
sidered.

The present paper is devoted to two main issues which are
somewhat interrelated: (i) numerical results will be presented
for the first time for the case when the electric field polariza-
tion is off-parallel , and (ii) more generally, the radar observ-
ability of the HF driven Langmuir turbulence will be a cen-
tral issue. The latter is connected to the relation between the
directions of the radar line of sight and the electric field po-
larization. The appropriate 2D driven and damped Zakharov
model, including the ambient magnetic field and allowing
for arbitrary polarization of the pump electric field (in the
magnetic meridian plane), will be formulated and discussed
in Sect. 2. In Sect. 3, the geometric aspects of the growth
rates of the parametric instabilities contained in the model are
discussed. In order to predict the competition between cas-
cading and cavitation, the relative magnitude of the growth
rates of the parametric decay instability (PDI) and the “os-
cillating two-stream instability” (OTSI) appears to be crucial
(Hanssen et al., 1992; Shapiro and Shevchenko, 1984); Two-
dimensional aspects of this will be highlighted. In Sect. 4,
the geometric issue of observability is discussed. In the ac-
tual experiments, oblique (with respect to the vertical) radar
lines of sight as well as HF incidence are often used. A sim-
ple ray tracing model is used to infer the actual configurations
of angles of incidence, electric field amplitude and polariza-
tion, and radar line of sights, in the active experiments. In
particular, a study of the swelling at oblique incidence, as
well as the locus of the turning point outside of the spitze, is
presented. In Sect. 5, a collection of examples of numerical
runs of the 2D model is presented. In particular, interesting
results in the cavitation range, at high values of the magnetic
parameter, are presented. In this parameter range, the cavita-
tion process tends to become more similar to the 1D case. In
Sect. 6, the current status between theory and experiments is
discussed, with emphasis on recent experiments at the EIS-
CAT facilities. Some problems with the current theoretical
understanding of these experiments are indicated.

2 Model

The basic features behind the choice of Zakharov-like mod-
els for the HF driven Langmuir turbulence in the ionosphere
are the following two inequalities:

m

M
� 1 (1)

vte

c
� 1 . (2)

In Eq. (1) m, M are the electron and ion masses, respec-
tively, in Eq. (2),vte = (κTe/m)1/2 is the electron thermal
velocity,κ is the Boltzmann constant,Te is the electron tem-
perature, andc is the speed of light. Equation (1) is the basis
for separation of time scales; both experiments and general
theoretical considerations lead to the understanding that the

nontrivial processes take place on a time scale characteris-
tic of ion motion; then the equations of motion can be av-
eraged over the period of the transmitted pump wave, since
only the electrons can respond on that time scale, with the
result that the electron nonlinearities are collected in the pon-
deromotive force. Equation (2) is likewise the basis for the
separation of spatial scales: Eq. (2) characterizes the ratio
between a typical wavelength of an electrostatic wave and an
electromagnetic wave; confining attention to an electrostatic
turbulence, the electrostatic approximation is introduced for
the high frequency electric field, leading to a scalar equation;
then Eq. (2) allows for the electric field of the electromag-
netic pump wave to be represented as spatially constant.

In the first place, these assumptions imply that the electric
field can be represented as

E =
1

2

[
(E0 + ∇9) exp(−iω0t) + c.c.

]
, (3)

whereE0 is constant and9 is varying slowly witht relative
to time scale 1/ω0. Then, in order for this to be true, one
must also have the inequalities

n

n0
� 1 k2λ2

D � 1

Y 2
� 1 (ω0 − ωpe)/ω0 � 1 (4)

νce

ω0
� 1.

In Eq. (4),n0 is the background electron density andn is its
perturbation;k is a typical Langmuir wave number andλD

the Debye length;Y = �ce/ω0 with �ce the electron gyro-
frequency;ωpe = (4πe2n0/m)1/2 is the electron plasma fre-
quency, wheree is the magnitude of the electron charge, and
νce is the effective frequency of the collisions of electrons
with heavy particles. The inequalities (4) can all be seen
as assumptions that perturbations of the Langmuir disper-
sion relation around the basic cold plasma dispersion relation
ω = ωpe be small. In order to satisfy the condition on the
density perturbation in Eq. (4), the (total) electric field must
satisfy

E2

4πn0κTe

� 1 . (5)

These assumptions then lead to the following set of equa-
tions (see DuBois et al. (1995) for a comprehensive deriva-
tion):

∇ ·

[
i(∂t + νe∗) + (� − n) + ∇

2
]
∇9 − �B∇

2
⊥
9

= E0 · ∇n (6a)

(∂2
t + 2νi ∗ ∂t − ∇

2)n = ∇
2
|∇9 + E0|

2 . (6b)
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Equations (6) are written in their dimensionless form; the
units

T̂ =
3

2η

M

m

1

ω0
(7a)

X̂ =
3

2

(
M

mη

)1/2

λD (7b)

Êc = η
(m

M

)1/2
(

64πn0κTe

3

)1/2

(7c)

n̂c =

(
4ηm

3M

)
n0 (7d)

for time, space, electric field and density are uniquely deter-
mined by the requirement that the coefficients of the classi-
cal undriven, undamped version of the Zakharov system (Za-
kharov, 1972) be unity. In Eq. (7),η = 1 + γiTi/Te, where
Te,i are the background temperatures of electrons and ions,
andγi is the polytropic exponent of the ions,λD = vte/ωpe

is the Debye length. For the nondimensional quantitiesn and
9 of model (6), the inequalities (4), (5) give

4η

3

m

M
n � 1

4η

3

m

M
|∇9|

2
� 1. (8)

Effects from linearized kinetic plasma theory are buried in
the damping operatorsνe andνi . In the Fourier-transformed
version of the equations, they are represented as multiplica-
tion by functions ofk. For the damping rate of Langmuir
waves, we use

νe = ν + νL(k) ν =
1

2
νec, (9)

whereνec is the frequency of collisions between electrons
and heavy particles (in the units of Eq. (7)), whileνL(k) is
the Landau damping rate,

νL(k) =

(π

8

)1/2
(

3

2

)4(
M

ηm

)5/2 1

|k|3

· exp

(
−

9

8

M

ηm

1

k2
−

3

2

)
. (10)

For k beyond the maximum value of Eq. (10), the Lan-
dau damping rateνL(k) is, for numerical reasons, contin-
ued smoothly asck2, as in earlier 2D, as well as 1D simu-
lations (e.g. DuBois et al., 1990; Hanssen et al., 1992). This
is based on simulation studies of the burnout process (Dy-
achenko et al., 1991).

For the damping rate of ion-acoustic waves, we neglect
collisional damping, while for the Landau damping, we use
the formula

νi(k) = νi0|k| , (11)

which is the form valid for unmagnetized plasma, whereνi0
is a constant.

The input parameters of this model are listed in Table 1.
We comment on their significance as follows.

Table 1. Input parameters to the model

� = (ω0 − ωpe)T̂ mismatch
E0 (in units ofÊc) drive
�B =

1
2(�2

ce/ω0)T anisotropy
ν =

1
2νecT̂ electron collisions

νi0 ion Landau damping parameter
M/m mass ratio

The mismatch parameter� can also be interpreted as a
height relative to the critical height (i.e. O-mode reflection
height), assuming horizontal stratification and a smoothly
varying density increasing with height; then� increases
from zero when moving downwards from the critical height.
Emphasis on the dependence of the dynamics on this param-
eter has been crucial in the recent comparison between theory
and experiment (Hanssen et al., 1992; DuBois et al., 1993b,
2001).

The driveE0 is in our 2D model a two-dimensional vec-
tor with complex components. Since the phase is arbitrary
(i.e. the phase ofE0 is inherited by∇9), E0 contains three
real parameters. The two space dimensions will be assumed
to span the magnetic meridian plane. For a progressive O-
polarized wave, those two components of the electric field
are in phase, and thus,E0 will contain two real parameters
only. However, also including the reflected wave, at the same
time as oblique incidence is allowed for, an allowance for an
imaginary part of one of the components ofE0 can take care
of the combined effect of relative phase and different polar-
ization between the upgoing and downgoing pump wave. We
have not included examples with different phase in the two
components ofE0 in Sect. 5.

The magnetic field enters our model through the term in
Eq. (6a) containing the anisotropy parameter�B . In order
for our model to be valid, the weak magnetic field condition
Y 2

� 1 listed in Eq. (4) should be satisfied. Many terms
of relative orderY 2 have been neglected in Eqs. (6): in the
ponderomotive force (right-hand side of Eq. (6b), in the ion-
acoustic response (left-hand side of Eq. (6b)), in the kinetic
damping termsνi(k), νL(k), and so on. However, it should
be noted that Eq. (6b) loses validity in a small range ofk
nearly perpendicular to the magnetic field. The assumption
of Y 2 will only be weakly satisfied in the experimental situ-
ation; typically 1/3 > Y > 1/5. Therefore, the parameter
�B will take large values under typical experimental condi-
tions. The significance of this parameter will be of primary
attention in the present work.

The collisional damping parameterν takes values typically
in the range 0.1 < ν < 1.0. Experience from studies of
the 1D model point towards this parameter as crucial for the
deviation between classical weak turbulence theory and our
present “full wave” theory. Namely, at values ofν that are
not too small, there will be a maximum number of cascades
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as|E0| increases, where the last cascade occurs far before the
“Langmuir condensate” is reached. It should also be noted
that it is only the Langmuir damping that accounts for the
energy dissipation within this model (see the end of this sec-
tion).

The ion Landau damping parameterνi0 will depend cru-
cially on the temperature ratioTi/Te. In Hanssen et al.
(1992), a formula valid at small values of this ratio was used.
Actually, the problem of choosing an appropriate value for
νi0 is strongly connected to one of the major weaknesses of
the model (6). It is clear that the kinetic description of the ion
response cannot be approximated asymptotically by an equa-
tion of the form (6b) unless the temperature ratioTi/Te � 1
(Stubbe et al., 1992a). One possibility is to determine the
ion-acoustic dispersion relation, which is generally specified
by a Landau damping rate with the dependence (11) onk,
and a phase velocity. Indeed, Eq. (6b) reproduces the correct
functional form of the ion-acoustic dispersion relation in the
unmagnetized and quasi-neutral limit 1/�ci � τ � 1/ωpi ,
whereτ is a characteristic time of the process. However,
important processes contained in the model do not satisfy
the ion-acoustic dispersion relation; this is the case for the
OTSI instability. DuBois et al. (1995) and Sprague and Fe-
jer (1995) chose the value ofνi0, as well as the parameter
η entering the normalizations (7), so as to represent the cor-
rect relation between the thresholds of OTSI vs. PDI. This
leads to a valueνi0 = 0.49 whenTi/Te = 1, which is con-
siderably larger than that used in earlier work (e.g. Hanssen
et al., 1992). In DuBois et al. (1995), this was called the
“best fit two-pole approximation”. By choosingνi0 in this
way, Sprague and Fejer (1995) obtained from the model co-
existing features of PDI and OTSI which had been observed
in experiments (Kohl and Rietveld, 1996), but which were
not obtained in the earlier 1D simulations (Hanssen et al.,
1992, Hanssen, 1992). This choice cannot simultaneously be
expected to represent a fair competition between the growth
rates of the two instabilities. On the other hand, the gen-
eral features of them, such as the qualitative aspects of their
dependence onE0,θ versus�0,θ (see next section) will be
retained. In general,νi0 should be chosen in the interval
0.1 < νi0 < 0.5, increasing with the ratioTi/Te.

