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Abstract. Results on the formation and propagation of elec-
tron phase space vortices from laboratory experiments are
summarized. The electron phase space vortices were excited
in a strongly magnetized Q-machine plasma by applying a
pulse to a segment of a waveguide surrounding the plasma.
Depending on the temporal variation of the applied pulse,
one or more phase space vortices can be excited, and their
interaction can be followed in space and time. We were able
to demonstrate, for instance, an irreversible coalescence of
two such vortices. These results are extended by numerical
simulations, showing how electron phase space vortices can
also be formed by beam instabilities. Furthermore, a study
of ion phase space vortices is performed by numerical simu-
lations. Both codes allow for an externally applied magnetic
field in three spatial dimensions. Ion phase space vortices are
formed by the nonlinear saturation of the ion-ion two-stream
instability, excited by injecting an ion beam at the plasma
boundary. By following the evolution of the ion distribution
of the velocity perpendicular to the direction of propagation
of the injected ion beam, we find a significant ion heating in
the direction perpendicular to the magnetic field associated
with the ion phase space vortices being formed. The results
are relevant, for instance, for the interpretation of observa-
tions by instrumented spacecraft in the Earth’s ionosphere
and magnetosphere.

1 Introduction

Analytical studies demonstrated that collisionless plasmas,
as described by the Vlasov equation, formally allow for a
large class of nonlinear equilibrium states, BGK-modes. The
original studies referred to one spatial dimension (Bernstein
et al., 1957), but later these results were also generalized
to two and three spatial dimensions, although with imposed
symmetry conditions (Kato, 1976; Ishibashi and Kitahara,
1992). Theoretically, the phase space dynamics of electrons
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and ions can support a surprisingly rich variety of electro-
static structures. In reality, relatively few types are observed;
here we shall only be concerned with the so-called phase
space vortices. The formation of such states was first ob-
served in numerical simulations of electron beam instabili-
ties (Roberts and Berk, 1967; Berk et al., 1970), and later
in a series of laboratory experiments. The phenomena dis-
cussed here are uniquely related to the phase space dynamics
of collisionless plasmas, and thus represent kinetic phenom-
ena, which cannot be recovered by simple fluid models.

Phase space vortices are often formed as the saturated non-
linear stage of beam instabilities, or by sudden disturbances,
often externally imposed on the plasma. The processes deter-
mining the lifetime of phase space vortices in one, two and
three spatial dimensions is not well understood: in studies of
the nonlinear evolution of electron two-stream instabilities,
Morse and Nielson (1969) found that electron vortices had
a very long lifetime in one dimension, disintegrated slowly
in two spatial dimensions and disappeared quite rapidly in
three spatial dimensions for unmagnetized plasmas, although
not much was learned concerning thenatureof the processes
which lead to the destruction of the phase space vortices.
The dynamics in two or three spatial dimensions are for sev-
eral reasons, distinct from one spatial dimensions (Pécseli,
1987). It might be that an externally imposed magnetic field
prolongs the vortex lifetime, but numerical simulations of
electron vortices (Oppenheim et al., 1999) also show, in this
case, a breakup of vortex structures, at least for the param-
eters investigated there. We recall here that the experimen-
tal observation of electron vortices reported by Saeki et al.
(1979) were actually obtained in magnetized plasmas, with
very strong magnetic fields,ωce > ωpe, with ωce andωpe be-
ing the electron cyclotron and the electron plasma frequency,
respectively.

In the present study we first summarize, in Sect. 2, some
results concerning electron phase space vortices, also called
“electron holes”, from the original experiment of Saeki et al.
(1979). This section serves as a brief review of the experi-
mental results, but shows data that have not been published
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Fig. 1. Schematic diagram for the experimental setup for the exci-
tation of electron phase space vortices.

before. In Sect. 3, we present new results concerning the
ion phase space counterpart of the electron holes. These re-
sults are obtained by a fully three-dimensional particle-in-
cell simulation of low-frequency electrostatic phenomena in
magnetized plasmas. In Sect. 4, we discuss the relation of our
results to in situ observations made by instrumented space-
crafts. Finally, Sect. 5 contains our conclusions. Our empha-
sis in the present study is on phase space vortices. Also shock
phenomena are conspicuous in the summarized experimen-
tal, as well as numerical results. Concerning these features,
we refer to selected publications.

2 Electron phase space vortices

Electron phase space vortices can be generated in a con-
trolled laboratory experiment by applying an electric field
across a gap in a cylindrical waveguide containing the plasma
column in a strongly magnetized plasma. The first experi-
mental results were reported by Saeki (1973), with detailed
experimental observations carried out later in a strongly mag-
netized plasma in the Risø Q-machine by Saeki et al. (1979).
A detailed discussion, including also numerical simulations,
was later presented by Lynov et al. (1979) (see also a review
by Schamel, 1986). A somewhat simplified numerical sim-
ulation, based on a “water-bag” model, was shown by Saeki
et al. (1979). Albeit simplified, these simulations may pro-
vide an illustrative visualization of the formation process.

2.1 Experimental results

The experimental set up is shown in Fig. 1. The basic parts of
the circuit for the excitation with a pulse generator are shown,
with positions marked along the magnetized plasma column.
The pulses propagate to the right, in the upstream direction
of the plasma. In electron rich conditions with negative end-
plate bias (Motley, 1975), the electron mean velocity is al-
most vanishing, while the ions have a net drift away from the
hot plate. For the short time scales of the experiment, the ions
can be considered as an immobile background of positive
charge, and the net ion flow is immaterial for the interpre-
tation of the observations. Basic results from the experiment
were shown by Saeki et al. (1979) and Lynov et al. (1979) for

fixed probe positions and signals varying with time. Here, in
Fig. 2, we show the spatial variation for selected times, al-
lowing for a direct comparison with numerical simulations
(Lynov et al., 1979). These results have not been shown be-
fore. We note a perturbation propagating at a high speed,
followed by a structure propagating with a constant velocity,
which is slightly below the electron thermal velocity. The
fast structure can develop into a shock or a soliton-like per-
turbation, depending on the time variation of the externally
applied signal. The properties of the shock were investigated
by Saeki and Ikezi (1972) and Saeki (1973), while the soliton
was studied by Karpman et al. (1979).

