
HAL Id: hal-00302152
https://hal.science/hal-00302152

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dromion solutions for nonlinear electron acoustic waves
in space plasmas

S. S. Ghosh, A. Sen, G. S. Lakhina

To cite this version:
S. S. Ghosh, A. Sen, G. S. Lakhina. Dromion solutions for nonlinear electron acoustic waves in space
plasmas. Nonlinear Processes in Geophysics, 2002, 9 (5/6), pp.463-475. �hal-00302152�

https://hal.science/hal-00302152
https://hal.archives-ouvertes.fr


Nonlinear Processes in Geophysics (2002) 9: 463–475
Nonlinear Processes
in Geophysics
c© European Geosciences Union 2002

Dromion solutions for nonlinear electron acoustic waves
in space plasmas

S. S. Ghosh1, A. Sen2, and G. S. Lakhina1

1Indian Institute of Geomagnetism, Dr. Nanabhai Moos Marg, Colaba, Mumbai, 400 005, India
2Institute for Plasma Research, Bhat, Gandhinagar, 382 428, India

Received: 24 January 2002 – Revised: 12 June 2002 – Accepted: 13 June 2002

Abstract. Recent high resolution measurements of POLAR
and FAST satellites have revealed two-dimensional coherent
structures in the polar cap boundary layer (PCBL) region.
Since the ion temperature is often observed to be greater
than the electron temperature in this region, electron acous-
tic waves can exist as a normal mode of the plasma system.
It is shown that the nonlinear evolution of such waves can
be modelled by the coupled Davey-Stewartson I equations.
These equations, which are a generalization of the nonlin-
ear Schr̈odinger equation to two dimensions, admit exponen-
tially localized solutions called dromions. A detailed para-
metric characterization of the regions of existence of such
solutions is presented in the context of the PCBL region.

1 Introduction

Solitons, which are exponentially localized wave forms in
(1+1) dimension, are well-known as exact solutions of cer-
tain integrable partial differential equations. In the past
few decades they have been extensively studied and applied
in a variety of fields such as physics, chemistry, biology,
neurophysics, etc. They have also figured prominently in
the interpretation of several wave structure observations in
space plasmas. However, work related to two- and three-
dimensional generalizations of solitons is of more recent ori-
gin and consequently is relatively less well-known. One
of the earliest work is that of Kadomtsev and Petviashvili
(1970), who constructed a two-dimensional generalization
of the K-dV equation. Their model equation, known as the
Kadomtsev-Petviashvili (KP) equation, admits a variety of
nonlinear solutions. Line solitons are the simplest kind and
are exponentially localized in a single direction (sayx) and
propagate in the (x, y) plane. Their equation also admits
lump or algebraic solitons which decay polynomially (i.e.
asO(1/x2 , 1/y2)) in all directions (Satsuma and Ablowitz,
1979). A host of other independent equations governing sim-
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ilar two-dimensional solitary structures have been studied by
many authors (Djordjevic and Redekopp, 1977; Manakov,
1976; Ablowitz and Segur, 1979). However, none of these
studies dealt with a nonlinear solution that had an exponen-
tial decay in both dimensions. This lacuna was removed by
the work of Boiti et al. (1989), who found coherent local-
ized structures as a solution of (2+1) dimensional integrable
partial differential equations which, unlike a lump or alge-
braic solitons (Satsuma and Ablowitz, 1979; Janaki et al.,
1991), decayed exponentially in both directions in the (x,
y) plane. One characteristic feature of these solutions is
that they involve two field variables. One of the variables
represents the physical entity which is being evolved (the
electric field amplitude, for example) and displays a local-
ized structure in space. The other auxiliary variable shows
a plane wave character with vanishing physical fields at the
boundaries and is often called a ghost soliton (Hietarinta,
1990). The dromion solutions also require special time de-
pendent boundary conditions which are described by those
ghost solitons. These ghost solitons are in fact the line soli-
tons (Fokas and Santini, 1989) mentioned earlier and repre-
sent the “tracks” (dromosin Greek), along which the local-
ized lumps of the physical variable travel. In fact, the lumps
are located precisely at the intersection of two such tracks
of the auxiliary variable. Since they are “driven” by their
boundaries, they were, therefore, named asdromions(Fokas
and Santini, 1990). Ever since their discovery the mathemat-
ical properties of dromions have been investigated by many
authors both analytically (Santini, 1990; Hietarinta, 1990;
Hietarinta and Hirota, 1990; Radha and Lakshmanan, 1995),
as well as numerically (Besse and Bruneau, 1998; Nishinari
and Yajima, 1994; Nishinari et al., 1996).