In DuBois et al. (1995), a three-pole approximation was
also tested. This builds on an idea of Hammet and Perkins
(1990). In its original form transferred to replace Eq. (6b),
the three-pole approximation of Hammet and Perkins (1990)
did not provide a good representation of thresholds and
growth rates of the parametric instabilities contained in
Eq. (6). DuBois et al. (1995), therefore, introduced a “best fit
three-pole approximation”. Numerical comparison between
this and the “best fit two-pole approximation” (as described
above) in DuBois et al. (1995), showed good qualitative sim-
ilarity between the two.

The mass ratioM/m enters significantly in the defini-
tions of the parameters of Table 1. If Langmuir Landau
damping were neglected (as would be appropriate in most
of the cascading range), then the mass ratio would not en-
ter the model in any other way. However, it is seen from

Fig. 1. Example of growth rates for the parametric instabilities.
Solid lines for PDI and dashed lines for OTSI, for four values of
E0,θ .

Eq. (10) to enter strongly in the Landau damping. For pa-
rameter values where cavitation occurs, Landau damping is
crucial. Therefore, wave numbers ranging up to the Lan-
dau damping rangekL ∼ 1/λD must be contained in the
numerical model. On the other hand, the cascading steps
have wave number decrements1k = 1/X̂. The numerical
wave number space must resolve these intervals well. Con-
sequently, the number of Fourier modesnx ×ny must satisfy
nx,y � 2kL/1k ∼ 3

√
M/(ηm) (the factor 2 arises, because

both positive and negative must be included). This require-
ment on the number of modes in most cases also ensures that
the fairly narrow wave number ranges of the parametric insta-
bilities are well resolved in the numerical model. The latter is
very important; as an example, refer to Fig. 1: if the numer-
ical wave number space does not hit near the maxima of the
growth rates, the instabilities, as well as their mutual com-
petition, might be misrepresented in the numerical model.
Figure 1 will be further explained in Sect. 3.

In order to resolve this dilemma, the model (6) has often
been run numerically for reduced values of the mass ratio,
meaning that the correspondence between the parameters of
Table 1 and an assumed real situation is computed for a re-
duced value ofM/m. Examples are DuBois et al. (1988,
1990, 1991, 1995, 2001), while in the 1D work of Hanssen
et al. (1992), realistic mass ratio was retained. For example,
in the recent paper by DuBois et al. (2001), the mass ratio
was chosen as 6200, which is about one-fifth of a realistic
(O+) value. Features such as the thresholds for the actual
parametric instabilities (Eqs. (23) and (28) below) scale in-
dependent on the mass ratio; the same is true for the angu-
lar growth range Eq. (32). Regarding growth rates, the ap-
proximate versions (25) and (30) below scale independent of
the mass ratio, while Eq. (26) does not. The transition from
cascading to cavitation is expected to depend on mass ratio,
so that reduced mass ratio favours cascading: for example,
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rescaling the points on the broken line on Fig. 27 of Hanssen
et al. (1992), with reduced mass ratio, will bring them into
the cascading range. In this paper, efforts are made to re-
tain parameters corresponding to realistic mass ratio, and the
mode number is chosen accordingly.

The numerical method by which Eq. (6) is integrated is an
integral part of the modelling. Periodic boundary conditions
are used, implying that physics can go on in a system of fi-
nite size, but still without boundaries. This makes our model
a local model, where the background state is constant, spec-
ified by the choice of values of the parameters of Table 1.
The periodic boundary conditions then allow for optimized,
two-dimensional fast Fourier transform routines to be used.
Periodic boundary conditions are physically acceptable pro-
vided the dimensions of the simulation cell are large com-
pared to the intrinsic correlation lengths of the turbulence, as
measured by the inverse width ink space of the dominant
spectral features. For example, the size of the simulation
cell L must be large enough that the resolution ink space
2π/L � 1k, where1k is the width of the cascade lines, as
discussed above in the context of mode number requirement.

The model described above is rich in dynamical behaviour,
having a large parameter space, and no doubt, many aspects
of the observed behaviour in the actual radio experiments is
contained qualitatively in it. Even so, there is obviously im-
portant physics left out of it. Among the major omissions
and weaknesses we list the following:

1. The constraining to two space dimensions probably
constitutes the most severe simplification. There are
several aspects of this:

(a) For the cavitation range, the dimensionality is im-
portant, both for the nucleation phase and the col-
lapse phase. In 1D, nucleation is easy, while inertial
collapse, wherein the cavitation asymptotically de-
couples from the heater field, does not exist but di-
rectly driven collapse is observed instead. Even so,
numerical studies show that energy is transferred in
k space to the Landau damping range also in this
case (Hanssen et al., 1992; Hanssen, 1992). In
2D, numerics indicate that nucleation takes place
less frequently, while inertial collapse now comes
into existence. For 3D, numerical studies have been
possible only with very poor wave vector space res-
olution (Robinson et al., 1988). It is expected that
the trend from 1D to 2D continues when passing
from 2D to 3D. For example, collapse in 2D re-
quires a threshold for the trapped energy, but not
in 3D. Though, see our discussion of cases with
large�B in Sect. 5, indicating that in the magne-
tized case, things become more similar to 1D.

(b) Constraining the excited dynamics to the magnetic
meridian plane, implies constraining out paramet-
ric excitation by the component of the electric field
perpendicular to this plane. The latter is in quadra-

ture with the component in the magnetic meridian
plane.

2. The reaction of the electron distribution function on the
turbulence represents important physics left out of our
present model. In the cavitation range, this is probably
a very important feature: all particle simulations of HF
generated Langmuir turbulence show that the electron
distribution is perturbed by the Langmuir turbulence;
thus, an energetic tail on the electron distribution will
be formed. Recent reduced particle-in-cell simulations
in Sanbonmatsu et al. (2000) indicate that for weakly
driven systems, the fast particle acceleration has a neg-
ligible effect on the turbulence levels and spectra. For
more strongly driven cases, the turbulence levels are
suppressed by increased Landau damping. One alterna-
tive is to represent this by updating the electron distri-
bution by a quasi-linear velocity space diffusion model,
as has recently been done (Sanbonmatsu et al., 1999,
2000). On the other hand, this type of modelling is
complicated by the intrinsic nonlocality of the problem;
assuming that cavitation takes place in a thin layer in
the vicinity of the O-mode reflection level, accelerated
particles may leave this layer, but subsequently some
of them may return after collision with heavy particles
(Gurevich et al., 1985).

3. The locality of the model: the feature of accelerated
electrons is already mentioned; here, we focus on other
aspects of this. In the model (6), the background state
is defined by a set of parameter values (cf. Table 1).
However, these values are space dependent in the ex-
perimental situation. This is in particular true for the
electric fieldE0, the scale of which is given by the O-
mode wavelength. Also, the spatial variation of� may
be important. The local model is justified if the meso-
scopic variation of the background parameters, such as
the density profile and the heater interference pattern,
vary on scales large compared to the correlation lengths
of the turbulence. In this case the predicted radar spec-
trum can be represented as an incoherent sum of the lo-
cally computed spectra over the observed altitudes. In
the cascading range, different states will be coupled by
Langmuir propagation, which is limited by Langmuir
linear damping. In the cavitation regime, the spectra
are broad, indicating small correlation lengths; here, the
local approximation should be excellent. Accelerated
electrons are also a potential mechanism of nonlocal
coupling in all regimes. The recent resolved altitude or-
dering of the observed turbulence (Rietveld et al., 2000;
Cheung et al., 2001; Djuth et al., 2002) indicates that
the local approximation is, in fact, valid, even in the
cascading regime.

4. The inadequacy of our representation of the effects of
the magnetic field for wave vectors nearly perpendicular
to the magnetic field has been mentioned above.
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5. The inadequacy of the representation of the kinetic de-
scription of the ion dynamics has been mentioned above
and is discussed by Stubbe et al. (1992b) and DuBois et
al. (1995). A 1D numerical study with linearized Vlasov
dynamics of the ions has been presented by Helmersen
and Mjølhus (1994); it showed the same qualitative
features as obtained in the 1D Zakharov model, al-
though a bias towards the cavitation regime was found.
Vlasov simulations (Wang et al., 1994, 1995) and re-
duced particle-in-cell simulations (Sanbonmatsu et al.,
1999, 2000) with particle electrons and ions have shown
the same qualitative features as predicted by the Za-
kharov model and in some weakly driven cases, quan-
titative agreement between the models was obtained as
mentioned above.

The driven and damped character of the model (6) should
be emphasized, as opposed to the conservative version (Za-
kharov, 1972) often emphasized in earlier work. The drive
represented byE0 is clearly exhibited when the energy bal-
ance equation for the model is written up. Using the proce-
dure on p. 17 530 of Mjølhus et al. (1995), the balance

d

dt
Ū = W̄ − D̄ (12)

can be obtained, where

Ū =
1

2

∫
T 2

|∇9|
2dx (13)

is the electrostatic energy in the simulation cellT 2,

D̄ =
1

2

∫
T 2

[
∇9 · (νe ∗ ∇9∗) + c.c.

]
dx (14)

the dissipation, and

W̄ =
1

2
iE∗

0 ·

∫
T 2

n∇9dx + c.c. (15)

is the Joulean energy injection into the cell (Doolen et al.,
1985). The energy loss from the incident radio wave is a
global effect that is not represented in the local model (6);
instead, a spatial damping on a global scale can be accounted
for (Mjølhus et al., 1995).

3 The dispersion relation

The feature of external drive, represented by the complex
vectorE0, implies that the unperturbed staten = 0, ∇9 = 0
may be unstable, typically when|E0| is above some thresh-
old. The instabilities, the parametric decay instability (PDI),
and the “Oscillating Two-Stream Instability” (OTSI), are
well-known. However, the dispersion relation leading to
these instabilities from the model (6) is quite complex, and
so we discuss here some useful approximate formulas and
general features.

In particular, it is intended to exhibit explicitly the depen-
dence of the modes on the geometric features. Fortunately,

the basic formulation of this aspect is rather simple: stabil-
ity is investigated by considering plane wave solutions of the
linearization of Eqs. (6); however, plane wave implies 1D
spatial variation, so one will come to the same result by con-
sidering the constraining of Eqs. (6) to dependence on one
spatial direction, and thereafter, linearize and Fourier ana-
lyze. A unit vector in this direction is denoted byeξ , and the
spatial coordinate in that direction is denoted byξ . Then, the
system of Eqs. (6) is readily brought into the form[
i(∂t + ν∗) + (�θ − n) + ∂2

ξ

]
E = E0,θn − ij2 (16a)

(∂2
t + 2νi ∗ ∂t − ∂2

ξ )n = ∂2
ξ |E + E0,θ |

2 (16b)

after one integration of Eq. (6a). Here,E = ∂ξ9, j2 =

−i〈nE〉 (spatial average) can be considered as a constant of
integration (for example, necessary to make9 well-defined
on our periodic numerical model), and

E0,θ = E0 · eξ (17a)

�θ = � − �B sin2 θ , (17b)

whereθ is the angle between the directioneξ and the ex-
ternal magnetic field. It is seen that Eq. (16) has the form
of a 1D Zakharov system, such as, for example, considered
in Hanssen et al. (1992); the geometric features enter only
through the parametersE0,θ and�θ of Eq. (17). In partic-
ular, E0,θ can now be considered real and positive, with no
loss of generality, because any phase can be absorbed intoE.
For the case ofE0 real (i.e. the two components in phase),
one has

E0,θ = E0 cos(α − θ) , (18)

whereα is the angle betweenE0 and the magnetic field di-
rection. Linearizing Eq. (16) around the vanishing state and
subsequently Fourier analyzing as∼ exp[i(kθξ − ωt)], the
quartic dispersion relation

P0(ω) = 2k2
θµE2

0,θ (19)

with

P0(ω) =

4∏
j=1

(ω − ω0j ) , (20)

where

ω01 = µ − iν

ω02 = −µ − iν

ω03 = ckθ − iνi0|kθ |

ω04 = −ckθ − iνi0|kθ |

c =

√
1 − ν2

i0

µ = k2
θ − �θ

is obtained. Details in the process of obtaining Eq. (19) are
omitted; however, we mention the following: equation (16a)
constitutes two real equations for the real and imaginary parts
of E; when Fourier analyzing, these two quantities must be
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represented independently by complex amplitudes. Alterna-
tively, one can treatE and E∗ (complex conjugate) as in-
dependent.E∗ is then often referred to as the “anti Stokes
component”.