A comparison of the experimental observations with the
numerical results presented by Lynov et al. (1979) shows a
remarkable agreement, as far as the space-time variation of
the electrostatic potential is concerned. The agreement is par-
ticularly conspicuous when the presentation in Fig. 2 is used.
We can safely conclude that the phase space variation in sim-
ulations and the experiment is also in agreement. The elec-
tron phase space vortex represents a local deficit of electrons,
and is thus associated with a net positive charge. The result-
ing positive potential “hump” can trap a fraction of the elec-
tron population, giving rise to a vortex-like structure when
observed in phase space, hence giving it the name. Since the
structure is associated with a local depletion in electron phase
space, it is sometimes also called an “electron hole”. The ex-
citation requires relatively large applied voltages, in excess
of 2 V, where we operated with amplitudes up to 20 V. How-
ever, the potential in the plasma was noticeably smaller than
the applied one, and we estimate the minimum amplitude im-
posed variation in the plasma potential to be of the order of
0.3 V for this particular type of vortex excitation. The poten-
tial energy of an electron at this amplitude turns out to be of
the same order of magnitude as the electron thermal energy.

Numerical studies by Saeki et al. (1979) and Lynov et al.
(1979) also gave detailed insight into the excitation mech-
anism in the experiment. These studies make it clear that
the excitation cannot be interpreted as being caused by an
electron beam injected into the upstream plasma, facing the
hot cathode in Fig. 1. It is due rather to particle trapping
in the combined electrostatic fields from the applied pulse,
and those induced by the perturbed charge distributions in
the plasma. In the experiment, the electron holes are formed,
together with the electron shocks, but this is a consequence
of the particular excitation mechanism: it is quite possible
to excite electron holes alone, as evidenced, for instance, by
numerical simulations.

After formation, the electron hole retains its shape with an
almost negligible deformation. Within the parameter varia-
tions we could achieve in the experiment, we did not find any
systematic relation between the hole amplitude and velocity.
According to the analytical results for the fully developed,
nonlinear BGK-structures discussed here (Bernstein et al.,
1957), there should be none. In the experiment, we eas-
ily obtained potential valueseφ/Te up to 1.5, and in order
to have a good signal-to-noise ratio, most of our observa-
tions are for relatively large amplitudes. We did not observe
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Fig. 2. Spatial variation of the electrostatic potential for selected
times. The results were obtained by use of a sampling oscilloscope,
set at a fixed time delay. The electron hole corresponds here to a
potential depletion, since the polarity of the potential is reversed in
the figure.

any relationship between hole amplitude and hole width ei-
ther. The observed hole widths in the direction parallel toB
were typically 15− 20λDe, whereλDe is the electron De-
bye length. In theB-transverse direction, the hole width was
determined by the diameter of the plasma column (see also
results by Iizuka and Tanaca, 1986). A simplified water-bag
model for the study of the range of parameter variation was
presented by Lynov et al. (1985), and it turns out to account
for many of the basic properties, where the radial boundary
conditions in the experiment are also of some importance. A
more general kinetic model was used by Schamel (1979).

One conspicuous feature associated with the early numer-
ical simulations (Berk et al., 1970) showing the formation of
phase space vortices, was the seemingly irreversible coales-
cence of two such structures. By careful shaping of the ex-
citer pulse in the experiment, we were able to excite two spa-
tially separated electron holes with slightly different veloci-
ties, and to also observe here their subsequent coalescence.
An illustration of this phenomenon is given in Fig. 3. The re-
sulting electron hole is wider and has a larger amplitude than
either of its constituents, with a velocity somewhere interme-
diate between their two velocities, although these details are
seen most clearly in numerical simulations. Electron holes
need not, however, always coalesce. In some numerical sim-
ulations (Lynov et al., 1979), it was found that they could
pass through each other in case that their relative velocity
was large. A numerical parameter study separating regions
of coalescence from the case where holes pass through each
other was presented by Lynov et al. (1980). The conclusion
of this investigation was that the two important parameters
are the relative velocities between the two phase space vor-
tices, and the sum of their two peak potential amplitudes.

Fig. 3. Coalescence of two initially separated electron holes. The
figure shows spatial variations for different times, obtained as in
Fig. 2.

Small relative velocities lead to coalescence, but large am-
plitude structures tended to coalesce even when the relative
velocities were large. The range of parameter variations in
the study of Lynov et al. (1980) was, however, limited, and
the problem deserves further scrutiny.

2.2 Numerical results

The investigations of Lynov et al. (1979) dealt with one elec-
tron population in a background of uniformly distributed,
immobile ions in a one-dimensional model. The plasma
was subsequently perturbed by an externally applied elec-
tric field. In the present study, we show results from a dif-
ferent numerical simulation where the excitation is accom-
plished by an external beam injection. Related simulations in
one spatial dimension were performed by Singh and Schunk
(1984). Our simulations were performed in a fully three-
dimensional magnetized plasma, using 27· 106 simulation
particles. We use floating boundary conditions for the elec-
trostatic potential in such a way that the normal component of
the electric field is vanishing there, corresponding to a Neu-
mann problem. When dealing with the particles, we distin-
guish between two species: the beam and the background.
The latter is initially uniformly distributed over the entire
configuration space, having a Maxwellian velocity distribu-
tion, with temperatureTe, which we also use for reference.
Background particles are injected every time one leaves the
system. The position of any injected particle is randomly
chosen in the box-surface through which the particle is leav-
ing, so that the net particle flux through the surface is con-
served. The velocity of the injected particles is chosen ran-
domly from a population with the initial temperature. The
beam particles are injected at one boundary with a velocity
component along the magnetic field lines. The positions at
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Fig. 4. Electron phase space vortices, or electron holes, formed
by injection of an electron beam along they-axis, into a stationary
background. The phase space for the beam particles is shown. The
figure is obtained as the average of particles in a region of 10×