A large class of two-dimensional partial differential equa-
tions have been shown to possess dromion solutions (Radha
and Lakhsmanan, 1997b; Guil and Manas, 1996; Imai, 1997;
Ruan and Chen, 1999; Lou and Ruan, 2001). One of the
most well-known of such equations is the so-called Davey-
Stewartson-I equation (DS-I) (Davey and Stewartson, 1974),
which is a two-dimensional generalization of the nonlinear
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Schr̈odinger equation (NLSE). While the NLSE finds ex-
tensive applications in plasma physics, including the mod-
elling of several wave phenomena in space plasmas, the DS-
I equations have received scant attention from plasma and
space scientists. A rare exception is the work of Nishi-
nari et al. (1994), who have shown, with the help of a suit-
able reductive perturbation method, that the nonlinear evo-
lution of an ion acoustic wave travelling in a magnetized
plasma can be modelled by a DS-I type of equation. Sim-
ilar considerations might, therefore, apply for other modes in
a plasma, particularly when their nonlinear stationary states
display two- or three-dimensional structures. Our present
work is motivated by such a consideration particularly in the
context of space plasma observations which provide a rich
source of such potential structures. For instance, the GEO-
TAIL spacecraft was one of the earliest (Matsumoto et al.,
1994a) to detect interesting waveforms consisting of a series
of solitary pulses that give rise to the broad band electro-
static noise (BEN) (Scarf et al., 1974; Gurnet et al., 1976) in
the plasma sheet boundary layer. These structures were com-
monly called ESW, i.e. Electrostatic Solitary Waves. How-
ever, it was soon noticed that the ESWs do not exhibit the
characteristics of solitons or envelope solitons (Matsumoto
et al., 1994b). It was further observed that their evolution
depended crucially on the ion temperature and electron flow
(Kojima et al., 1994). This led Omura et al. (1994) to pro-
pose a 1-D BGK mode model to explain these spiky struc-
tures. They argued that the BEN/ESW structures can be
sustained when the conditionTi > Te is satisfied (Omura
et al., 1994). Further credence to this model was provided
by experimental observations of energetic ions in the mag-
netospheric tail and ring currents (Baumjohann et al., 1989;
Buti et al., 1980). However, recent high resolution measure-
ments from POLAR and FAST satellites have revealed 2-D
structures for BEN (Franz et al., 1998) which cannot be ex-
plained by the previously proposed one-dimensional models
(Omura et al., 1996). The observed two-dimensional elec-
trostatic structures consist of both monopolar and bipolar
pulses and occur in a region where typicallyTi > Te (Tsu-
rutani et al., 1998). Past theoretical works have pointed out
the possibility of exciting linear electron acoustic waves in
such a regime (Lashmore-Davies and Martin, 1973) and also
discussed their one-dimensional nonlinear properties (Buti,
1980; Bharuthram and Shukla, 1988). There is also reason-
able experimental evidence (gleaned from detailed analysis
of FAST and Viking data) of the presence of electron acous-
tic waves associated with BEN activity in auroral plasmas
(Pottelette et al., 2001; Dubuloz et al., 1991b). Comparative
studies of Singh and Lakhina (2001); Singh et al. (2001) and
Dubuloz et al. (1991a) further highlight the consistency be-
tween the theoretical models and spacecraft data for both lin-
ear and nonlinear regimes. It thus becomes important to ex-
amine the nonlinear evolution of these waves and to look for
possible two-dimensional saturated stationary structures. We
have carried out such an investigation in this paper and have
shown that the nonlinear evolution of the electron acoustic
wave can be modelled by the system of Davey-Stewartson-I

equations under certain conditions. Further, we have used
these conditions to delineate the parametric regions for the
existence of dromion solutions for two-dimensional electron
acoustic waves.

The paper is organized as follows. In the next section
(Sect. 2) we derive a general nonlinear evolution equation for
finite amplitude electron acoustic waves which are travelling
in an arbitrary direction. The derivation is based on the re-
ductive perturbation method as applied to a two-fluid plasma
model. The special case of pure perpendicular wave propaga-
tion is considered in Sect. 3 and the conditions necessary for
the evolution equations to reduce to the DS-I equations are
stated. These conditions are used to numerically delineate
the parametric regimes for the occurrence of dromion solu-
tions. An analytic form for the dromion solution using the
Hirota bilinear method is discussed as a special case in Ap-
pendix B. Section 4 discusses the conditions necessary for
the general evolution equation to reduce to the DS-I equa-
tions. These conditions are further numerically analyzed. In
Sect. 5 some comparisons are made with the actual exper-
imental observations in space and Sect. 6 provides a brief
summary and concluding remarks.

2 Derivation of the nonlinear evolution equations

For Ti > Te, the electron acoustic wave is a normal mode
of a magnetized plasma with a typical phase velocity of
√
(Ti/me). This mode is analogous to the ion-acoustic wave

with the roles of electrons and ions reversed, that is, the elec-
tron mass now provides the inertial restoring force to bal-
ance the ion thermal pressure force. An appropriate fluid de-
scription of this mode is provided by considering the electron
equations of continuity and motion and assuming the ions to
obey a Boltzmann distribution. The Boltzmann description
for ions is justified on account of their large thermal energy
which allows one to treat them as an unmagnetized species.
We adopt the following normalized set of equations (Ghosh
et al., 1996),

∂n

∂t
+ ∇ · (nv) = 0, (1)

∂v

∂t
+ (v · ∇) v + 3βn∇n− ∇φ + α (v × b) = 0, (2)

∇
2φ = ne − ni = ne − exp(−φ), (3)

whereα (= ωce/ωpe) is the ratio of electron cyclotron and
electron plasma frequencies,β (= Te/Ti) is the electron to
ion temperature ratio,b = (0 , 0 , 1) is normalized by the
ambient magnetic fieldB0 andφ (=e|φ′

|/Ti) is the normal-
ized electrostatic potential, withφ′ being the actual mea-
sured potential. All the space variables are normalized
by the ion Debye length (λi), time by reciprocal of elec-
tron plasma frequency (ω−1

pe ), velocities by electron acoustic
speed (cs =

√
Ti/me) and number densities by the ambient

plasma densityn0. We now assume a perturbation of the
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form ∼ exp[ı (k · r − ωt)], where k =
(
0 , k⊥ , k‖