In Eq. (19), we considerω as unknown, andk, �θ , E0,θ ,
ν andνi0 as parameters. In general, the 4 roots of Eq. (19)
have a complicated dependence on these parameters. In the
limit E0,θ = 0, we have the rootsω = ω0j , j = 1, ..., 4,
which represent the Langmuir wave described byE (ω01),
the Langmuir wave described byE∗ (ω02), and the forwards
and backwards propagating sound wave (ω03 andω04). The
Langmuir mode propagates forwards (backwards) whenk >

0 (< 0).
Instabilities, i.e. positive values of the imaginary part of

the roots of Eqs. (19) and (20), exist near values ofk for
which the real parts ofω0j coalesce. The PDI, with right-
moving Langmuir wave and left-moving ion-acoustic wave,
occurs when Re(ω01) = Re(ω04), e.g.k2

θ − �θ + ckθ = 0,
kθ > 0, also implying Re(ω02) = Re(ω03), which gives

k̂θ = −
c

2
+

√
�θ + c2/4 . (21)

Similarly, for the left-moving Langmuir wave (k̂θ < 0) and
the right-moving ion-acoustic wave, the resonance condition
is Re(ω01) = Re(ω03), leading to the negative of Eq. (21).
For these two situations,µ < 0, implying a negative fre-
quency shift, a well-known property of parametric instabili-
ties of decay type.

The OTSI occurs near values ofk, for whichω01 andω02
are both zero, i.e.µ = 0. At the exact valueµ = 0, the cou-
pling term (i.e. the right-hand side of Eq. (19)) again van-
ishes, so for that value ofk the roots are the modesω0j ,
which are all damped. As it turns out, this instability ex-
ists for a range of values ofkθ for whichµ > 0. In Fig. 1, an
example of the growth rates of each of them as a function of
k at increasing values ofE0,θ are plotted, as computed from
Eq. (20). The growth ranges, i.e. the range ofk with positive
growth rate, are seen to be relatively narrow. More useful:
the pointµ = 0 cannot be in any of the growth ranges for the
reason stated above; therefore, this condition separates the
growth ranges of the two instabilities. This is a useful cri-
terion to identify the two instabilities when solving Eq. (19)
numerically.

From Fig. 1, the competition between the two instabilities
is also seen; the OTSI has the largest threshold, but its growth
rate increases more rapidly withE0,θ , so that it wins at higher
values, at least at sufficiently small values of�θ .

In order to obtain useful formulas for the two instabili-
ties, a natural approximation is to substitute the resonance
condition into the two non-resonant factors on the left-hand
side of Eq. (19); this will give quadratic equations for the
growth rates. Consider first the PDI. Assuming the resonance
condition, implying Eq. (21), putω = µ = −ck̂θ and ne-
glect damping in the two nonconfluent factors of (19), and
ω = µ + iγ = −ck̂θ + iγ in the confluent factors; this gives

γ 2
+

(
ν + νi0|k̂θ |

)
γ −

(
1

2
k̂θ

E0,θ

c
− ννi0|k̂θ |

)
= 0 . (22)

Fig. 2. Example of maximum growth rates for the PDI instability
as a function of�θ for three different values ofE0,θ . Dashed lines
show result from using two-mode formula.

ForE0,θ > E0,t , where

E2
0,t = 2cννi0 , (23)

Eq. (22) has one positive (and one negative) real root; thus,
E0,t is the threshold value in approximation (22). This
threshold is not an exact result from Eq. (19), although it
is a very good approximation in most situations. The true
threshold increases somewhat when�θ decreases. ForE0,θ

above this threshold, the maximum growth rate according to
Eq. (22) is

γM,PDI = −
1

2
νi0|k̂θ |

+

√
1

2

k̂θ (E
2
0,θ − E2

0,t )

c
+

1

4
ν2
i0|k̂θ |

2 , (24)

whereν � νi0|k| was assumed. Just above the threshold,
the second term under the square root will dominate, and one
has the simplified formula

γM,PDI '
1

2

(E2
0,θ − E2

0,t )

cνi0
. (25)

In the opposite limit: far above threshold, one has the simpli-
fied formula

γM,PDI '

(
1

2
k̂θ

E2
0,θ

c

)1/2

−
1

2
νi0|k̂θ | . (26)

A closer inspection shows that the two-mode approxima-
tion (22) requiresE2

0,θ/k̂θ � 1. In Fig. 2, we show the PDI
growth rate as a function of�θ , for 3 values ofE0,θ , and
compare it with the two-mode formula (24).

In the above formulas,kθ was kept fixed at the valuêkθ

of confluence, and it was tacitly assumed that this gives the
maximum growth rate for the chosen directionθ . A closer
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Fig. 3. Example of maximum growth rates for the OTSI instability
as a function of�θ for three different values ofE0,θ . Dashed lines
show result from using two-mode formula.

numerical study showed that this is an excellent approxima-
tion, although apparently neither is fully exact.

For the OTSI instability, one can analyze Eq. (19) as fol-
lows: first, substitutingω = iγ , the left-hand side becomes
a polynomial with real-valued coefficients. Next, a condition
for the constant term to vanish is

ν2
+ µ2

− 2µE2
0,θ = 0 . (27)

At values ofk where this is satisfied, the dispersion relation
has a rootγ = 0. Assuming this is a simple rootγ (k) which
has∂kγ 6= 0, there will be values ofk in the neighbourhood
for which γ (k) is positive (as well as negative). Thus, there
is a purely growing instability. Actually, Eq. (27) defines two
values ofk whenE0,θ > E0,t , where

E2
0,t = ν (28)

and there is positive growth rate precisely between these val-
ues. Equation (27) clearly shows thatµ > 0 for this to hap-
pen. The threshold (28) is exact (within the model (6)). In or-
der to obtain simple approximate expressions for the growth
rate, we neglect again the growth rate in the acoustic factors
of Eq. (19), while retaining it in the two confluent factors,
giving

(γ + ν)2
+ µ2

− 2µE2
0,θ = 0 . (29)

It is readily seen that the largest growth rate occurs forµ =

E2
0,θ , e.g.kθ = (�θ + E2

0,θ )
1/2. This gives

γM,OT SI = −ν + E2
0,θ . (30)

In Fig. 3, the numerically computed maximum growth rate of
OTSI is plotted as a function of�θ , together with the results
using formula (30), for three different values ofE0,θ . It is
seen that Eq. (30) is not a particularly good approximation

Fig. 4. Example of maximum growth rates for the OTSI and PDI
instability as a function ofθ for α = 40 andνi0 = 0.45. Dashed
line shows OTSI growth rate and solid line shows PDI growth rate.

at higher values ofE0,θ . By comparing Figs. 2 and 3, or
considering Fig. 1, it can be seen that, at the smaller values
of �θ and larger values ofE0,θ , the OTSI may have a larger
growth rate than the PDI, with respect to a fixed direction.
In Hanssen et al. (1992), it was concluded from numerical
material that the dynamics goes to cavitation when the OTSI
has the largest growth rate. An original motivation for the
present study was to look for this to happen when the drive is
off-parallel. For example,�α may be small andE0,α large,
so that the OTSI has the largest growth rate in directionα.
However, looking at directionθ with α > θ > 0, one sees
from Eqs. (17) that�θ increases while going towards smaller
θ , while E0,θ will decrease. This trade-off may result in PDI
having the largest growth rate, occurring at an angleθm, α >

θm > 0. In Fig. 4, we show a case where the OTSI has
(slightly) the largest overall growth rate. It does not seem
worthwhile to express this trade-off analytically.

The angular growth range of the PDI, defined as the range
of directionsθ for which the PDI has a positive growth rate,
can be obtained from Eqs. (23) and (18) as

α − θc < θ < α + θc , (31)

where

cosθc =

√
2ννi0c

E0
. (32)

4 Observability: geometric aspects

Experiments where the HF-excited parametric instabilities in
the ionosphere are probed by means of incoherent radars,
have been performed at the Arecibo Observatory, Puerto
Rico, and at the EISCAT facilities in northern Scandinavia.
The Arecibo facility has a 430 MHz radar, which is usually
pointed vertically, and a high power (<80 MW Equivalent
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Radiated Power (ERP), 3–9 MHz) transmitter located 17 km
to the northeast of the radar. The EISCAT facilities consist
of a high power (<1.2 GW ERP) HF transmitter located near
Tromsø, Norway, which can operate in the frequency range
3.85–8.0 MHz, and two diagnostic radars of 224 MHz (VHF)
and 933 MHz (UHF). The UHF radar, in addition, has remote
receivers in Kiruna, Sweden, and Sodankylä, Finland.

The radar predictions from the model (6) are made as fol-
lows:

1. Using a spectral method for generating a numerical so-
lution to Eq. (6), it will consist ofnx × ny time se-
ries 9(t; k), n(t; k), wherenx (ny) are the number of
Fourier modes inx (y) directions (wherek = (kx, ky)

takesnx × ny values).

2. Each radar configuration described above defines a cer-
tain wave vectorkp for Bragg scatter as

kp = ±2k0 cos
φ

2
eφ/2 (33a)

k0 = ωR/c , (33b)

whereωR is the (angular) frequency of the radar,φ is
the angle between the lines of sight of the transmitting
and receiving radar to the ionospheric volume element
being probed, andeφ/2 a unit vector bisecting the angle
between these lines.

3. One can then select the complex time series9(t; k̃p),
n(t; k̃p), wherek̃p is the (discrete) wave vector in the
numerical model that best approximateskp, and per-
form a discrete Fourier transform overm selected time
subintervals of equal length, and form the averaged
power spectra

Sp(ω) =
1

m

m∑
j=1

|k̃2
p9j (ω; k̃p)|2 (34a)

Si(ω) =
1

m

m∑
j=1

|nj (ω; k̃p)|2 . (34b)

Here, the indicesp, i stand for “plasma line” and “ion
spectrum”, respectively. For the three radars, we are us-
ing the valueskp = 9.38 m−1 (EISCAT VHF), kp =

18.01 m−1 (Arecibo), andkp = 39.08 m−1 (EISCAT
UHF, monostatic mode). In Sect. 5, we refer to dimen-
sionless quantities; thenkp 7→ k̄p = X̂kp, whereX̂ is
given in Eqs. (7).

Thus, our model is that these spectra are proportional to
the contribution to the observed radar spectrum arriving from
the particular ionospheric location modelled by the param-
eter values entered into Eqs. (6), in the “plasma line” and
“ion line” bands, respectively, (DuBois et al., 1988, 1990;
Hanssen et al., 1992). We shall refer to these power spec-
tra at fixed wave vectors as “virtual radars”. The ability to

extract plasma line and ion line power spectra from the sim-
ulation data is perhaps the most important diagnostic in the
recent approach to Langmuir turbulence and led directly to
predictions of cavitating turbulence features near reflection
density (DuBois et al., 1988), which were subsequently iden-
tified in experiments (Cheung et al., 1989). We note that no
other approach to this problem has produced power spectra.