10λ2
De

in the (x, z)-plane, at the center of the beam region. We
have a magnetic field corresponding toωce/ωpe = 0.25. The beam
density is 20% of the background density.

the corresponding surface are chosen according to a Gaussian
distribution in each direction, allowing for an elliptical cross
section of the beam. The velocity of any particle is chosen
randomly from a population in such a way that their flux cor-
responds to that of a Maxwellian having a net drift. A beam
particle is lost when it leaves the simulation region. After
injection at the boundary, the particle velocity and position
evolves self-consistently. The ion component here is treated
as an immobile background of uniform positive charge. Ba-
sically, our code is standard (Birdsall and Langdon, 1985).
Numerical investigations by Singh et al. (2000) also allow
for the ion motion, assuming a mass ratio corresponding to
electrons and hydrogen ions, and studies an extended time
evolution.

As an illustration, we use an electron beam density of 20%
of the background electron density. The beam temperature
is Tb = 0.1Te. The cross section of the electron beam is
elliptical, with aspect ratio 0.5. The major axis is 43% of the
x-dimension of the simulation box, where we use 46×46λ2

De

in the(x, z)-plane, and 260λDe along they-direction, which
is parallel toB.

Electron holes are formed by injection of the electron
beam along the magnetic field lines, just as in the simula-
tions by Morse and Nielson (1969), although this investi-
gation dealt with an initial condition problem inunmagne-
tizedplasmas. Illustrative results are shown in Figs. 4 and
5. The corresponding potential variations (not shown here)
demonstrate that the vortices are associated with local poten-
tial maxima, as expected. We note that the number of elec-
tron vortices is increasing with time, as the beam propagates
into the plasma. With the present conditions, the vortex ve-
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Fig. 5. Electron phase space for the background electron compo-
nent, corresponding to Fig. 4.

locities are relatively close to that of the beam. An increase
in the beam density results in a reduction of the vortex veloc-
ity. For the results shown in Figs. 4 and 5, the coupling to the
background electron population is relatively small, and these
electrons participate only marginally in the vortex formation.
For smaller vortex velocities, this coupling is enhanced, as
expected.

We varied the average injected electron velocity,ub, and
found a significant variation in the characteristic electron
hole width,1 (see Fig. 6). For velocities∼ 2

√
Te/m ≡ 2vth

or smaller, we found the plasma to be stable for the present
parameters, while electron holes were formed for all injec-
tion velocities larger than this. The upper limit of beam ve-
locity was restricted by the requirement that the propagation
time through the given simulation box should be sufficient
for the formation of an electron hole. In Fig. 6, the magnetic
field intensity was chosen so thatωce/ωpe = 0.5, but our re-
sults apply to a wide range of magnetic fields. We note that,
within the uncertainty, the electron hole width increases ap-
proximately in proportion to the beam velocity. In this con-
text, we recall that for a low density, high velocity beam in-
jected into a stationary plasma, the linearly, most unstable
wavelength of the excited electron plasma waves is approxi-
matelyub/ωpe = (ub/vth)λDe. Apart from a factor of∼ 2,
this length is close to the observed1, and has the same ve-
locity scaling. Indirectly, we thus have indications for a re-
lation between electron hole formation in beam systems and
the linear instability, as anticipated by, for example, Kako
et al. (1971).

We investigated the short time stability of electron holes
for varying magnetic fields. In view of the observations
of Morse and Nielson (1969), we found individual electron
holes to be perhaps surprisingly stable. A magnetic field im-
proved their stability. For instance, withub/vte = 3, we
found that forωce > ωpe/4, the formation and time evolu-
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Fig. 6. Variation of the electron hole width,1, for varying electron
beam velocity. The uncertainty indicated arises predominantly from
the scatter in magnitude among several holes being excited.

tion of the holes showed modest variation withB. The hole
lifetime exceeded 100 electron plasma periods, at least with
the assumption of immobile ions. With larger beam veloc-
ities, the magnetic field had a smaller effect. The study of
Singh et al. (2000) usedωce = 2ωpe and alsoωce = 5ωpe.
These results were later extended to cover a wider range of
parameters (Singh et al., 2001a). Variations in the beam di-
ameter had only minor effects on the hole evolution in our
simulations, at least with the present parameters. In order
to investigate thelong timestability of electron holes, times
� ω−1

pi , we find that the ion dynamics must be taken into ac-
count, in particular also because the injection of the electron
beam violates the charge neutrality to build up low-frequency
electric fields, which ultimately sets the ions in motion.

The velocity of the electron phase space vortices increased
approximately with the injected beam velocity; the other pa-
rameters held constant. The formation time of the vortices
also seemed to increase with the beam velocity, although it
was more difficult to quantify this time scale. The fast elec-
tron holes (those with velocities much larger than∼ 10vth)
escaped from the simulation domain too fast to allow for an
estimate of their lifetime. We would like to point out that
holes with velocities much larger than the ion sound speed
in magnetized plasmas can couple effectively only to ion cy-
clotron waves and lower-hybrid waves, where the latter cou-
pling was observed by Singh et al. (2001b). This type of ra-
diation is not found here due to the assumption of immobile
ions. It is tempting to make a fast electron hole stationary in
the computational reference frame by letting the background
electron component move with a suitably chosen negative ve-
locity, and reducing the beam velocity correspondingly. This
has been tried, and indeed, it is then possible to also investi-
gate these electron holes for extended simulation times. The
boundary conditions for the two cases (stationary vs. mov-
ing background populations) are, however, no longer similar,
and we find it inadvisable to compare the results from two

different conditions, unless the spatial simulation domain is
very large, namely larger than feasible with our computer re-
sources.