)
is the

wave vector and we adoptthe reductive perturbation expan-
sion technique (Nishinari et al., 1994) to derive the nonlinear
evolution equation of the perturbation. We expand the phys-
ical quantities as

n = 1 +

∞∑
n=1

εn
∞∑

l=−∞

n
(n)
l exp[ıl (k · r − ωt)] , (4)

φ =

∞∑
n=1

εn
∞∑

l=−∞

φ
(n)
l exp[ıl (k · r − ωt)] , (5)

v =

∞∑
n=1

εn
∞∑

l=−∞

v
(n)
xl
v
(n)
yl

v
(n)
zl

 exp[ıl (k · r − ωt)] . (6)

We further introduce the following stretched variables
(Nishinari et al., 1994)

ξ = εx , η = ε
(
y −Myt

)
ζ = ε (z−Mzt) , τ = ε2t , (7)

whereMy, Mz are the respective group velocities in the
perpendicular and parallel directions. The choice of the
stretched variables and the consequent scaling of the various
terms is guided primarily by the nature of dispersion of the
linear waves, as has been extensively discussed in the liter-
ature (Lokenath, 1997). Transforming all independent vari-
ables by Eq. (7), we expand Eqs. (1–3) by using Eqs. (4– 6)
and carry out a systematic balancing of terms at each order
of ε.

To the first order inε we obtain

ε : l = 1 ; φ
(1)
1 = −K1n

(1)
1 , (8)

v
(1)
x1 = −ıa2k⊥K2n

(1)
1 ,

v
(1)
y1 = a1k⊥K2n

(1)
1 ,

v
(1)
z1 =

k‖

ω
K2n

(1)
1 , (9)

where, for convenience, the coefficientsKi s, ai s (i, j =

1, 2, 3, etc.) and those occurring in subsequent expressions
below are listed in Appendix A. Combining the above ex-
pressions leads to the linear dispersion relation for the elec-
tron acoustic wave in a warm electron fluid, namely

ω4
− ω2

(
α2

+ |k|2K2

)
+ α2k2

‖
K2 = 0. (10)

For an unmagnetized plasma (α = 0) it reduces to the usual
linear electron acoustic dispersion

ω

k
=

√
K2,

while for a strong magnetic field and perpendicular propaga-
tion it reduces to

ω

k
=

√
α2

k2
+K2,

indicating a stronger dispersion which is consistent with our
choice of scaling (Lokenath, 1997).

The next order balance yields

ε2
: l = 0 ; φ

(2)
0 = −

(
n
(2)
0 −K2

1 |n
(1)
1 |

2
)
, (11)

v
(2)
x0 = 0,

v
(2)
y0 = −2c2|n

(1)
1 |

2, (12)

ε2
: l = 1 ; φ

(2)
1 = −K1

[
n
(2)
1 + 2ıK1

(
k · ∇ξ

)
n
(1)
1

]
, (13)

v
(2)
x1 = −ıK2

(
a2k⊥n

(2)
1 + a1

∂n
(1)
1

∂ξ

)
+ 2a2k⊥

(
Xxη

∂n
(1)
1

∂η
+Xxζ

∂n
(1)
1

∂ζ

)
,

v
(2)
y1 = K2

(
a1k⊥n

(2)
1 + a2

∂n
(1)
!

∂ξ

)
+ ıa1k⊥

(
Xyη

∂n
(1)
1

∂η
+Xyζ

∂n
(1)
1

∂ζ

)
,

v
(2)
z1 =

k‖

ω

[
K2n

(2)
1 + ı

(
Xzη

∂n
(1)
1

∂η
+Xzζ

∂n
(1)
1

∂ζ

)]
, (14)

ε2
: l = 2 ; n

(2)
2 = Sn

(
n
(1)
1

)2
,

φ
(2)
2 = −κ1

{
Sn −

1

2
K2

1

}(
n
(1)
1

)2
, (15)
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v
(2)
x2 = −ık⊥Sx

(
n
(1)
1

)2
,

v
(2)
y2 = k⊥Sy

(
n
(1)
1

)2
,

v
(2)
z2 = k‖Sz

(
n
(1)
1

)2
. (16)

The above relations from the second order balance give us the relations for the group velocities as

My = 2k⊥
a1K2 − c1K

2
1

1 + c3K2
, (17)

Mz = 2k‖
K2
ω

− c1K
2
1

1 + c3K2
. (18)

Finally, in the third order we obtain

ε3
: l = 1 ; φ

(3)
1 = −K1

[
n
(3)
1 +K1

{
∇

2
ξ n
(1)
1 + 2ı

(
k · ∇ξ

)
n
(2)
1 − n

(1)
1 n

(2)
0

}
− 4K2

1

(
k · ∇ξ

)2
n
(1)
1 +K3

1n
(1)
1 |n

(1)
1 |

2]. (19)