The theoretical prediction of observability of the HF-
generated Langmuir turbulence is then related to the occur-
rence and strength of a Fourier component atk̃p in the gen-
erated solution. This, in turn, depends on the parameters de-
scribed in Sect. 2. In particular, the direction and strength of
E0 is decisive. Of particular interest is the polarization and
electric field amplitude at the matching stateX = Xmatch,
where waves of frequencyω0 and wave vectorkp satisfy the
Langmuir dispersion relation

1 − Xmatch= 3(λDkp)2
+ Y 2 sin2 80 , (35)

where80 is the angle between the radar line of sight and the
magnetic field direction, andX = ω2

pe/ω
2
0 is the normalized

plasma frequency. In the dimensionless quantities of Sect. 2,
this takes the form

k̄2
p + k̄p = �φ0 , (36)

where�θ is defined in Eq. (17b) (the second term on the left-
hand side of Eq. (36) is not included in Eq. (35); it represents
the frequency downshift of the decay instability).

In order to describe the aspects of electric field polariza-
tion and amplitude in more detail, it was natural to referE0 to
two different orthonormal right-hand bases (see Fig. 5). For a
description of polarization, the basee‖, e⊥, ez is used, where
e‖ is along the magnetic field direction,e⊥ is perpendicular
toe‖, but in the magnetic meridian plane, andez is perpendic-
ular to the magnetic meridian plane. For a description of the
energy conservation and ray optics in a horizontally plane-
stratified medium,X = X(ξ), the baseeξ , eη, eζ is more
natural, whereeξ points vertically,eη points horizontally in
the magnetic meridian plane, andeζ = ez. The components
of E0 are then connected as

E0,ξ = E0,‖ cosα0 + E0,⊥ sinα0 (37a)

E0,η = −E0,‖ sinα0 + E0,⊥ cosα0 (37b)

E0,ζ = E0,z , (37c)

whereα0 is the angle between the vertical and the magnetic
field.

The polarization relations can now be taken from Stix
(1962), and read

E0,⊥ = −RE0,‖ (38a)

E0,z = iσE0,⊥ (38b)

where

R =
1 − X − N2 sin2 θ

N2 sinθ cosθ
(39a)

σ =
D

ε⊥ − N2
(39b)
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Fig. 5. Coordinate unit vectors. (a) The meaning ofθ . (b) Coordi-
nate vectors oriented with respect to vertical vs. those oriented with
respect to the magnetic field.

andε⊥ = 1− X/(1− Y 2), D = XY/(1− Y 2). The O-mode
index of refractionN is given by

N2
= 1 −

X(1 − X)

1 − X −
1
2Y 2 sin2 θ + 1

(40a)

1 =

[
(Y (1 − X) cosθ)2

+

(
1

2
Y 2 sin2 θ

)2
]1/2

. (40b)

Here,θ has the same meaning as in Sect. 3, namely the angle
between the currentk and the magnetic field. For normal
(i.e. vertical) incidence and plane-stratified medium,θ = α0,
otherwiseθ will vary along the ray path, and will have to be
determined by ray tracing.

Fig. 6. Example of the spatial structure of the electric field of a nor-
mally incident radio wave just below the critical height, according
to (46) and (48) (withÊ0 = 1). Solid line:E0,‖, broken line:E0,⊥.
The parameters:ω0 = 2πf0 with f0 = 4.544 MHz, α0 = 12◦,
Y = fce/f0 with fce = 1.35 MHz, andL = 160 km. The VHF
matching height is marked according toTe = 0.17 eV.

The most commonly used model to estimate the strength
of E0 at a given location, e.g. the matching height, has the
following two steps:

1. Often, the transmitter power is given as ERP (Equiva-
lent Radiated Power). Then, at vertical heightH and
angle of incidenceθ0 (relative to the vertical), the verti-
cal component of the time-averaged Poynting flux is

P̄ξ =
Q cos3 θ0

4πH 2
, (41)

where, for simplicity, straight rays are assumed.

2. For propagation over distances much smaller thanH , in
the vicinity of the O-mode reflection levelX = 1, the
following model is usually adapted:

(a) plane-stratified medium,X = X(ξ), and

(b) parallel rays,kη =
ω
c
Nη = const., whereNη is

related to the angle of incidence byNη = sinθ0.

Then, the variation of the wave amplitude is governed by
the conservation of̄Pξ , which is given by

P̄ξ =
c

8π

[
Nξ (|E0,ζ |

2
+ |E0,η|

2)

−Nη

1

2
(E0,ηE

∗

0,ξ + c.c)
]
, (42)

whereNη,ξ = (c/ω)kη,ξ are the dimensionless wave vec-
tor components. Using the polarization relation (38) and the
transformation (37), the components of the electric field am-
plitude can be expressed as

E0,‖ = K‖Ê0 (43a)

E0,⊥ = K⊥Ê0 , (43b)
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whereÊ0 is a reference electric field amplitude determined
as theη component of a vacuum circularly polarized wave
electric field at heightH and angle of incidenceθ0, which
from Eqs. (41), (42) is given by

Ê0 =

(
Q cos4 θ0

cH 2

)1/2

. (44)

(WhenQ is given in watts, we obtain̂E0 in SI units volts/m
by substituting 1/c 7→ cµ0/4π , whereµ0 = 4π × 10−7.) In
Eq. (43), the swelling factors are given by

K‖ =

(
2

cosθ0

)1/2

K0 (45a)

K⊥ = −RK‖ (45b)

K0 =

{
Nξ

[
σ 2R2

+ (sinα0 + R cosα0)
2
]

+Nη(sinα0 + R cosα0)(cosα0 − R sinα0)
}−1/2

. (45c)

In the case of vertically incident wave,θ0 = 0, e.g.θ = α0,
the incident and reflected wave will overlap, and the spatial
structure of the electric field should be described as(

E‖(ξ)

E⊥(ξ)

)
= 2

(
K‖

K⊥

)
Ê0 sin

(∫ 0

ξ

ω0

c
Ndξ +

π

4

)
, (46)

whereK‖ of (45) in this case is given by

K‖ =

{
2

N[σ 2R2 + (sinα0 + R cosα0)2]

}1/2

, (47)

N is given by (40), andξ = 0 atX = 1. Equations (46), (47)
break down asξ → 0 (X → 1), becauseN → 0 in (47);
then just belowX = 1, (46), (47) overlap with

E0,‖ = 2
√

2π
(ω0

c
L
)1/6

sinα
−2/3
0 Ê0Ai(ξ/ l) (48a)

E0,⊥ = 0 , (48b)

whereL is the scale height defined asdX/dz|X=1 = 1/L,
Ai(v) is the Airy function of argumentv (Abramowitz and
Stegun, 1970), andl = (c2L sin2 α0/ω

2
0)

1/3. Equation (48)
is based on an approximationN2

' (1−X)/ sin2 α0, valid in
the immediate neighbourhood ofX = 1. A computed exam-
ple is shown in Fig. 6, based on parameters of the experiment
of Rietveld et al. (2000). From Eq. (48),

maxE0,‖ = KAi Ê0 , (49)

where the swelling factor for Airy maximum is given as

KAi = 2
√

2π
(ω

c
L
)1/6

sinα
−2/3
0 max Ai , (50)

where the maximum value of the Airy function is max Ai=

0.536 attained atξ/ l = −1.0 (Abramowitz and Stegun,
1970). This gives the value

�Ai =
3

4η

M

m

(
ω0

c

L

sinα0

)−2/3

(51)

Fig. 7. Some examples of rays above HF transmitter, with polariza-
tion (of E0 component in the magnetic meridian plane) at match-
ing height indicated by arrows. The ray tracing model underly-
ing this, as well as Figs. 8 and 10, is briefly sketched in the main
text, where the horizontal and vertical length scales are also ex-
plained. (a) A case corresponding to the Arecibo setup: dip angle
40◦, Y = 0.2, based onfce = 1.05 MHz, Bragg wave number
18.01 m−1, Te = 0.12 eV (for calculation of matching height).
(b) A case corresponding to the EISCAT UHF setup:Y = 0.25
(based onfce = 1.35 MHz), dip angle 12◦, Bragg wave number
39.08 m−1, Te = 0.1 eV.

for � at Airy maximum. At the end of this section, Airy
swelling at oblique incidence is briefly discussed. Alterna-
tively, the uniform approximation of Lundborg and Thidé
(1986) could have been used.

For the case of Fig. 6, quite extreme values of the electric
field amplitude were obtained from our reference model at
EISCAT VHF matching height and Airy maximum, respec-
tively: 2K‖ = 9.6 at matching height andKAi = 38.12.
For 240 MW ERP andH = 245 km, the reference field is
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Ê0 = 0.346 V/m, which givesE0,‖ = 3.3 V/m at match-
ing height andE0,‖ = 13.2 V/m at Airy maximum. For
the parameters of Fig. 6, we havêEc = 0.94 V/m, giv-
ing dimensionless valuesE0,‖ = 3.5 (matching height) and
E0,‖ = 14.0 (Airy maximum). These are rather extreme
values, compared to those that have been used in numer-
ical solutions of the model (6) or its one-dimensional ver-
sion. Extreme values were also noted by Lundborg and Thidé
(1986) (cf. p. 493), and Djuth et al. (2002). For compari-
son, applying the same model to an Arecibo case (α0 = 40◦,
fce = 1.05 MHz, f0 = 5 MHz, L = 50 km,Q = 80 MW
(ERP),H = 245 km, Te = 0.12 eV), E0,‖ = 1.3 V/m at
matching height (dimensionless: 1.5) andE0,‖ = 3.0 V/m
(dimensionless: 3.5) at Airy maximum were obtained. Al-
though far more moderate, still these values are large com-
pared to those that have been used previously in theoretical
work based on the model (6).

For the case of oblique incidence, the direction of the wave
vector, i.e. the angleθ , must be determined by solving the
Booker quartic (Budden, 1985) forNξ . We have developed
a ray tracing model by simply considering the Booker quar-
tic as a Hamiltonian and thus, following its O-mode root.
Some results of this have been shown in Figs. 7 and 8. In our
simplified model, we assume a vacuum up to 100 km, then a
linear density profile withL = 100 km up to the critical level
X = 1, thus, interpreting the units on the axes of Figs. 7, 8,
and 10 as 100 km.

In Fig. 7a, we show 13 rays, ranging from angles of in-
cidence 18◦ to the south to 18◦ to the north, for a case cor-
responding to the Arecibo setup. The magnetic field direc-
tion is shown by means of a dashed line. The polarization
at matching density is shown by means of arrows. For the
central vertically incident ray, the polarization is seen to be
essentially parallel to the magnetic field, thus, making an an-
gle of ∼ 40◦ with the line of sight. On the other hand, for
the southernmost rays, it is seen that the polarization in the
downleg is more favourable. Figure 7b shows a similar pic-
ture for the Tromsø UHF case (9 rays with incidence from
12◦ south to 12◦ north). For the central ray (vertical inci-
dence), one sees that the polarization at matching height is
indeed very unfavourable. Again, the most favourable cases
are the downward moving rays to the south. In Kohl et al.
(1987) it is stated that, by experience, a “useful” configu-
ration for plasma line observation with EISCAT UHF is to
tilt the heater beam 6◦ to the south and observe along the
magnetic field. We shall refer to this as the “Kohl setup”.
This corresponds approximately to the second ray towards
the south counted from the central (vertical incident) ray. For
the central, vertically incident ray, the polarization at VHF
matching height is nearly along the magnetic field. Usually,
in Heating-EISCAT VHF experiments, both the Heater and
the VHF antenna are oriented vertically.