3 Ion phase space vortices

The experiments described in Sect. 2 dealt with phenomena
on short time scales, where the ion component could be con-
sidered immobile. Similar vortical structures were found nu-
merically (Sakanaka, 1972; Pécseli et al., 1984) and experi-
mentally (Ṕecseli et al., 1981, 1984) also in ion phase space,
where now both electron and ion components participate in
the plasma dynamics. In the experiments on ion phase space
vortices, the evolution of the ion distribution function, and
thereby, the phase space dynamics, could be measured di-
rectly by an ion energy analyzer (see also a summary by
Pécseli, 1984). Other experiments later confirmed parts of
these observations (e.g. the works by Chan et al., 1984),
but investigated only space-time variations of plasma den-
sity and potential. Recent and more modern techniques have
shown promise in detailed investigations of the ion phase
space dynamics associated with the formation of ion holes
(Skiff et al., 2001). Recent observations by Nakamura et al.
(1999) also point out the formation and propagation of “ion
holes”, i.e. ion phase space vortices. These experiments were
carried out under conditions similar to those in the studies by
Pécseli et al. (1981) or Ṕecseli et al. (1984), but with larger
electron to ion temperature ratios. All of these investiga-
tions were dealing with externally excited coherent phenom-
ena. Evidence for the formation, propagation and subsequent
decay of phase space vortices was also obtained in experi-
ments carried out in an unmagnetized double-plasma device
(Johnsen et al., 1985, 1987), where an ion beam was injected
into a background plasma. A conditional sampling method
was used for analyzing the space-time variation of the spon-
taneously generated fluctuations in plasma density. These
studies differ from those previously mentioned by making
a statistical analysis of the spontaneously generated fluctua-
tions.

It is not evident that the conclusions from electron beam
instabilities can be generalized to ion-ion beam instabilities
right away, because in this latter case, the one-dimensional
case is only weakly dispersive, and directional dispersion of
ion beam generated waves is only significant for high beam
velocities. One motivation for our study was to also investi-
gate this question with the numerical plasma simulation to be
described. (This foregoing discussion deals with the full con-
ditions for the excitation of phase space vortices, and has lit-
tle to do with the actual stability of anindividual vortex; the
appropriate stability analysis has been subject to investiga-
tions by, for instance, Schamel (1982) and Turikov (1984).)
Also, the numerical study of Morse and Nielson (1969) refers
to an initial condition, where the beams are present all over
space; this is not the most relevant experimental situation.
We wanted to study an experimentally, more realistic con-
dition, where a beam is injected at the boundary of a pre-
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existing background plasma. The analysis is restricted to
electrostatic phenomena occurring on time scales below the
ion plasma frequency.

3.1 Model discussions

In the present case, we can assume that the electrons are
isothermally Boltzmann distributed at all times (Børve et al.,
2001). This simplification is obtained at the expense of a
nonlinear Poisson equation. It is possible to generalize the
model somewhat by allowing for deviations from the strict
Boltzmann distribution. A useful model for this purpose was
suggested by, for instance, Cairns et al. (1995); Mamun and
Cairns (1996), and it leads to a Poisson equation of the form

∇
28(r , t) =

e

ε0

[
n0

(
1 − β

e8(r , t)
Te

+ β

(
e8(r , t)

Te

)2
)

ee8(r ,t)/Te

−n(r , t)] (1)

in terms of the electron temperatureTe, the ion densityn
and the electrostatic potentialφ, where the parameterβ mea-
sures the deviations from a Boltzmann distribution. The
parameter is related to the electron energy distribution by
f (ε) = (1 + αε2)e−ε/(1 + 3α), with β ≡ 4α/(1 + 3α)

andε being the normalized electron energy. A strict Boltz-
mann distribution is obtained trivially byα = 0. The model
was originally proposed for a one-dimensional system, but
here it is used in three dimensions. The argument is that
given the present homogeneous magnetic field configuration
with a low β plasma, we can assume that the electrons are
magnetized with a negligible Larmor radius, even though the
ions can be weakly magnetized. In effect, we assume that the
electron gas adjusts to changes in the plasma density and po-
tential by flowing along magnetic field lines. The ideas pro-
posed by Cairns et al. (1995) can be considered as representa-
tive for inclusion of a wider class of non-Maxwellian electron
distributions (Summers and Thorne, 1991), which we will
consider in a forthcoming study. Evidently, whenα 6= 0, we
are dealing with a non-Maxwellian plasma, where the elec-
tron temperature cannot be properly defined. In this case, we
let Te refer to the exponential multiplier exp(e8(r , t)/Te)

in Eq. (1). In terms of the “width”〈u2
〉 ≡

∫
u2f (u)du of

the velocity distribution function in theB-parallel direction,
we have〈u2

〉 = (1 + 15α)v2
th/(1 + 3α)), wherevth is the

thermal velocity of a Maxwellian with temperatureTe in the
exponential multiplier in Eq. (1).

We would like to point out a constraint implied in the use
of Eq. (1), which, in the general case, can be nontrivial. Thus,
we note that overall charge conservation within the present
model implies∫ [

n0(t)

(
1 − β

e8(r , t)
Te

+ β

(
e8(r , t)

Te

)2
)

ee8(r ,t)/Te

−n(r , t)] dx dy dz = 0,

which, in general, determinesn0(t) at all times for an unmag-
netized plasma. In the magnetized case, with inhomogeneous

plasmas having a density gradient perpendicular to the mag-
netic field, the expression has to be trivially modified. For
the present simulations we found that the deviations inn0(t)

from the initial unperturbed value were small.
The approach based on Eq. (1) has some obvious advan-

tages; first, we avoid unphysical electron-ion mass ratios of-
ten employed to reduce computer requirements. Second, we
can readily identify the specific ion phase space dynamics
important for the observed time evolutions. The expense of
the model is obviously that the electron phase space informa-
tion is lost. This information would be crucial, for instance,
for electron-ion two-stream instabilities and electron-hole in-
teractions with ions (Saeki and Juul Rasmussen, 1991; Saeki
and Genma, 1998). These and similar phenomena are ex-
cluded from our analysis by the choice of Eq. (1). We note
that in case of high electron-ion temperature ratios, a parame-
ter range exists where electron collisions are important, while
ions can be considered collisionless. In this case, our ba-
sic assumption is easily justified. Since we want to be able
to consider arbitrary length scales, we donot assume quasi-
neutrality from the outset.