Using Eqs. (8)–(19) in Eqs. (1)–(3) and solving for the third order ofε we obtain the following set of coupled equations

−M2
y
∂2n

(2)
0

∂η2
− 2MyMz

∂2n
(2)
0

∂η∂ζ
+

(
3β + 1 −M2

z

) ∂2n
(2)
0

∂ζ 2
+ pηη

∂2
|n
(1)
1 |

2

∂η2
+ pηζ

∂2
|n
(1)
1 |

2

∂η∂ζ
+ pζ ζ

∂2
|n
(1)
1 |

2

∂ζ 2
= 0, (20)

−M2
y
∂2v

(2)
z0

∂η2
− 2MyMz

∂2v
(2)
z0

∂η∂ζ
+

(
3β + 1 −M2

z

) ∂2v
(2)
z0

∂ζ 2
+ qηη

∂2
|n
(1)
1 |

2

∂η2
+ qηζ

∂2
|n
(1)
1 |

2

∂η∂ζ
+ qζ ζ

∂2
|n
(1)
1 |

2

∂ζ 2
= 0 (21)

for l = 0 and

ı
∂n

(1)
1

∂τ
+ µξξ

∂2n
(1)
1

∂ξ2
+ µηη

∂2n
(1)
1

∂η2
+ µηζ

∂2n
(1)
1

∂η∂ζ
+ µζ ζ

∂2n
(1)
1

∂ζ 2
−

(
µ02n

(2)
0 + k‖v

(2)
z0

)
n1(1)− µ11|n

(1)
1 |

2n
(1)
1 = 0 (22)

for l = 1, where all the coefficients are given in Appendix A.
Equations (20)–(22) provide a generalized description of the
evolution of the nonlinear wave packet in three dimensions.
They can be further simplified by assuming special situations
which we discuss in the subsequent sections.

3 Perpendicular propagation of the wave

For pure perpendicular propagation of the wave we can set
k‖ = Mz = 0. We can further assume∂ξ → 0. Due to the
symmetry of the system, all the cross derivative terms then
vanish. Substituting these conditions, Eqs. (22) and (20),
respectively, reduce to

ı
∂n

(1)
1

∂τ
+ µηη

∂2n
(1)
1

∂η2
+ µζ ζ

∂2n
(1)
1

∂ζ 2

−

(
µ02n

(2)
0 + µ11|n

(1)
1 |

2
)
n
(1)
1 = 0, (23)

−M2
y
∂2n

(2)
0

∂η2
+ (3β + 1)

∂2n
(2)
0

∂ζ 2
+K4

∂2
|n
(1)
1 |

2

∂η2
= 0 .. (24)

Substituting

n
(1)
1 = A ; n

(2)
0 = Q,

and

µηη = dη ; µζ ζ = dζ ,

Eqs. (23) and (24) can be rewritten as

ıAτ + dηAηη + dζAζ ζ −

(
µ02Q+ µ11|A|

2
)
A = 0, (25)

−M2
yQηη + (3β + 1)Qζ ζ +K4|A|

2
ζ ζ = 0, (26)

where the subscripts of the dependent variablesA andQ de-
note partial derivatives. The two coupled Eqs. (25) and (26)
have the form of the DS-I equations, provided the condition

dη/dζ > 0 ; µ11 > 0 (27)

is satisfied, withµ02 being always positive. Condition (27)
provides us with the necessary criterion to explore the phys-
ical parameter space where dromion structures can appear as
nonlinear saturated states of the electron acoustic wave. We
have carried out this exploration numerically and Figs. 1a–c
represent the parameter space at different values ofβ (e.g.
β=0, 0.1 and 1, respectively) for which the condition (27) is
satisfied. In these parameter regions, the nonlinear evolution
for electron acoustic waves is governed by the DS-I equation
and hence may admit dromion or breather type solutions. For
some special values of the coefficients, the coupled equa-
tions (viz. Eqs. 25 and 26) become analytically integrable
and thus, when solved for appropriate initial-boundary con-
ditions, give dromions. One such technique is the Hirota bi-
linear method, as discussed, for example in Radha and Lak-
shmanan (1997a); Radha and Lakhsmanan (1997b). We have
illustrated this method in Appendix B and a typical form of
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the solution is obtained (Eq. B19). Using an appropriate
realistic set of parameters (α=0.9, ω=1.098 from Fig. 1b)
which allows the analytic solution for DS-I equations (see
Appendix B) and putting them into Eq. (B19), we have ob-
tained an actual analytical solution for dromion, as shown in

Fig. 2. For convenience, the shape of the dromion is assumed
to be spherical (i.e. equal width ratio) while the time is taken
to bet = 0. However, the analytic method is restricted only
to very specific sets of parameters and for a more general
case, one needs to solve the DS-I equations numerically.