Let us elaborate a little further on the configuration based
on the downward moving wave in the EISCAT UHF case.
In Fig. 8a, b we show single rays at vertical incidence, 5.5◦

(a) or 6.75◦ (b) to the south. It is seen that the rays make a

Fig. 8. Single rays to further illustrate the dependence of the po-
larization of the pump field at EISCAT UHF matching height on
plasma parameters.(a) Y = 0.25; Debye lengthλD = 0.5 cm (cor-
responding to applied frequencyf0 = 5.4 MHz andTe = 0.16 eV).
(b) Y = 0.2; λD = 0.3 cm (corresponding to applied frequency
f0 = 6.75 MHz andTe = 0.09 eV).

sudden change in direction on their downleg. If the match-
ing height is hit above, or in the early stage of this change,
a quite favourable configuration is obtained. For example, in
Fig. 8b, an angle of 9◦ betweenE0 and the line of sight re-
sulted. On the other hand, when the matching height is hit
below or in the late stage, a far less favourable configuration
results. In the example of Fig. 8a, the angle is 39◦. The deci-
sive ionospheric parameter determining the matching height
is the Debye length: low temperature or high plasma den-
sity moves the matching height relative to the critical level
upwards, according to Eq. (35). Increased density implies
increased applied frequencyω0, also decreasing the second
term of Eq. (35). However, it was also found from studying
the rays that reducingY changes the ray in a way that coun-
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Fig. 9. Solid line:K‖, broken line:K⊥, at EISCAT UHF matching
height on downleg, as a function of the applied frequency.

teracts this effect. In Fig. 9, this effect is illustrated quantita-
tively.

It is tempting to refer to the experimental work of West-
man et al. (1995) in this connection: by changing the ap-
plied frequency from 5.423 MHz to 6.77 MHz, a plasma line
spectrum was obtained with the monostatic UHF configura-
tion with unprecedented detail: decay line and 5 cascades
could be counted. The configuration corresponds by far to
the one modelled in Fig. 8a:λD = 3 mm, Y = 0.2 which
with fce = 1.35 MHz corresponds tof0 = 6.75 MHz; more-
over, the angle of incidence of 6◦ and direction of sight of
12◦ also corresponds to the experiment.

Fig. 10. The caustic of the ray bundle for Tromsø parameters. The
arrows show the polarization of the electric field component in the
magnetic meridian plane at the turning point.

Fig. 11. The mismatch parameter� at the turning point as a func-
tion of the angle between the direction of the line of sight towards
the turning point and the vertical. The markers indicate the spitze.

It is well-known that the Tromsø UHF plasma line is dif-
ficult to observe in the range of larger Debye lengths, e.g.
high temperature and low applied frequency. This has usu-
ally been attributed to an increased Landau damping, which
increases the threshold (Stubbe et al., 1985). The feature il-
lustrated in Fig. 8a, b offers an alternative explanation to this
observation.

We have compared the Landau and collisional damping
rates in the actual parameter range. Details are omitted. We
concluded, as did Stubbe et al. (1985), that the Landau damp-
ing explanation is also feasible. The polarization feature de-
scribed above represents an added effect.

Recently, there has been a de-emphasis of the role of the
matching height for these oblique HF-UHF experiments and
an increased emphasis on explanations in terms of cavitation
(Isham et al., 1999b). For the Kohl setup (with the UHF radar
pointing along the magnetic field), the HF wave field will not
reach the critical levelX = 1 on the radar line of sight, ac-
cording to our horizontally stratified model. We shall call
the highest point of a given ray (specified by its angle of in-
cidenceNη = sinθ0 and the plasma parameters) its turning
point; other names may also exist. Thus, it has become of
interest to discuss the possibility of explaining UHF observa-
tions as due to cavitating Langmuir turbulence near the turn-
ing point at oblique incidence. In the following, we report
briefly on a study of what the input parameters to model (6)
will be near the turning point, in particular, as seen at the line
of sight 13◦ south.

Figure 10 shows an example of the rays over the HF trans-
mitter above Ramfjordmoen, Tromsø, and the accompanying
polarization of the electric field component in the magnetic
meridian plane at the locus of the turning point. It is seen
that inside the spitze range, where the wave reaches the crit-
ical level, the polarization is along the magnetic field, but
outside of the spitze the polarization approaches vertical. In
Fig. 11, we show an example of the calculated value of the
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Fig. 12. The swelling factor as a function of angle of incidence,
relative to that of normal incidence (as given by Eq. (50)). The
broken line indicates(sinα0)2/3 with α0 = 13◦, corresponding to
the unmagnetized case.

mismatch parameter� at the turning point, as a function of
the angle between the vertical and the line of sight. It is seen
that the value of� at the turning point seen at 13◦ south in
the chosen example is around 100, i.e. as a rule-of-thumb,
comparable with the value at VHF matching height.

Near the turning point, there will also be a swelling of the
electric field amplitude, as in the case of vertical incidence
described above. It should be stated that the relevant concept
here is the caustic rather than the turning point, where the
caustic is the envelope of the rays. We choose to replace the
caustic by the turning point, which we expect to be a good
approximation. The turning point will be the caustic for par-
allel rays, i.e. fixedNη for all rays. Then the electric field in
the vicinity of the turning point will be described by an Airy
function of the vertical coordinate, in addition to the polar-
ization relations at the turning point. The appropriate theo-
retical formulation of this for the case of oblique incidence
does not exist in published form, according to the authors’
present knowledge. In particular, at normal incidence, the
factor sinα−2/3 occurs in the swelling factor, which gives a
strong extra swelling effect at high-latitudes. It is of interest
to find out how this swelling effect behaves at oblique inci-
dence. In Fig. 12, we show the swelling factor relative to that
given by Eq. (50), as a function of angle of incidence. At
the two critical directions, it formally goes to 0, however,
near those values, the calculation is not valid anyway be-
cause coupling to the Z-mode takes place (Mjølhus, 1990).
It is seen that for incidence around 10◦, the swelling factor is
still around half that of normal incidence. The details on the
computations leading to Fig. 12 will be described elsewhere.

It is emphasized that the simple model described above
should be considered as a reference model only. The two
main sources of deviation are:

Fig. 13. Time evolution ofU (Eq. (52)) for example I. Onset of
averaging marked.

1. absorption,

2. refraction due to large-scale irregularities introducing
horizontal gradients.

Both of them are essentially uncontrolled and unpredictable
and it would, therefore, scarcely be of any help to try to im-
plement them into the model. On the other hand, the electric
field distribution in actual experiments must be expected to
be influenced by these factors. For the absorption, there are
two main components:

1. Absorption in the lower ionosphere (D layer), where the
neutral density and consequently the collision frequency
is high. This depends very strongly on the actual degree
of ionization of these lower layers. It is also a question
to what extent this ionization can be influenced by the
high-power HF wave.

2. Anomalous absorption of the HF wave near the critical
layer due to the energy loss into generation of the Lang-
muir turbulence, along the already traversed part of the
ray path. For long duration high duty cycle exposure,
one will also have strong anomalous absorption due to
striations (e.g. Jones et al., 1984).

5 Some numerical examples

In this section, we show some selected examples of results
of numerical solutions to Eqs. (6), in order to illustrate fea-
tures discussed in Sects. 3 and 4, as well as to shed some
theoretical light on recent experiments. The parameters of
the examples are listed in Table 2.

The virtual radar power spectra that we show are calcu-
lated as described in the beginning of Sect. 4. We have nor-
malized all the spectra by dividing them by the number of
modes,nx × ny = 10242. They are plotted against the di-
mensionless angular frequencyω, where in the plasma line
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Table 2.

Example I II III IV V

� 110 643 305 138 6
�B 250 360 360 792 795
α 40◦ 52 0 10.6 0
E0 1.1 1.51 1.0 1.2 1.8–2.0
ν 0.35 0.35 0.1 0.35 0.35

νi0 0.3 0.3 0.3 0.3 0.3
Lx × Ly 54.83× 54.80 8π × 8π 20π × 20π 20π × 20π 8π × 8π

δt 5 ∗ 10−4 2.5 ∗ 10−4 1 ∗ 10−4 5 ∗ 10−4 2.5 ∗ 10−5

channel the valueω = 0 corresponds to no frequency shift
relative to the applied frequencyω0, and positive (negative)
values ofω correspond to outshift (inshift). The frequency
resolution isδω = 2π/(N1δt), whereN1 is the number of
sampled values andδt is the time step.

Example I (Figs. 13–14) is intended to illustrate the ge-
ometric aspects of the maximum growth rates of the para-
metric instabilities, as discussed in Sect. 3 and illustrated in
Fig. 4. In fact, the parameters of example I are the same as
those of Fig. 4. In Fig. 13, we show the overall evolution by
exhibiting the time evolution of the quadratic sum of all the

Fig. 14. Contour plots of time-averaged modal spectra, example I.
Direction of driving electric field indicated with arrow in upper
panel.

Fourier modes

U(t) =

ny∑
jx=1

nx∑
jy=1

|k9(kjx , kjy , t)|
2, (52)

which is proportional to the total electrostatic energy of the
simulation cell. One can see a growth stage, 0≤ t ≤ 20 (in
units (7)), and thereafter, in this case, damped modulations.
In Fig. 14, we show contour plots of the time-averaged modal
spectra,〈|k9(k, t)|2〉, 〈|n(k, t)|2〉, where the averaging goes
over tave ≤ t ≤ tend, with tave = 20 andtend = 40 in this
case. In the upper panel, the direction of the driving electric
field is indicated by an arrow (α = 40◦ in this case). The
primary decay and two cascades can be seen. The excita-
tion maximum in thek-plane is not along the driving electric
field, but it agrees reasonably with the direction of maximum
PDI growth rate of Fig. 4 (max excitation occurs in the range
20◦ < θ < 25◦, while the theoretical max growth rate occurs
at θ = 27◦).

In the spectrum ofn (lower panel), the primary decay (A)
and the two first cascades (B) can also be seen; in addition,
there is a spectrum in a range neark = 0 (C) corresponding
to density channels along the group velocity of the primary
decay.

A feature of example I is that the OTSI has the overall
largest growth rate. In addition, the system sizesLx andLy

were chosen such that thek of maximum growth rate of the
OTSI was approximated optimally in the numerical system.
Still, the outcome of example I is saturation by cascade.

In Fig. 7b, the unfavourable polarization of the driving
electric field at EISCAT UHF matching height at vertical
radar line of sight is clearly exhibited. Nevertheless, Djuth
et al. (1994) reported UHF observations in this experimental
mode. Example II is devoted to a discussion of this situation.
With Te = 0.15 eV andf0 = 6.77 MHz, we have estimated
the nondimensional probing wave number tok̄p = 24.4.
With a line of sight of 13◦ to the magnetic field, this gives
� ' 643 at matching height. In the height-resolved ob-
servations of Djuth et al. (1994), the highest UHF observa-
tions occur about 1.5 km below the highest VHF spectrum,
where the latter presumably came from the vicinity of the
critical height. We have estimated the distance from the crit-
ical height down to the UHF matching height to 2.4 km, as-
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Fig. 15. Same as Figure 14, but for example II.

suming a scale heightL = 35 km. We have calculated the
polarization at the matching height to make an angle of 52◦

to the magnetic field. We chose a fairly largeE0 (= 1.51),
corresponding to the “super heater” (1.2 GW ERP) used by
Djuth et al. (1994). With gyrofrequencyfce = 1.35 MHz,
η = 2.5 and mass ratioM/m = 3∗ 104, we have�B = 360.

Some results of example II are shown in Figs. 15–17. Fig-
ure 15 shows the modal spectra, averaged over 15≤ t ≤ 40.
In the upper panel, the electric field polarization and the vir-
tual radar are indicated. One sees that this example again
appears as cascade-saturated. Figure 16 shows sections of
the modal spectrum ofE along the two directions indicated
in Fig. 15. The wave number of primary decay instability in
the two directions, according to Eq. (21), are indicated. We
see that along the radar direction, the maximum excitation is
not at the primary decay. The excitation level along the radar
direction is∼ 1/30 of that along the driver direction.