3.2 Numerical results

For our numerical studies we use the same code as described
in Sect. 2.2, with the only complication here being a non-
linear Poisson equation (Pécseli et al., 1984; Børve et al.,
2001). This equation is solved by a nonlinear multigrid meth-
od, which consists of a full multigrid schedule with an adap-
tive strategy that allows one to skip the coarse-grid correction
if the specified accuracy is already reached on that grid. This
schedule might be followed by some iterations of adaptive
multigrid schemes in order to improve the accuracy (Wes-
seling, 1991). The relaxation method uses a Gauss-Seidel-
Newton iteration scheme.

As an illustration, we use the beam density to be one-half
of the ion background density. The ion beam temperature
is Tb = 0.1Ti , while the ion beam velocity is 3vt i in terms
of the background ion thermal velocity. The electron tem-
perature isTe = 10Ti . In computational units, we have the
background ion temperature to beTi = 1. The magnetic field
intensity is chosen so that�ci/ωpi = 0.5. The cross section
of the ion beam is elliptical, with aspect ratio 0.22. The ma-
jor axis is 73 % of thex-dimension of the simulation box,
where we use 56× 56λ2

Di in the (x, z)-plane, and 368λDi

along they-direction, which is parallel toB.
In Fig. 7, we show the space time evolution of the elec-

trostatic potential along the center line of the system for two
cases: Boltzmann distributed electrons, whereα = 0, and
a case with significant deviations from this equilibrium dis-
tributions, withα = 0.2. Positions are measured along the
y-axis in units of ion Debye lengths,λDi , using the temper-
ature of the background ions, and time is measured in units
of ω−1

pi , the inverse ion plasma frequency. The space-time
evolution of the potential demonstrates the formation of a
shock-like structure, with large amplitude, which propagates
at a relatively high supersonic speed. The shock is trailed
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Fig. 7. Space-time evolution of the normalized electrostatic poten-
tial, eφ/Ti , from a numerical simulation. The potential is sampled
along the center axis of the simulation.

by a number of somewhat slower potential depletion, which
we identify in the following as ion phase space vortices. The
conspicuous effect ofα 6= 0 seems to be an increase in ion
shock velocity. As for the ion holes trailing the shock, we see
only modest differences between the two cases, and a typical
hole width is of the order of 10− 15λDi in all cases.

Of course, the information on the ion density is also avail-
able from the simulations. We have not made any assump-
tions of quasi-neutrality in the basic model, and the density
information is not trivially related to the potential. The dif-
ference between the two quantities is, however, not sufficient
to justify a separate figure, and Fig. 7 can also be taken as
a representative for the ion density variation, apart from a
normalizing constant.

In order to establish a connection to the question of plasma
stability, we show in Fig. 8 a numerical solution of the dis-
persion relation obtained for the relevant parameters, with
α = 0. Our code for solving the dispersion relation assumes
that parameters are entered for a physical condition, so we
have chosen parameters relevant, for instance, for the FAST
satellite (Ergun et al., 1998a, b), with densities 6· 106 m−1

and magnetic fields 11· 10−6 T. As an illustration, we took
an electron temperature of 2 eV. Relative values for the beam
and background plasma parameters are the same as in the
simulations. With these parameters, the linearly, most unsta-
ble wavelength is approximately 5λDe, in terms of the elec-
tron Debye length. We note that a wide range of wave num-
bers is unstable. We recall here that given(k‖, k⊥), there will
be, at most, a finite, discrete set of solutions for frequencies
corresponding to unstable solutions, while there are in gen-
eral infinitely manydampedsolutions. Small “fringes” in the
dispersion relation are due to competing roots. The most im-
portant observation in the present context may simply be that
the plasmais linearly unstable (Ṕecseli and Trulsen, 1982;
Pécseli et al., 1984).

(a)

(b)

Fig. 8. Numerically obtained solution for the linear dispersion re-
lation for the magnetized ion beam plasma. The real part of the
frequency is shown in(a), the imaginary part in(b). The heavy line
on the contour plot in(b) is the marginaly stable curve.

We have performed simulations with different beam ve-
locities, and found that for low beam velocities, where the
plasma is stable, no vortices are formed, although a weak
shock may still develop. For very high ion beam velocities,
the plasma will remain unstable, but in this case, for waves
on the ion cyclotron branch (Michelsen et al., 1976). In this
case, the linearly most unstable waves propagate with at an
angle to the magnetic field (Michelsen, 1976), and no phase
space vortices are formed (see also summary by Børve et al.,
2001). The plasma is stable for small ion beam velocities be-
low the sound speed, and it turns out that ion holes are being
formed in a rather narrow “window” of ion beam velocities,
and the variation of hole widths for varying ion beam veloc-
ities is rather modest (Børve et al., 2001).