In the present paper our primary aim has been to delineate
the parametric regions where the evolution equations take the
form of the DS-I equations and to further demonstrate from
available experimental data that these parametric regimes are
physically relevant in the PCBL region. At the moment we
note from Figs. 1a–c that the area of the parametric region
where condition (27) is satisfied is larger for larger values of
β (i.e. it increases asβ → 1). Since space plasma observa-
tions show an appreciably largeTe for theTi ≥ Te (Gage and
Reid, 1981), our analysis seems to support the possibilities of
finding dromion solutions for those regimes. It is to be noted
that for the case ofβ ∼ 1, the electron acoustic wave tends
to become damped due to Landau damping in a pure proton-
electron (single species) plasma (Lashmore-Davies and Mar-
tin, 1973). However, since the electron component of the
auroral plasma often displays a two-temperature character
(i.e. a hot and a cold electron species), the electron acous-
tic wave may still survive in that region without any appre-
ciable damping. Our fluid model treatment is strictly valid
when such kinetic effects can be ignored, e.g. in the region
of small β (say,βmax ≈ 0.1), where electron temperatures
are not too large. Our further analysis is primarily restricted
to such regimes.

4 Arbitrary propagation

We now discuss the case of arbitrary propagation, i.e. the
case whenk‖ 6= 0. Combining Eqs. (20)–(22) we obtain

−M2
y
∂2Q′

∂η2
− 2MyMz

∂2Q′

∂η∂ζ
+

(
3β + 1 −M2

z

) ∂2Q′

∂ζ 2

+ rηη
∂2

|A|
2

∂η2
+ rηζ

∂2
|A|

2

∂η∂ζ
+ rζ ζ

∂2
|A|

2

∂ζ 2
= 0, (28)

ı
∂A

∂τ
+ µηη

∂2A

∂η2
+ µηζ

∂2A

∂η∂ζ
+ µζ ζ

∂2A

∂ζ 2

− µ02Q
′A− µ11|A|

2A = 0, (29)

where

Q′
= n

(2)
0 +

k‖

µ02
v
(2)
z0 ; rαβ = pαβ +

k‖

µ02
qαβ .

The conditions under which the above equations can re-
duce to the DS-I equations are not as simple as was the case
for the perpendicular propagation limit. In addition, in order
to satisfy a criterion analogous to Eq. (27), we will also need
to ensure that all three cross derivative terms of Eqs. (28)
and (29) vanish simultaneously. To derive these conditions it
is convenient to adopt the following linear transformation of
the independent variables

∂η = py∂y + pz∂z ; ∂ζ = qy∂y + qz∂z ,
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wherepy, pz, qy and qz are real numbers. The condition
for all the terms containing∂y∂z to be simultaneously zero
is given by

M̂ · T̂ = 0 , (30)

whereM̂ is a 3× 3 matrix consisting of the coefficients of
Eqs. (28) and (29) and̂T is a three-component column vec-
tor consisting of the transform coefficients, viz.py , z, qy , z,

and are given in Appendix A. Equation (30) can have non-
trivial solutions if and only if det|M̂| = 0, which leads to
the condition

µηη + µζ ζ (e1 − e2e3)− e3µηζ = 0. (31)

The elliptic-hyperbolic nature of the Eqs. (28) and (29) is en-
sured by

µηηµζ ζ

(
1 + E2t4

)
+ µηζ

(
µηη + µζ ζE

) (
ET 3

+ t
)

+

(
µ2
ηη + µ2

ηζE + µ2
ζ ζE

2
)
t2 > 0, (32)

e1

(
1 + E2t4

)
+ e2 (E − e1)

(
ET 3

+ t
)

−

(
e2

1 + e2
2E + E2

)
t2 > 0, (33)

wheret = pz/qz andE = e1 − e2e3 and the interrelations
among the transformation coefficients, viz.py, z, qy, z, have
been taken into account. Provided Eq. (31) is satisfied,t can
be determined from the following second order equation (see
Appendix A)

Et2 + 2e3t + 1 = 0. (34)

Equations (31) to (34), together with the relationµ11 > 0,
complete the set of conditions necessary for ensuring that
the generalized (oblique) propagation equations reduce to the
DS-I equations. It is to be noted that the Eq. (31) has nec-
essarily assumed thatk‖ 6= 0. The existence of the DS-I
equations is satisfied only for a specific set of transforma-
tions satisfying Eq. (34). We have once again carried out
a numerical exploration in parameter space of these condi-
tions. Figures 3a and b present the parametric domain of
the existence of the DS-I equations in the three-dimensional
parameter space ofα, ky andω for β = 0 and 0.1, respec-

tively. Figures 4a and b represent the corresponding two-
dimensional projections in theα–ω plane, respectively, for
different ky andkz, whereas Figs. 5a and b represent simi-
lar projections in theα–θ plane, withθ being the angle of
propagation with respect to the ambient magnetic field. We
note that, analogous to the perpendicular propagation case,
for oblique propagation also, an increasingβ favors the con-
ditions of DS-I equations (e.g. Figs. 3a and b, respectively).
But in contrast to the previous case, the allowed range ofβ

values is found to be more restricted for an oblique propa-
gation. In fact, there appears to be an upper cutoff inβ (i.e.
β ≤ βc, whereβc ≈ 0.17) beyond which the equations can-
not be reduced to the DS-I form.