Figure 17 shows the virtual radar spectra for this situa-
tion. It will be interesting to compare them with virtual radar
spectra of example V. In example II, we ran 9 nearby virtual
radars. Surprisingly, the frequency downshift of the plasma
line varied considerably in the range−10 > ω > −40.

Also, the setup at Arecibo has been recognized as geomet-
rically unfavourable, with theE0 polarization nearly along
the magnetic field, and the radar line-of-sight usually along
the vertical, making 40◦–45◦ with E0, cf. Fig. 7a. This is
discussed in detail in DuBois et al. (2001) and Cheung et al.
(2001). In example III, we show a case pertaining to that

Fig. 16. Sections of the modal spectrum ofE along the direction
of E0 (upper) and along the radar probing direction (lower), exam-
ple II. Locus of primary decay indicated by vertical dotted lines.

Fig. 17. Virtual radar spectra for example II. Five half-overlapping
subspectra of lengthN1 = 215, sampled with time stepδt = 2.5 ∗

10−4.

situation. The parameters were chosen in order to represent
the case of DuBois et al. (2001). In the latter, the values
of the parameters were determined on the basis of an arti-
ficial low mass ratio ofM/m = 6200, and the numerical
representation of the system was with 256× 256 Fourier
modes. In example III, the parameters are estimated from
the physical values given by DuBois et al. (2001) using mass
ratio M/m = 30 000, and the system is represented with
1024×1024 modes. DuBois et al. (2001) used the following
data: electron temperatureTe = 1000◦ K, applied frequency
f0 = 5.1 MHz, electron gyrofrequencyfce = 1.05 MHz,
line of sight 45◦ to magnetic field; from this, DuBois et al.
(2001) estimatedXmatch = 0.962 for the matching height.
Moreover, DuBois et al. usedη = 3.383 (“best fit 2-pole
approximation” (DuBois et al., 1995)). Then,� = 253,
�B = 266 are obtained, and for the case of a driving elec-
tric field amplitude of 1 V/m, we obtainedE0 = 1. Finally,
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Fig. 18. Time evolution ofU for example III. For 0≤ t ≤ 40, it
was run withν = 0.25, while for 40≤ t ≤ 62, ν = 0.1. Onset of
averaging and virtual radar sampling att = 42 marked.

Fig. 19. Contour plots of time-averaged modal spectra for exam-
ple III. Driver and virtual radar indicated in upper panel.

for the electron collision frequency, DuBois et al. state that
νec/ωpe = 1.5∗ 10−5. From this we obtainν = 0.1. Finally,
DuBois et al. putνi0 = 0.32445 (again, “best fit two-pole
approximation”).

The results for example III are shown in Figs. 18–20. The
plasma line strength of Fig. 20 is about half that of Fig. 22
below, while the ion spectrum is about one-fifth of the latter.

Fig. 20. Virtual radar spectra for example III. Three half-
overlapping subspectra of lengthN1 = 214, sampled with time step
δt = 10−4.

It is also interesting to compare with the results of Mjølhus
et al. (2001), where radar matching of numerically generated
Langmuir spectra was promoted by refraction in plasma den-
sity ducts. Both virtual radar spectra of Fig. 8 of Mjølhus et
al. (2001) are about one-half of the corresponding spectra of
Fig. 20.

As has been emphasized in many papers, the main pre-
diction from the model (6) is saturation by decay-cascades
at some distance below the O-mode reflection level, which
will be observable by a radar detecting scattered signal from
the radar’s matching height Eq. (34), and a cavitating turbu-
lence just below the reflection level, expected to be observ-
able by a range of radars (Hanssen et al., 1992; DuBois et al.,
1993a, b; 2001). This qualitative prediction has indeed been
supported by experiments in great detail (Sulzer and Fejer,
1994; Rietveld et al., 2000; Cheung et al., 2001; Djuth et al.,
2002). In particular, Rietveld et al. (2000) presented an ex-
ample with height-separated spectra of cascade versus cavi-
tation type obtained by the Tromsø VHF radar. In Sect. 4, we
made estimates of the electric field strength and polarization
for data corresponding to that experiment. In the next two ex-
amples, we show numerical results obtained for parameters
chosen relative to the Rietveld et al. (2000) experiment.

Let us first emphasize that, by using electric field values
as estimated in Sect. 4, or corrected for, say, 30% D-layer
absorption, (i) model (6) cannot currently be handled numer-
ically, and (ii) would be expected to lead to a prediction of
cavitating Langmuir turbulence in all of the height ranges
from which HF-enhanced backscatter was obtained by the
EISCAT VHF radar in the Rietveld et al. (2000) experiment.
In the examples we show, we have used far smaller values of
E0 than those estimated in Sect. 4.

In example IV, parameters corresponding to the matching
height for the experiment of Rietveld et al. (2000) have been
used: the line of sight of the virtual radars (we ran 15 alto-
gether) made about−13◦ to the magnetic field, correspond-
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Fig. 21.Contour plots of modal spectra, example IV. Averaging and
virtual radar sampling were done for 60≤ t ≤ 90. Virtual radars
(3) and driver indicated in upper panel.

ing to vertical probing. The component of the driving elec-
tric field in the magnetic meridian plane made 10.6◦ with the
magnetic field. For the mass ratio, we usedM/m = 3 ∗ 104,
we putη = 2.5, f0 = 4.54 MHz andfce = 1.35 MHz; this
gives�B = 792. Furthermore, we assumedTe = 2000◦ K,
which gives a nondimensional probing wave numberk̄p =

9.4; this, in turn, gives a matching height of� = 138.
Some results of example IV are shown in Figs. 21–24.

Figure 21 shows the modal spectra. In Fig. 22, we show
the spectra for the virtual radar which comes closest to the
matching for the primary decay line. It shows the decay line
with the correct downshift (upper panel) and the ion shoul-
ders with correct shift (lower panel). In addition to this, we
show in Figs. 23 and 24 interesting results of two other vir-
tual radars run in example IV. In Fig. 23, we show spectra
corresponding to a virtual radark̄p = (9.6, −2.2), which is
near the growth range for the OTSI instability. In the plasma
line spectrum, there is a sharp peak centered at vanishing
frequency shift, about 1/10 of the intensity in Fig. 22, and
similarly for the ion spectrum. Strangely, the wave number
of this virtual radar is slightly below the OTSI growth range.
It seems that it is necessary to use a value of the parameter
νi0 that is not too small, in order to observe these “OTSI” fea-
tures in cascade cases (Sprague and Fejer, 1995). We also ran
a virtual radar at̄kp = (9.7, −2.2), which is in the growth
range of the OTSI. The spectra showed similar features, but
at a lower intensity. In Fig. 24, we show the result of a virtual

Fig. 22. Virtual radar for example IV. Sixteen half-overlapping
spectra of lengthN1 = 213, sampled with time stepδt = 5 ∗ 10−4.
In this figure: a radar resonant with the primary decay.

Fig. 23. Another virtual radar for example IV. Same sampling and
averaging as in Fig. 22.

Fig. 24. Another virtual radar for example IV. Same sampling and
averaging as in Fig. 22.
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Fig. 25. Time evolution ofU in example V. For 0≤ t ≤ 30,
E0 = 1.8, while for 30≤ t ≤ 42,E0 = 2.0. Start of averaging and
sampling att = 32 marked.

Fig. 26. Contour plots of the natural logarithm of the averaged
modal spectra of example V. Contours of ln(A(k)/ maxA) are plot-
ted with equidistance equal to 0.5, andA(k) = 〈|k9(k)|2〉 or
〈|n(k)|2〉. Averaging was done for 32≤ t ≤ 42.

radar atk̄p = (8.2, −1.9). In this case, the plasma line vir-
tual radar probes the first cascade, which comes out even
stronger than the primary decay line of Fig. 22. In the ion
spectrum, we see traces of the third harmonic reported by
Kohl and Rietveld (1996).

Fig. 27. Contour plot of the density att = 30 for example V, whole
spatial system. 20 levels. Cuts of Figures 28 and 29 shown.

In example V, parameters were intended to represent the
conditions at the Airy maximum. Using parameters as in
Fig. 6 and formula (51), we obtain the value� = 6, and po-
larization along the magnetic field. However, according to
the estimates in Sect. 4, the ratio between the electric field at
Airy maximum and EISCAT VHF matching height should be
about 4, so relative to example IV, we should useE0 = 4.8.
In example V, we use, for numerical reasons, the far smaller
valueE0 = 2.0, polarized along the magnetic field. Actu-
ally, we ranE0 = 1.8 for 0 ≤ t ≤ 30, andE0 = 2.0 for
30 ≤ t ≤ 42. Even with these values, we had to use a time
step as small asδt = 2.5∗ 10−5. With a larger time step, the
numerics collapsed once cavitation started. We show some
results in Figs. 25–31. Figure 25 shows the time evolution
of U . In particular, we see the change att ≥ 30, whereE0
was increased. Figure 26 shows contour plots of the time-
averaged modal spectra for∇9 andn. In order to exhibit the
full range of them, we had to plot equidistant contours of the
logarithm. Clearly, this is in the cavitation range. Figure 27
shows a contour plot ofn at tend = 30 for the whole simula-
tion cellD = [−4π, 4π ]×[−4π, 4π]. Figure 28 shows con-
tour plots ofn(x, tend) and|∇9(x, tend)|

2 in a smaller spatial
cell near the minimum value ofn, and Fig. 29 is similar for
a spatial cell near the maximum value of|∇9|

2. It should
be noted that the extreme values ofn and|∇9|

2 of Figs. 28
and 29 break conditions (4), (5) for the validity of the model.
Nevertheless, we choose to report this example, both in or-
der to exhibit interesting qualitative features occurring in ex-
amples of cavitation with this large value of�B , and also
because such extreme values occur only occasionally within
the end state of example V.
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Fig. 28.Contour plots of density and ponderomotive pressure of the
state att = 30 of example V in a section of the spatial system con-
taining the minimum point ofn. Broken lines in the contour plot of
n correspond to positive values ofn. In each plot, 40 equidistant lev-
els are used. The minimum value ofn is nmin = −8874, occurring
at (x, y) = (−6.38, −4.12); the maximum value isnmax = 2173,
occurring at(x, y) = (−6.33, −4.12). The maximum value of
|∇9|

2 is 1465, occurring at(−5.89, −4.05).

From Figs. 27–29, the following properties are observed:
(i) the cavitations are strongly anisotropic, with a short length
scale alongB0 and a much longer scale transverse toB0. This
is a result of the large value of the magnetic parameter�B , so
the shape expresses a balance between the parallel derivative
contribution to the last term, and the next to the last term, of
the left-hand side of Eq. (6a):

∂49

∂x4
versus �B∇

2
⊥
9 .