The evolution in ion phase space corresponding to Fig. 7
is summarized in Figs. 9, 10 and 11. The figures are con-
structed as an average over a quadratic cross section of
56 × 56λ2

Di , perpendicular to the beam direction. In the
numerical code, it is evidently possible to label the ions be-
longing to the background and the beam component, respec-
tively. Thus, Fig. 9 illustrates the dynamics of the beam ions,
where in this case, the ion phase space is spanned by the axis
along the beam (and magnetic field) direction, and the ve-
locity component in the same direction. We see very clearly
the acceleration of the ions by the electric field in the shock,
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Fig. 9. Evolution in ion phase space of the beam ion component.
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Fig. 10. Evolution of the background ion component in ion phase
space.

followed by a number of ion phase space vortices, where this
number increases with time. For the background ions, in the
same phase space, as shown in Fig. 10, we note a temper-
ature increase associated with the shock, and also here, we
see some of the background ions being trapped in the phase
space vortices. The phase space vortices form in the linearly,
unstable ion-ion stream region behind the shock (Sakanaka,
1972; Ṕecseli and Trulsen, 1982; Pécseli et al., 1984). A typi-
cal width of the vortices is approximately 15λDi ≈ 5λDe, i.e.
of the same order of magnitude as the linearly, most unsta-
ble wavelength (see Fig. 8), compatible with the observations
of Pécseli et al. (1984). Significantly wider ion phase space
vortices can develop late in the process, due to coalescence of
smaller ones. The initial separation of the vortices is compa-
rable to their width, but we see some of them separate slowly,
due to a slight scatter in velocities.
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Fig. 11. Evolution in beam ion component in ion phase space com-
posed by the spatial variation along the beam velocity (y-axis) and
the ion velocity component in the perpendicular direction. The solid
line at the bottom gives the local effective temperature derived from
the velocity distribution, with the corresponding axis to the right in
the figure. The upper solid line shows the potential variation from
Fig. 7 as a reference, in arbitrary units.

The ambipolar electric field associated with the shock is
due to the electron thermal pressure, which gives rise to an
expansion of the electron component, implying a small im-
balance in the relative electron and ion densities in the Pois-
son Eq. (1). This electric field accelerates the ions in front of
the shock, as seen in Figs. 9 and 10. In particular, by con-
sidering the background ion population in Fig. 10, we note
that the shock acts as a “snowplow”, accelerating background
ions to velocities exceeding that of the average injected beam
velocity. Details of the shock formation associated with in-
jected ion beams have been discussed by Ikezi et al. (1973).
If α is increased from the zero value corresponding to the
Maxwellian electron distribution, then the number of ener-
getic electrons is increased, and the ambipolar electric field
is increasing, i.e. the potential level is enhanced, as seen in
Fig. 7. This enhanced electric field gives rise to a correspond-
ing increase in the velocity of the shock front, as is also ap-
parent in Fig. 7.

Even more interesting is the ion beam evolution in phase
space spanned by they-axis and the velocity component in
the direction perpendicular to this (see Fig. 11). The solid
lines on these figures show the local effective ion beam tem-
perature in thevx-direction, obtained by calculating an effec-
tive perpendicular ion beam temperature

T
⊥eff ≡

∫
v2
xf (y, vx, τ )dvx∫
f (y, vx, τ )dvx

.

The ragged portion of the figure at the very end is due to a
small number of simulation particles there. We find a notice-
able ion heating (by almost a factor of 2) associated with the
formation of the ion vortices. This effect is also observed
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for the case whereα = 0, but it is less pronounced then.
By comparison with the potential variations, we find a clear
one-to-one correspondence between the striations in Fig. 11
and the positions of the vortices. To make this feature more
clear, we also inserted in Fig. 11 the potential variation from
Fig. 7 in arbitrary scale, having the corresponding zero-line
to be the same as for the velocity. As expected, we found
the regions with a local decrease in phase space density cor-
responding to the potential minima. For fluctuations being
close to quasi-neutral, i.e.eφ/Te ∼ n/n0, the potential min-
imum corresponds to the local density minimum. The local
transverse beam temperature enhancement corresponds, on
the other hand, mainly to the regionsbetweenthe ion holes.
In some cases, we can identify the position of the local trans-
verse temperature enhancement to be the “flank” of the ion
hole facing the ion beam injection. Since the electrostatic ion
holes propagate with almost no change in shape, they cannot
energize charged particles, and the increase in perpendicular
beam temperature is, therefore, due to scattering of the par-
allel velocity. In the present case, it is the directed ion beam
energy which, by scattering, is transformed to an increase in
the effective ion temperature perpendicular toB.

In order to investigate whether this transverse ion beam
heating was due to a “bulk” or to a “tail” heating, we cal-
culated the localexcessor flatness factor(Craḿer, 1946),
K, of the distribution at selected times, for varying spa-
tial positions. We found that the kurtosis was slightly neg-
ative, K ∼ {−0.1, −0.2}, implying that we have a slight
under-representation of fast particles, as compared to the
Maxwellian distribution, whereK = 0. Intuitively, this
seems reasonable, since fast particles have a larger probabil-
ity of simply passing through the three-dimensional potential
distribution associated with the phase space vortex. Conse-
quently, the slower beam ions will, in comparison, contribute
slightly more to the transverse distribution.

The coupling of the vortices to the beam is stronger than to
the background, because the ion vortex has a velocity closer
to the beam velocity for the present parameters. We note that
the observed structures are fully three-dimensional, having
an electric field component along, as well as perpendicular
to, the magnetic field lines. As an illustration, we show in
Fig. 12 the electrostatic potential in a quadrant of the sim-
ulation space. The gaps in the figure indicate the potential
depletion associated with the ion holes. Inspection of a fig-
ure corresponding to Fig. 11 for the background ions shows
only a small change in theB⊥ ion temperature, and this fig-
ure need not be presented here.

As discussed by Daldorff et al. (2001), the ion phase space
vortices seem to have some internal degrees of freedom,
which are manifested by an oscillatory motion, or vibration,
of the structure in such a way that the phase space volume of
the vortex is conserved. This can also be observed in the 2.5-
dimensional studies of Børve et al. (2001). These features
seem to have their counterparts in the dynamics of electron
holes, as discussed by Oppenheim et al. (1999), Singh et al.
(2000) and Newman et al. (2001).