5 Comparison with the space plasma observations

Our numerical results presented in the previous sections dis-
play the regions in parameter space where the propagation
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Fig. 4b. α vs.ω for oblique propagation;β = 0.1.

equation can be represented by the DS-I equations. For
the case of perpendicular propagation, where condition (27)
needs to be satisfied, the parameter space is represented by
α andω, with ω being calculated from the dispersion rela-

tion (10). Figure 1a displays the results for cold electrons
(i.e. β = 0), while Figs. 1b and 1c representβ = 0.1 and
β = 1, respectively. We now check to see if these parametric
regions include the physical parameter range corresponding

Table 1. Wave frequencies for differentfce Table 2. Width ratios for differentα

fce α ω 1/fω
(kHz) (normalized) (normalized) (ms)

2 0.2 0.3 0.33
5 0.5 0.6 0.17
8 0.8 0.9 0.11

α k ω ρ

0.2 0.2 0.301 0.238
0.5 0.35 0.629 0.635
0.8 0.55 0.981 0.849
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Fig. 5b. α vs.θ for oblique propagation;β = 0.1.

to experimental observations. The typical measured parame-
ters in the region of the satellite observations (at a height of 5
to 7 Earth radii) areTi = 100 eV,Te = 10 eV (i.e.β = 0.1),
n ' 1 cm−3 (fpe ' 10 kHz) andfce ' 5 to 8 kHz (i.e.α=0.5
to 0.8) (Tsurutani et al., 1998). We have chosen three values
of fce (α) and computed the correspondingω values from
Fig. 1. The result is summarized in Table 1. Since the
experimentally observed duration of the nonlinear structures
is of the order of 1 ms or less (Tsurutani et al., 1998), our cal-
culated values ofω appear to be consistent with the observa-
tions. The narrowing of the electronic pulse with increasing
α observed in Table 1 is maintained for otherβ values, as in-
dicated in Figs. 1a–c. The same trend continued for arbitrary
(oblique) propagation as well which is evident from Figs. 4a
and b, respectively.

In Fig. 2, we have shown a possible dromion solution for
a chosen set of parameters (i.e.α=0.9,ω=1.098, withβ be-
ing 0.1) at time t=0 (Appendix B). For simplicity, we have
assumed equal width for both directions. We have compared
the shape and size of our solution with that of the experi-
mentally observed structures where the physical conditions
are assumed to remain the same (i.e.fpe = 10 kHz, Ti =
100 eV,β being 0.1). According to Franz et al. (1998), the
typical parallel scale sizes of the coherent electric field struc-
tures corresponding to recent POLAR observations are of the
order of 100–1000 m, whereas the calculated half width of
the dromion in Fig. 2 is around 166.8 m (2.5 Debye length),
which agrees fairly well with the experimental observations.
Regarding the perpendicular scale size, we have calculated
the width ratio (ρ = L‖/L⊥, L‖(L⊥) being the parallel (per-
pendicular) scale sizes, respectively) from the following an-
alytic relation derived by Franz et al. (2000)

ρ '

(
1 + r2

L

)−1/2
, (35)

where rL is the normalized electron gyroradius. Setting
rL = My/α and using Eq. (18), we have obtainedρ = 1.035,
indicating a near spherical structure (i.e.L‖ ≈ L⊥) for our
chosen set of parameters. This also confirms the validity

of our assumption of a spherical dromion in Fig. 2. In or-
der to find out the amplitude (a = 0.52 in Fig. 2) we have
used Eq. (8) and the corresponding gradient is numerically
estimated from Fig. 2. The calculated amplitude is around
0.75 mV/m while the typical amplitudes of the structures are
reported as being of the order of 1 mV/m (Franz et al., 2000).
Hence, our calculated estimation seems to agree quite satis-
factorily with the recent spacecraft observations in the PCBL
regions. The POLAR observations have further indicated
that the shapes of the two dimensional structures depend cru-
cially on α (Franz et al., 2000), being nearly spherical for
α > 1 while becoming more oblate (L‖ < L⊥) with decreas-
ing α (i.e.α < 1). In Table 2 we have calculatedρ by using
Eq. (35) for three different values ofα andk which satisfy
the condition for DS-I equations (Fig. 1b). The decreasing
value ofρ with decreasingα indicates an expected oblate
shape for the possible solutions. Our theoretical model thus
remain consistent with present observational data.

The question of the direction of propagation of the nonlin-
ear pulses has not been satisfactorily established yet. Earlier
studies by Gurnet et al. (1976) and Onsager et al. (1993) indi-
cated the possibilities of perpendicular propagation but later
observations (Kojima et al., 1997) found inconsistencies with
this conclusion. In fact, most of the current experimental ob-
servations (Franz et al., 1998; Ergun et al., 1998) and some
of the past analytic studies (Goldman et al., 1999; Muschietti
et al., 1999) emphasize that propagation of these nonlinear
pulses is near parallel. Our theoretical analysis for oblique
propagation provides a framework for looking at such a pos-
sibility. From Fig. 5a we see that dromion solutions with
near parallel propagation (θ < 10o) are also possible in the
region ofα ∼ 0.5 for very low electron temperatures. With
increasingα (α ≥ 0.7), the propagation angle seems to re-
duce further (θ ≤ 5o; Fig. 5a), strengthening the possibilities
of such a near parallel propagation. However, in the absence
of more definitive data on the direction of propagation of the
pulses, it is not very meaningful to define any realistic quan-
titative bounds on the existence domain of these structures
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on the basis of our model.