For the undriven case, this feature was discussed by Petvi-
ashvili (1975) and Krasnoselskikh and Sotnikov (1977); (ii) a
further consequence of this anisotropy, is that there is a clear
up-stowing of plasma at each side of the cavities, along the
magnetic field direction. This can be seen in Figure 28 as
broken level curves (corresponding to positive density per-
turbations), e.g. at each side of the cavity positioned at
(−6.38, −4.12); similar features can be seen around all of
the stronger cavities in Figs. 28 and 29. The crudest picture
of trapping of Langmuir oscillations requires that the caviton
is surrounded by states with�θ − n < 0, where�θ is de-
fined in Eq. (16b), andθ is measured as the angle between

Fig. 29. Contour plots of ponderomotive pressure and density of
example V att = 30 in a section of the spatial system containing
the maximum point of the ponderomotive pressure. Broken lines
in the contour plot ofn correspond to positive values ofn. In each
plot, 40 equidistant levels are used. The maximum value of|∇9|

2

is 18561, occurring at(x, y) = (9.6, 9.06). The minimum value
of n is nmin = −3860, occurring at(x, y) = (9.65, 9.06), and the
maximum value is 861, occurring at(x, y) = (9.57, 9.06).

the magnetic field direction and the direction of the line from
the center of the cavity to the actual point. This condition
expresses that Langmuir waves at the applied frequencyω0
cannot escape from the cavity in any direction. From this
consideration, it follows that this anisotropic up-stow pro-
motes trapping, becausen is positive where�θ is largest.
Therefore, it is inferred that the anisotropy of large�B pro-
motes cavitation. Essentially, the large value of�B makes
the process more similar to the one-dimensional situation
studied in Hanssen et al. (1992); (iii) one sees from Figs. 28
and 29 that there is not a complete correlation between den-
sity depressions and strong localized peaks in|∇9|

2. For
example, for the strong caviton seen in Fig. 28 around posi-
tion (x, y) = (−6.38,−4.12), there is no visible accompa-
nying ponderomotive peak. Apparently, the electric field of
this caviton is burnt out (DuBois et al., 1990). On the other
hand, there appear several cavitons to the right of this, with
accompanying ponderomotive peaks. This is consistent with
the dynamical picture of the cavitation process, which is ap-
propriate for the driven model (6), consisting of an initial lo-
cal cavity resonance in a density depletion leading to a rapid
growth of a localized electric field (“nucleation”), subsequent



E. Mjølhus et al.: Geometric aspects of HF driven Langmuir turbulence in the ionosphere 171

Fig. 30. Virtual radar spectra of example V atk̄p = (9.0, −1.75).
Eight half-overlapping subspectra of lengthN1 = 217 sampled at
time intervalsδt = 2.5 ∗ 10−5.

inertial collapse, burn-out, and re-nucleation (DuBois et al.,
1990); (iv) an interesting observation, for which we presently
have no explanation, is that the cavitations appear to occur in
groups or strings, aligned along the magnetic field. This is
seen in all of Figs. 27–29. This observation underlines the
quasi one-dimensional character of cavitation at these large
values of�B .

In Figs. 30 and 31, we show power spectra for two virtual
radars. In Fig. 30, the probing wave vector is similar to that
of Fig. 22, i.e. corresponding to the EISCAT VHF observa-
tions of Rietveld et al. (2000), while in Fig. 31, the probing
wave vector is similar to that of Fig. 17, i.e. the EISCAT UHF
observations of Djuth et al. (1994). The two values ofk̄p are
not in the ratio of the Bragg wave numbers of the EISCAT
UHF and VHF, due to different physical parameters in the
two experiments. Figure 30 shows a pronounced outshifted
feature (a “free mode” (DuBois et al., 1988, 1990)). Such
features are not seen in the VHF data of Kohl and Rietveld
(1996) or Rietveld et al. (2000), but occur pronounced in the
results obtained by Djuth et al. (2002). The power of the
plasma line of Fig. 30 is about one-half of that of Fig. 22,
while the ion spectrum of Fig. 30 is∼ 60 times stronger than
that of Fig. 22. Trends of this nature are pronounced in the
data of Rietveld et al. (2000). The width of the plasma line
spectrum of Fig. 30 is of the order of 20–30 times the down-
shift of the decay line of Fig. 22. Something similar appears
to be the case comparing the “cavitation” and “cascade” type
spectra of Rietveld et al. (2000) (e.g. Fig. 2).

The plasma line of Fig. 31, taken at a virtual radar simi-
lar to that used in Fig. 17 (example II), is about 1/5 that of
Fig. 17; the strongest plasma line obtained by the various
virtual radars run in example II was about ten times stronger
than that of Fig. 31. On the other hand, the ion spectrum
of example II (Fig. 17) is∼ 100–200 times weaker than the
corresponding one in example V (Fig. 31).

In Isham et al. (1999b), strong outshifted features (“free

Fig. 31.Virtual radar spectra of example V atk̄p = (23.75, −5.75)
sampled and averaged as in Fig. 30.

mode”) were observed in spectra taken by the EISCAT UHF.
Such a feature is not seen in Fig. 31, but could be seen for
14 ≤ t ≤ 30 (E0 = 1.8), with k̄p = 20, making angle−13◦

to the magnetic field.

6 Discussion

One may say that “a good qualitative understanding of the
first 10 milliseconds” of the Arecibo experiments has been
obtained, first through the experimental reports of Cheung
et al. (1989, 1992), Fejer et al. (1991) and Sulzer and Fe-
jer (1994), and their relation to theory (DuBois et al., 1988,
1990, 1993a, b; Hanssen et al., 1992) and then in even greater
detail and precision by the twin papers by DuBois et al.
(2001) and Cheung et al. (2001). The height-resolved radar
observations in these experiments are in qualitative agree-
ment with the predictions obtained from the local model (6)
when� is interpreted as proportional to the vertical distance
below the critical height. For a detailed discussion of this,
we refer to DuBois et al. (2001) and Cheung et al. (2001).

In order to interpret the parameter� as relative height,
a slowly varying horizontal stratification is presumed. On
a longer time scale, the strong HF exposure is supposed to
lead to local plasma density inhomogeneities due to various
sources; as a consequence, one loses the simplicity of the
interface between the local processes and the radar observa-
tions. The present authors hold the view that the success of
“the first 10 ms” leads to a confidence in the theoretical un-
derstanding of the local process, and that explanations of the
long time development of observations should be most of all
sought in the development of the interface between local pro-
cesses and radar observations, due to inhomogeneities. The
paper (Mjølhus et al., 2001) attempts to contribute in this di-
rection. In addition, modification of the electron distribution
function may also have to be taken into account for a longer
time scale understanding.
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While the Arecibo experiments have received extensive
theoretical attention, there has also been an extensive number
of reports of experimental work from the EISCAT facilities,
starting with Hagfors et al. (1983). In the present paper, an
attempt is made to emphasize the comparison of theory and
experiment for these experiments.

As discussed in Sect. 4, there is a great variety of modes by
which the Tromsø experiments can be performed or theoret-
ically interpreted. This makes it complicated to focus atten-
tion and decide whether the bulk of the experiments “agree”
or “do not agree” with the current theory. In the following,
we shall comment on a few of the most recent experimental
reports.

For the EISCAT VHF experiments, the papers by Rietveld
et al. (2000) and Djuth et al. (2002) present some of the
most well-resolved Tromsø results to date. Spectra in height
bins of 300 m resolution were presented. For the Rietveld
et al. (2000) experiment, due to an unusually small density
gradient (estimated scale heightL ∼ 160 km) and a stably
smooth ionospheric plasma state, height-separated spectra of
clearly different types were presented, with spectra resem-
bling those predicted theoretically in cases of cavitation in
the upper height bins, and line structured spectra represen-
tative of cascade in the lower height bins, and in between,
there were in some cases height bins with no detectable HF-
induced spectra. A situation with height-separated spectra
of different types was shown to have been maintained over
some tens of minutes during the experiments (0.4 s on, 9.6 s
off). The ion spectra from those upper height bins, in par-
ticular, showed a resemblance to numerical calculations pre-
sented in Hanssen et al. (1992), for example, the lower panel
of Fig. 25. It is our experience from a large number of cal-
culated virtual radar ion spectra from cavitating Langmuir
turbulence, that they can vary quite a lot in appearance. This
also appears to be the case in the spectra presented in Djuth et
al. (1994), Kohl and Rietveld (1996), Rietveld et al. (2000),
and Djuth et al. (2002). We also refer to a discussion by
Hanssen (1992) of the significance of integration time.

The virtual radar plasma line spectrum in the upper panel
of Fig. 30 shows a pronounced outshifted feature (a “free
mode”). No such feature is seen in the spectra of Rietveld et
al. (2000). This may be due to the bandwidth used (50 kHz),
or a duty cycle that is too high. In Djuth et al. (2002), where
the experiment was performed at an extremely low duty cycle
in order to maintain controlled conditions, such outshifted
features occur in the “cavitation type” spectra in the upper
height bins, but not in line-structured spectra in the lower
height bins, as predicted. An example of a VHF spectrum
with an outshifted feature also occurs in Fig. 10 of Kohl et
al. (1993).

For numerical reasons, we ran the valuesE0 = Em = 1.2
at VHF matching height (example IV) andE0 = EAi = 2.0
at Airy maximum (example V), while the estimates using
the model of Sect. 4 led to nondimensional valuesE0 =

E0m = 3.5 at matching height andE0 = E0Ai = 14 at
Airy maximum. Using a simple absorption model, we have
estimated that the numerical valuesEm andEAi are consis-

tent with 57% absorption before VHF matching height and
further 95% absorption from VHF matching height to Airy
maximum. We omit details on this, but it should be noted
that the hypothetical strong absorption in the upper layer im-
plies that the reflected wave at VHF matching height is ab-
sent, thus, alone accounting for a halving of the electric field
strength at VHF matching height.

We cannot say to what extent the valuesEm andEAi used
in examples IV and V are unrealistic. Ninety-five percent
absorption in the short path from VHF matching height to
Airy maximum appears extreme. For the total absorption of
the pump wave due to ponderomotive Langmuir turbulence
over all its height range, we have measurements such as those
reported in Fejer and Kopka (1981), or Frolov et al. (1997;
and references therein). In the latter, a total absorption of
∼80% is reported at 60 MW ERP at the Sura facility, Rus-
sia, and less at lower incident power. We have run a case
with Em = 1.8 and otherwise parameters as in example IV;
then the dynamics went to cavitation. Thus, with this (nondi-
mensional) electric field strength at VHF matching height,
cavitation is expected in the full height range observed by
the VHF radar in the experiment of Rietveld et al. (2000).
In the experiments by Djuth et al. (1994), the full power of
the “Tromsø superheater” was used (1.2 GW ERP). In this
case, it may seem that the VHF spectra are of the cavitation
type in all height bins. In the results presented by Kohl and
Rietveld (1996) (Figs. 1 and 2), a similar ERP was used; in
that case, there is a continuous transition from cascade-like
to cavitation-like spectra.

Recently, the experimental report of Djuth et al. (2002)
of EISCAT VHF measurements has become available. The
results show many similarities with those of Rietveld et al.
(2000), although the methods for obtaining high spatial reso-
lution are very different. Djuth et al. (2002) used an even
lower duty cycle (0.1 s on, 29.9 s off) than Rietveld et al.
(2000), in order to eliminate memory effects. Djuth et al.
(2002) do not report examples where there is a height interval
between spectra of the cavitation versus cascade type. Also,
outshifted features with frequency shifts compatible with the
dispersion relation, generally occurred in the cavitation type
spectra, such as the “free mode” of Arecibo experiments.
Djuth et al. (2002) also present extensive measurements of
decay rates after HF turn-off, of the various spectral features.
They were generally considerably higher than those expected
from linear damping rates. This obviously presents us with
new theoretical challenges. Finally, it contains a useful ex-
perimental estimate of the D-layer absorption during the ex-
periment. Since the report by Djuth et al. (2002) has become
available only after the bulk of the present work was com-
pleted, we cannot enter an extensive comparison of our work
with those results, and none of our presented examples I-V
of Sect. 5 were designed for comparison with Djuth et al.
(2002).

We conclude that the EISCAT VHF observations are in
qualitative agreement with predictions from the model (6).
Quantitatively, we cannot say too much, because we cannot
handle numerically as large an electric field as estimated in
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Sect. 4, and we do not know the absorption. What we can say
is that with low absorption (say, 30% up to VHF matching
height and< 10% further up to Airy maximum), cavitation
is expected for all heights for the VHF radar, in the case of
the Rietveld et al. (2000) and Djuth et al. (2002) experiments.