Fig. 12. The spatial variation of the electrostatic potential at a time
τ = 80ω−1

pi
is shown in one quadrant of the simulation domain.

Levels for the potentialeφ/Ti are shown with grey-scale. Only
regions where the normalized potential levels are above 1.5 are
shown. The maximal values are approximately 2.4 in normalized
units.

4 Relation to space observations

We believe the present results can be relevant for interpret-
ing data from the ionospheres and magnetospheres of mag-
netized planets, such as the Earth. Solitary structures have
been observed on spacecraft (see summary of, for instance,
Maelkki et al., 1993) and Eriksson et al. (1997). The origin
of these structures was expected to be a nonlinear instability,
driven by weak currents, but the data actually speak strongly
against this interpretation by showing no preferred direction
for the propagation of the observed structures (Mälkki et al.,
1993). These observations were made in a plasma environ-
ment wheren0 ≈ 106

− 107 m−3 andB ≈ 4 µT, giving a
proton plasma frequencyωpi/(2π) ≈ 470 Hz, and a gyro-
frequency of 60 Hz, implyingωpi/�ci ≈ 8. We do not find
the interpretation of these satellite observations to be self ev-
ident, but in case that the observed potential wells are to be
associated with ion phase space vortices, our numerical re-
sults would indicate that they are rapidly damped. This ob-
servation implies, in turn, that they have to be found in the
near vicinity of the region where they were created. The ob-
servations are consistent with a lifetime of the order of 0.01
s. An estimate of the bounce period of an ion can be ob-
tained astB ∼ L

√
M/(e|φ0|). With the observed values of

widthsL ≈ 60 m and peak potential depletionsφ0 ≈ 4 V, we
havetB ∼ 3·10−3 s, which indicates that the lifetimes might
typically be 3 ion bounce times (the value forφ0 is an upper
estimate). This result is compatible with our observations ex-
perimentally (Ṕecseli et al., 1981, 1984; Johnsen et al., 1985,
1987), as well as numerically (Børve et al., 2001).

Indications of the presence of electron phase space holes
were found in the data from the FAST satellite (Ergun et al.,
1998a, b), and these are particularly interesting due to their
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relatively large amplitudes, i.e.|eφ0| ∼ Te. For this case,
a magnetic field of approximately 11· 10−6 T was reported
(Ergun et al., 1998b), givingωce ≈ 2 · 106 s−1, and a plasma
density approximately 6· 106 m−3, implyingωpe ≈ 1.4 · 105

s−1, giving ωce/ωpe ≥ 1. For these conditions, we would
expect electron phase space vortices to be relatively stable.

Observations of electrostatic solitary structures in the
magnetotail of the Earth have been reported from data ob-
tained by the GEOTAIL satellite (Krasovsky et al., 1997;
Omura et al., 1999). It is plausible that these can be inter-
preted in terms of phase space structures, although a sig-
nificant amount of work remains to be done concerning the
derivation of an actual spatial structure, which in the experi-
ments has to be deduced from a time varying signal obtained
from the potential difference between two probes with large
separation, on the moving spacecraft. Relevant observa-
tions were also made by the POLAR spacecraft (Franz et al.,
1998), where structures associated with a local net positive
charge were found. Also, other observations from the PO-
LAR satellite show isolated electric field structures (Mozer
et al., 1997). Numerical studies carried out by Miyake et al.
(1998) were aimed, in particular, at the interpretation of the
GEOTAIL data. It will be interesting to see whether the
data from the CLUSTER satellites will reveal signatures of
plasma solitary structures. In this case, the spatial resolution
of these satellites will offer a good possibility for determin-
ing conditions for the occurrence of such structures.

Our results also focus on the curious preference for small
amplitude narrow structures being observed by many space-
craft (i.e. amplitudes giving a potential energy at the peak
potentialφ0 much less than the thermal energy,e|φ0| � T ,
and widths comparable to the Debye lengths). In contrast,
our experimental, as well as numerical observations are made
for large amplitude and relatively wide structures, for elec-
tron as well as ion holes. Obviously, in an experiment, the
consideration of signal-to-noise ratios will emphasize large
amplitude structures, but we find their absence in space ob-
servations curious. There is, in principle, nolower limit to
the amplitude of phase space vortices, but we anticipate that
their formation timecan be large for small amplitudes. This
latter conjecture is justified if we, as an estimate for the for-
mation time, use the bounce periodτB ∼ `

√
m/(|qφ0|) of

a charged particle with massm and chargeq, in a potential
well of width ` and peak amplitudeφ0. The argument is ap-
plicable for the case where the phase space structures form
by trapping in a potential well formed by some disturbance,
as in the experiment of Lynov et al. (1979). For phase space
holes formed by, for instance, beam instabilities, the forma-
tion time may be shorter.

5 Conclusions

In the present paper, we studied the formation and evolution
of electron, as well as ion phase space vortices, and also re-
viewed some previous experiments by presenting some hith-
erto unpublished results. The electron holes were excited ex-

ternally by an electric pulse accelerating the electrons in a
localized spatial region. The space-time evolution of these
structures was then followed. By inlet of a neutral gas com-
ponent, it was, in this experiment, explicitly demonstrated
that phase space structures are extremely sensitive to col-
lisions. These observations were illustrated by Saeki et al.
(1979) and Lynov et al. (1979). Due to the strong, externally
imposed magnetic field, the electron holes propagated as in
an ideal one-dimensional system, and we saw no indication
of any decay or finite lifetimes. The formation and evolution
of electron phase space vortices was also illustrated by a nu-
merical simulation, assuming immobile ions (see Figs. 4 and
5). This beam excitation is different from that used in the ex-
periments, but the resulting phase space vortices have quite
the same dynamics.