6 Conclusion

In the present work, we have shown that the nonlinear evolu-
tion of two-dimensional electron acoustic waves can be mod-
elled by the Davey-Stewartson-I equations. These equations
admit dromion solutions which are generalizations of soliton
solutions to two dimensions and exhibit exponential spatial
decay in both directions. Since experimentally observed po-
tential structures in the PCBL region appear to have a dis-
tinctly two-dimensional structure, it would be meaningful to
characterize them in terms of such two-dimensional nonlin-
ear entities. The basis for the present description rests on
the primary assumption of the excitation and sustenance of
electron acoustic waves in the PCBL region. Such a proposi-
tion for one-dimensional wave has been investigated by many
authors (Buti, 1980; Dubuloz et al., 1991a,b; Singh et al.,
2001). Using high resolution data of FAST, Pottelette et al.
(2001) presented evidence for the presence of nonlinear elec-
tron acoustic waves in the auroral kilometric radiation source
region. Experimental evidence pointing to the existence of
energetic ions (Ti > Te) in the PCBL region (Tsurutani et al.,
1998) further supports the assumption of sustaining electron
acoustic wave in that region (Buti, 1980; Omura et al., 1994).
In fact, there is considerable past work devoted to the ques-
tion of the generation mechanism of this wave (Bharuthram
and Shukla, 1988; Singh and Lakhina, 2001) and its stabil-
ity (Lashmore-Davies and Martin, 1973). Our present work
can be viewed as a natural extension of these investigations
towards the description of a nonlinear saturated state of the
wave in two spatial dimensions. One possible saturation
mechanism of such two-dimensional structures may be the
modulational instability as observed experimentally by Pot-
telette et al. (1999). This can be conjectured further in the
context of the stability analysis presented by Nishinari et al.
(1994) for the ion acoustic wave. It should be mentioned that
the physical saturation mechanisms for a two-dimensional

electron acoustic wave would be quite analogous and similar
in nature to what has been proposed for the case of the ion
acoustic wave (Nishinari et al., 1994). In other words, a two-
dimensional localization can arise due to the simultaneous
onset of a self-focusing instability in the transverse direction
and a modulational instability in the longitudinal direction.
The evolution and saturation of such an unstable fluctuation
into a dromion state can happen if the DS-I condition is sat-
isfied. In our present work we have used this condition to de-
fine a parametric space relating the plasma equilibrium quan-
tities and wave propagation characteristics. We have delin-
eated this parameter region by a detailed numerical investi-
gation of the constraint conditions both for the special case of
perpendicular propagation and for the general case of oblique
propagation. Comparisons with available experimental data
show that dromion solutions can exist both for perpendicu-
lar propagation, as well as for nearly parallel propagation of
the electron acoustic mode. The shape and size of our ana-
lytical solution was found to agree well with those observed
in POLAR spacecraft measurements. This further strength-
ens the possibilities of the physical existence of dromions in
the auroral plasmas. However, for a more quantitative un-
derstanding of the shape and finer features of the observed
structure, one needs to carry out a detailed numerical investi-
gation of the evolution equation with appropriate initial con-
ditions. Such an investigation is in progress and will be re-
ported elsewhere. Our present motivation was to provide an
alternate paradigmatic model for the observed structures and
to demonstrate the basis of its applicability. Further, it should
also be pointed out that there can be competing processes in
the PCBL region involving other low frequency waves, such
as the lower hybrid waves (Dubuloz et al., 1991a). A nonlin-
ear analysis of such waves, along the present lines, to exam-
ine two-dimensional solutions would be very worthwhile and
to the best of our knowledge has not been accomplished to
date. Thus, dromions offer a rich and new paradigm for un-
derstanding plasma wave phenomena in the auroral plasma
and need to be investigated more intensely.

Appendix A Coefficients for the equations

a1 =
ω

ω2 − α2b2
z
, a2 =

αbz

ω2 − α2b2
z
, a3 =

ω2
+ α2b2

z

ω2 − α2b2
z
, a2

12 = a2
1 + a2

2 , a4 = a2
1 + 3a2

2

K1 =
1

1 + |k|2
, K2 = 3β +K1 , K3 = 3β −K2

1 , K4 = K2 +K3 , K5 = 3β +K2
1

c1 = a1k
2
⊥

+
k2
‖

ω
, c2 = a1k⊥K2 , c3 = a2

12k
2
⊥

+
k2
‖

ω2
, c4 = a1a4k

2
⊥

+
k2
‖

ω3

a1ω =
2ω

4ω2 − α2b2
z
, a2ω =

αbz

4ω2 − α2b2
z
, a3ω =

ω2
+ 2α2b2

z

ω2 − α2b2
z

a2
12ω = a1a1ω + a2a2ω , a′

12 = 2ωa1 + αbza2 , a′

21 = αbza1 + 2ωa2 , a4ω = a1ωa3ω
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κ1 =
1

1 + 4|k|2
, κ2 = 3β + κ1 , κ3 = 3β − κ1K

2
1 , κ4 = K2 + κ3

c1ω = a1ωk
2
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+
k2
‖

2ω
, c2ω = a1ωa

′

12k
2
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‖

ω
, c3ω = a2

12ωk
2
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‖

2ω2
, c4ω = a1a4ωk

2
⊥

+
k2
‖

ω2

Xxη = a1K2My + k⊥K
2
1 −

1

2k⊥
K2 , Xxζ = a1K2Mz + k‖K

2
1 ,

Xyη = a3K2
My

ω
+ 2k⊥K

2
1 −

1
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K2 , Xyζ = a3K2
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ω
+ 2k‖K