Turning to EISCAT UHF observations, the picture appears
even more bewildering. In Sect. 4, we presented some stud-
ies of the electric field polarization at UHF matching height
for various angles of incidence. The polarization in the case
of vertical incidence is rather unfavourable for observable
cascading. In the height-resolved experiment of Djuth et
al. (1994), the HF transmission was either vertical or di-
rected 5◦ south. In either case, plasma line and ion spectra
were detected, in spite of the expectedly unfavourable ge-
ometry. The UHF spectra occurred from a height range that
was lower than, but overlapped with, the height range of the
VHF spectra. From theoretical grounds, one would expect
cavitation spectra from the largest height: the same as the
largest heights from which VHF spectra were obtained; these
heights one would expect to coincide with the Airy maxi-
mum for the pump wave. That, however, is not the case in
the UHF observations of Djuth et al. (1994). An estimation
of distance from the critical height down to the UHF match-
ing height, based on scale heightL = 35 km, electron tem-
peratureTe = 0.15 eV, and frequencyf0 = 6.77 MHz, is
2.4 km; the height separation between the highest VHF echo
and the highest UHF echo is∼ 1.5 km. Example II and the
virtual radar of Fig. 31, example V, were chosen in order to
shed some light on this experiment. It was somewhat sur-
prising that the virtual radar of Fig. 17, representing the un-
favourable polarization at matching height, gave a stronger
power than the corresponding one of Fig. 31, from a cavitat-
ing state at the Airy maximum. Even so, we do not presently
find a satisfactory agreement between observations and theo-
retical predictions. For example, the ion spectrum of Fig. 31
is rather strong, but the data of Djuth et al. (1994) do not
show UHF ion spectra from the heights of the highest VHF
spectra. Also, the value ofE0 in example V is too small
relative to the value in example II, unless the absorption be-
tween is very large. It is not straightforward to explain these
observations theoretically.

As noted in Sect. 4, in many experiments using the UHF
radar, the “Kohl setup” (Sect. 4) was used, in order to ob-
tain strong echoes (e.g. Kohl et al., 1987; Westman et al.,
1995; Isham et al., 1999b). There is no published explana-
tion presently of why this setup promotes detection of UHF
spectra. In case these observations are cascades from the
matching height, one possible explanation was discussed in
Sect. 4, involving the reflected HF wave. It should be noted
that if this is the explanation, the direction exactly along the
magnetic field is not essential; even more favourable polar-
ization can be obtained by pointing the radar at even larger
angles to the vertical.

This explanation must assume that the anomalous absorp-
tion due to the intense Langmuir turbulence near the O-mode
reflection height is not large. This, in turn, implies that the
extremely large values ofE0 at Airy maximum, which were

estimated in Sect. 4, must be assumed, and that the reflected
wave contributes at VHF matching height. This, in turn, may
not be consistent with cascading turbulence at VHF matching
height.

In Isham et al. (1999b), EISCAT UHF observations imply-
ing cavitating Langmuir turbulence were claimed. In those
experiments, the chirp technique (Birkmayer et al., 1986)
was used. In chirped experiments, the frequency of the diag-
nostic radar pulse is varied linearly with time. The frequency
shift of the natural plasma line satisfies the local Langmuir
dispersion relation, and thus, a leading Taylor approximation
will vary linearly with height locally. The radar frequency
chirp is then tuned such that the natural plasma line backscat-
ters in either the upshifted or downshifted band from a range
of heights arrive at the receiver simultaneously at each fre-
quency. In weak Langmuir turbulence theory, the excitations
are also implied to satisfy the local Langmuir dispersion rela-
tion, so the radar backscatter from that should also contribute
to this collected signal at the same frequency from a range of
heights. In Birkmayer et al. (1986), it was discovered that
in experiments at Arecibo, the HF-induced plasma line was
displaced from this height-collected natural plasma line. One
then had to conclude that the HF-induced excitation did not
satisfy the Langmuir dispersion relation, and thus, had to be
“strong” Langmuir turbulence, without having to be precise
about the further meaning of that term. Equivalently, one
could state that the backscatter came from density depletions
at a larger height than the matching height, where the scatter-
ing excitations might satisfy the dispersion relation locally.
The current picture of cavitating Langmuir turbulence can
roughly be said to unify these two interpretations.

Isham et al. (1999b) report convincing results of this kind
obtained using the EISCAT UHF radar. An outshifted feature
(“OPL”) coincides with the natural downshifted plasma line
and thus, satisfies the dispersion relation. It is interpreted as
corresponding to the “free mode” reported in Arecibo experi-
ments. A∼ 100 kHz broad feature starting at downshift near
the applied frequency and moving inwards (“IPL”, presum-
ably corresponding to the “cavitation continuum” (DuBois et
al., 2001)) does not. In this experiment, the radar was pointed
along the magnetic field direction, 13◦ south (the “Kohl
setup”). In this direction, the HF wave does not reach the crit-
ical level. Therefore, it is suggested in Isham et al. (1999b)
that cavitation occurs at the height of the turning point. The
studies at the end of Sect. 4, represented in Figs. 10–12, show
that cavitation in the O-mode caustic region outside of the
spitze is feasible; for example, the strength of the electric
field could typically be a factor 2 stronger than at the VHF
matching height. We have run numerically an example with
nondimensional electric field strengthE0 = 1.8 and vertical
polarization,� = 120, and otherwise parameters as in exam-
ple V. It went to cavitation; we show no further details since
they are rather similar to example V.

Isham et al. (1999a) reported a variation in the height of
the UHF ion line as a function of the radar line of sight, and
compared it with the height of the VHF ion line at the vertical
line of sight measured simultaneously. The UHF radar line
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of sight was varied in steps from 0◦ to 13◦ south, and back,
through several cycles. The UHF echoes occurred at heights
up to about 5 km lower than the VHF echoes when the UHF
radar pointed along the magnetic field, while the heights co-
incided when the UHF radar pointed vertically. In between,
the height difference varied continuously and monotonically.
The transmitted power in this experiment was of a similar or-
der of magnitude as in other EISCAT experiments discussed
here, such as Rietveld et al. (2000) and Isham et al. (1999b)
(it was 160 MW ERP; the paper Isham et al., 1999a, contains
a misprint; B. Isham, private communication).

Isham et al. (1999a) explained this along the same lines
as the explanations in Isham et al. (1999b): that the echoes
came from the caustic region, which, outside of the spitze,
is at a lower height than the critical. However, according to
the computations presented in Figs. 10 and 11 of the present
paper, this appears unreasonable; in fact, for the data of
Isham et al. (1999a) (f0 = 4.544 MHz, fce = 1.35 MHz,
Te = 1800◦ K), we have calculated that the O-mode turning
point in the magnetic field direction (1− X = 0.0112) is
above the VHF vertical matching height (1− X = 0.0133).
The UHF matching height in the magnetic field direction is
1 − X = 0.153, which with a scale height of 35 km, gives
a height difference of 5.36 km. This is compatible with the
height difference observed by Isham et al. (1999a) in the di-
rection along the magnetic field. But in the other directions,
the matching height should move even lower, due to the mag-
netic field term of Eq. (35). It is concluded that the obser-
vations of Isham et al. (1999a) of the continuous direction
dependence of the locus of the UHF HF-induced ion line ap-
pear very difficult to incorporate into a consistent theoretical
picture.

Altogether, a full quantitative agreement between pub-
lished experimental work at Tromsø and the present model
calculations cannot be reported. Future theoretical develop-
ment, which at least might improve the agreement with the
VHF results, should focus on the representation of the elec-
tron Landau damping in the model. There are at least three
issues to consider: (i) for comparison with daytime experi-
ments, it may influence predictions to include a population
of photoelectrons in the representation of the Landau damp-
ing; (ii) the influence of the magnetic field on the Landau
damping should be represented. This will introduce a poten-
tially interesting dependence on the direction ofk; (iii) the
development of the electron velocity distribution due to the
turbulence could be incorporated, using a quasi-linear diffu-
sion model, such as Sanbonmatsu et al. (1999, 2000). This
may even allow for a higher value of the driving electric field
near the reflection region, by damping the cavitating turbu-
lence level. Altogether, such a development could improve
the quantitative agreement between model predictions and
experiments such as Rietveld et al. (2000) and Djuth et al.
(2002).

Appendix A Numerical method

The time dependent, nonlinear, two-dimensional (in space),
coupled set of partial differential Eqs. (6) is solved by a pseu-
dospectral method (Canuto et al., 1988), i.e. the linear part
of the spatial operators are computed in Fourier transform
space, and the nonlinear parts are computed in real space,
before transforming back tok-space. Thus, we propagate
the Fourier coefficients9(kx,l, ky,m, tn), n(kx,l, ky,m, tn),
∂tn(kx,l, ky,m, tn) in time. The wave number mesh is defined
by

kd,n = (n − nd/2)1kd n ∈ [0, nd − 1] , (A1)

whered = x, y, 1kd = 2π/Ld , wherend is the number
of mesh points along directiond, andLd is the length of
the periodic simulation cell in that direction. The discrete
transformf̂ of a functionf (xl, ym) = fl,m sampled in the
spatial mesh points

(xl, ym) = (l ∗ Lx/nx, m ∗ Ly/ny),

l ∈ [0, nx − 1],

m ∈ [0, ny − 1] (A2)

is defined by

f̂ (kx,l, ky,m) = f̂l,m

=

nx−1∑
j1=0

ny−1∑
j2=0

fj1,j2 exp

(
−2iπj1l

nx

)
exp

(
−2iπj2 m

ny

)
(A3)

and the inverse transform is calculated in the same way, only
with the opposite sign in the exponents and with the appro-
priate scaling(1/(nxny)) for each coefficient. For the time
propagation scheme, we use the second order method de-
veloped in Payne et al. (1983) for the ion-acoustic Eq. (6b)
with the proper modification to be applicable for the two-
dimensional case we study. For the first Zakharov Eq. (6a),
we use a special time propagation scheme, where the linear
part is solved exactly by noting that after we have discretized
only in space and taken the spatial Fourier transform, Eq. (6a)
can be written

dt 9̂k = λk9̂k + Ĝk(9̂), (A4)

where

λk = −νk + i

(
� − �B

k2
y

k2
− k2

)
(A5)

and

Ĝk(9̂) = −
1

k2
k · [n(E + E0)]k , (A6)

where nowE = ∇9. Equation (A4) can then be rewritten in
the form

dt (e
−λk 9̂k) = e−λk Ĝk(9̂) . (A7)

For k = 0, we imposen(k = 0, t) = 0 and9(k = 0, t)

constant. The linear part of this can now easily be solved
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exactly, by integrating both sides fromnδt to (n + 1)δt to
obtain

9̂n+1
k = eλk t 9̂n

k + eλk t

∫ (n+1)δt

nδt

e−λk t ′Ĝk(9̂)dt ′. (A8)

This way of treating the linear part is both unconditionally
stable and exact, and the accuracy and stability restrictions
of the time propagation method arise solely from the non-
linear part (Canuto et al., 1988). For the nonlinear part (the
integral part of equation (A8)), we may use any well suited
approximative method for the integral. We have chosen to
use a second order explicit method (Adams Bashforth) (Bur-
den and Faires, 1989). This method is accurate and fast, in
that we only have to compute the spatial operators once ev-
ery elementary time step. In order to ensure stability of the
numerical scheme, we typically have to use an elementary
time stepδt in the range 10−3–10−4, depending on the width
of the resulting modal spectra. In cases of cavitation, even
smaller values had to be used.

For every numerical solution we present, the initial con-
dition (at t = 0) of 9, n and∂tn is given as white noise,
i.e. each Fourier coefficient of these quantities are set to
∼ A exp(i2πφ), whereA is typically 10−1 andφ is deter-
mined by a random number generator in the interval[0, 1).
Numerical experiments show that the particular choice of ini-
tial conditions does not affect the saturated state, and all of
the spectra presented here are based on results obtained after
the initial transient phase of the development of the Langmuir
turbulence is over.
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