The present studies of ion phase space vortices were based
on a fully three-dimensional numerical particle simulation
based on a previous 2.5-dimensional code, also described by
Guio et al. (2001). The vortices were generated by an ion
beam injected into a stationary background plasma. We ob-
served the formation of BGK-type equilibria for all values of
the magnetic field, also forB = 0, but found that the lifetime
of the structures increased rapidly with increasing magnetic
field intensity. It thus seems plausible that the type of two-
dimensional structures in unmagnetized plasmas anticipated
by Kato (1976) and Ishibashi and Kitahara (1992) can be
formed, but that they are inherently unstable. Our numerical
results indicate that, for the plasma parameter range relevant
here, the structures are relatively stable in two as well as three
spatial dimensions, when the transverse length scale signif-
icantly exceeds the ion Larmor radius and simultaneously
�ci > ωpi/2. As a new feature of our simulations, we in-
troduced here deviations from the strict Boltzmann electron
distribution by using a standard model (Mamun and Cairns,
1996). The overall consequence of a deviation from strictly
Boltzmann distributed electrons is found to be an increase in
the electrostatic fields, which is, after all, to be expected from
an enhanced energetic component accounted for byα 6= 0.
On the other hand, it is also fair to add that the effect of a
small energetic electron population is minor, as far as the ion
phase space vortices are concerned, but it may be important
for ion acoustic shock dynamics.

Visual inspection of the representation of phase space vor-
tices in Figs. 5, 9, and 10 show a noticeable similarity, but
this is to some extent deceiving. Some of the parameter vari-
ations are basically different, where we, in particular, em-
phasize that electron vortices seem to be formed for all beam
velocities exceeding∼ 2vth, while the ion vortices are ob-
served only for a restricted interval of ion beam velocities.

Phase space vortices seem to be a generic feature of the
saturated stage of beam plasma instabilities (Kako et al.,
1971; Ṕecseli and Trulsen, 1982; Pécseli et al., 1984), at least
in one spatial dimension, indicating that this saturated stage
can be considered as a relatively low-dimensional system,
described by a random superposition of such coherent struc-
tures, together with a low level noise component (Kofoed-
Hansen et al., 1989). Phase space vortices can, however,
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be excited by other means as well, such as short particle
bursts, for instance, and not necessarily by beam instabili-
ties (Ṕecseli, 1984). As the laboratory results summarized
in Sect. 2 demonstrate, an “impulse-like” perturbation can
develop such vortices, provided that the amplitude is suffi-
ciently large. In this case, the vortex formation appears as
a result of particle trapping in the combined plasma and ex-
ternally imposed potentials. It can be argued that neither the
formation nor the lifetime of phase space vortices are un-
derstood in depth, although for different reasons. The for-
mation by beam instabilities is well understood, but this is
not theonly way phase space vortices are formed, as men-
tioned. Concerning the vortex lifetime, the problem is basi-
cally different. First of all, it is obvious that an initial ex-
citation cannot evolve into anexacttime-stationary solution
for the Vlasov equation. We can, however, consider the re-
sulting structure as such an exact solution with some added
perturbation, and ask whether during the future time evolu-
tion it remains close to the exact solution (implying stability)
or deviates from it (corresponding to instability). Some in-
vestigation of the stability of phase space structures has been
carried out (Schamel, 1982; Turikov, 1984; Schamel, 1986),
but the problem cannot be considered as fully resolved, in
particular not as far as the fully three-dimensional evolution
is concerned. The main concern of the present discussion
is isolated phase space structures, but it may be appropriate
to mention that the stabilityperiodic fully nonlinear (one-
dimensional) BGK-solutions were studied much earlier by,
for instance Goldman (1970).

Phase space vortices are interesting examples of self orga-
nization in highly dynamic, nonlinear systems. By forming
well-defined entities, these phase space structures allow for
the saturated stage of, for instance, beam instabilities to be
described by a modest number of variables, such as positions,
widths and amplitudes of the structures.
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Saeki, K., Michelsen, P., Ṕecseli, H. L., and Rasmussen, J. J.: For-
mation and coalescence of electron solitary holes, Phys. Rev.
Lett., 42, 501–504, 1979.

Sakanaka, P. H.: Beam-generated collisionless ion-acoustic shocks,
Phys. Fluids, 15, 1323–1327, 1972.

Schamel, H.: Theory of electron holes, Phys. Scripta, 20, 336–342,
1979.

Schamel, H.: Linear modes in the presence of solitary ion holes,
Phys. Lett., 89A, 280–282, 1982.

Schamel, H.: Electron holes, ion holes and double layers, Phys.
Reports, 140, 161–191, 1986.

Singh, N. and Schunk, R. W.: Plasma response to the injection of
an electron beam, Plasma Phys. Contr. Fusion, 859–890, 1984.

Singh, N., Loo, S. M., Wells, B. E., and Deverapalli, C.: Three-
dimensional structure of electron holes driven by an electron
beam, Geophys. Res. Lett., 27, 2469–2472, 2000.

Singh, N., Loo, S. M., and Wells, E.: Electron hole structure and its
stability depending on plasma magnetization, J. Geophys. Res.,
106, 21 183–21 198, 2001a.

Singh, N., Loo, S. M., and Wells, E.: Electron hole as an antenna
radiating plasma waves, Geophys. Res. Lett., 28, 1371–1374,
2001b.

Skiff, F., Bachet, G., and Doveil, F.: Ion dynamics in nonlinear
electrostatic structures, Phys. Plasmas, 8, 3139–3142, 2001.

Summers, D. and Thorne, R. M.: The modified plasma dispersion
function, Phys. Fluids B, 3, 1835–1847, 1991.

Turikov, V.: Electron phase space holes as localized BGK solutions,
Phys. Scripta, 30, 73, 1984.

Wesseling, P.: An Introduction to Multigrid Methods, John Wiley
& Sons Ltd., 1991.