2
1 ,

Xzη = K2
My

ω
+ 2k⊥K

2
1 , Xzζ = K2
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ω
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2
1 −

1

k‖
K2

Sx = 2a2ωκ2Sn + fx , Sy = 2a1ωκ2Sn + fy , Sz =
κ2

ω
Sn + fz , Sn =

ω + fyz

ω − 2c1ωκ2

fx =
1

2
a1ωa

′

21K2 + a2ωκ3 , fy =
1

2
a1ωa

′
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1

2ω
(K2 + κ3) =

κ4

2ω
,

fyz = k2
⊥
fy + k2

‖
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1

2
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2
2 + 2c3ωK2 (2κ2Sn + κ3)+ κ4Sn − κ1K

2
1
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Rηη + e1Rζ ζ
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Appendix B Hirota bilinear method

We briefly outline the Hirota bilinear method here and apply
it to obtain an exact analytic one-dromion solution for the
perpendicular propagation case. We first rescale the depen-
dent and independent variables as

η =

√
2dη
µ11

Y ; ζ =

√
2dζ
µ11

Z ; τ =
1

µ11
T ,

µ02

µ11
Q = q ; A = a . (B1)

Using Eq. (B1), Eqs. (25) and (26) transform to

ıaT +
1

2
(aYY + aZZ)−

(
q + |a|2

)
a = 0, (B2)

lyqYY − lzqZZ − 2|a|2ZZ = 0, (B3)

wherely andlz are given in Appendix A.
Putting the usual substitutions (Radha and Lakshmanan,

1997a)

a =
g

f
; q = −2∂2

z ln f , (B4)

with the assumptionly , lz ≈ 1 and rotating the coordinate
axis by 45◦, Eqs. (B2) and (B3) reduce to the bilinear form
as[
ıDT +

1

2

(
D2

Y +D2
Z

)]
g · f = 0,

DYDZf · f = −2g · g∗, (B5)

whereDY ,Z are the Hirota bilinear operators. Expanding the
new variables as

g = εg(1) + ε3g(3) + . . . ,

f = 1 + ε2f (2) + ε4f (4) + . . . , (B6)

with ε being a small quantity, and equating for different or-
ders we obtain

ε : ıg
(1)
T +

1

2

(
g
(1)
YY + g

(1)
ZZ

)
= 0, (B7)

ε2
: f

(2)
YZ = g(1) g∗(1), (B8)

ε3
: ıg

(3)
T +

1

2

(
g
(3)
YY + g

(3)
ZZ

)
=

−

[
ıDT +

1

2

(
D2

Y +D2
Z

)]
g(1) · f (2), (B9)

ε4
: f

(4)
YZ +

1

2
DYDZ

(
f (2) · f (2)

)
=(

g(1) · g∗(3)
+ g(3) · g∗(1)

)
(B10)

and so on. Solving Eq. (B7) we obtain

g(1) =

N∑
j=1

expχj , χj = pjY + sjZ − ıωT + bj, (B11)

wherepj sj andbj are complex constants satisfying the con-
dition
1

2

(
p2

j + s2
j

)
− ω = 0 . (B12)

To construct a one-dromion solution, we setN = 1. Sub-
stituting Eq. (B11) in Eq. (B8) we obtain

f (2) = exp
(
χ1 + χ∗

1 + 2ψ
)
, exp(2ψ) =

1

4p1Rs1R
, (B13)

with p1R, s1R being the real part ofp1, s1, respectively. Us-
ing g(1), f (2) from Eqs. (B7) and (B8) into Eqs. (B9) and
(B10), one can show thatg(j) = 0 for j ≥ 3 andf (j) = 0
for j ≥ 4, respectively. Now using Eqs. (11) and (13) in
Eq. (B4), the physical quantitiesa andq will assume the fol-
lowing form

a =
√
p1Rs1Rsech (χ1R + ψ)exp(ıχ1I) , (B14)

q = −2s2
1Rsech

2 (χ1R + ψ) . (B15)

To obtain an analytic form for a dromion solution, we use the
ansatz (Radha and Lakshmanan, 1997a)

f = 1 + exp
(
χ1 + χ∗

1

)
+ exp

(
χ2 + χ∗

2

)
+ exp

(
χ1 + χ∗

1 + χ2 + χ∗

2

)
, (B16)

where

χ1 = p1Y + ı
p2

1

2
T + b1

χ2 = s1Y + ı
s2
1

2
T + b2. (B17)

Substituting Eq. (B16) with Eq. (B17) and putting it into
Eq. (B8), we obtain

g = γ exp(χ1 + χ2) ; |γ |
2

= 4p1Rs1R (B18)

For simplicity, we have assumedp1 = s1 = p. For T=0
the dromion solution fora is obtained as

a (Y, Z, T = 0)

=
2p exp[p (Y + Z)]

1 + exp(2pY)+ exp(2pZ)+ exp[2p (Y + Z)]
. (B19)

Numerically we have obtainedly ≈ lz ≈ 0.825 for
α = 0.9 andky = 0.6234 (ω = 1.098). Calculatingp from
Eq. (B12) and putting it into Eq. (B19), we obtain the solu-
tion as presented in Fig. 2.
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