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Abstract. A three-wave model of auroral radio emissions
near the electron plasma frequency was proposed by Chian
et al. (1994) involving resonant interactions of Langmuir,
whistler and Alfv́en waves. Chaos can occur in the nonlinear
evolution of this three-wave process in the magnetosphere. In
particular, two types of intermittency, due to either local or
global bifurcations, can be observed. We analyze the type-
I Pomeau-Manneville intermittency, arising from a saddle-
node bifurcation, and the crisis-induced intermittency, aris-
ing from an interior crisis associated with a global bifur-
cation. Examples of time series, power spectrum, phase-
space trajectory for both types of intermittency are presented
through computer simulations. The degree of chaoticity of
this three-wave process is characterized by calculating the
maximum Lyapunov exponent. We suggest that the intermit-
tent phenomena discussed in this paper may be observed in
the temporal signal of magnetospheric radio emissions.

1 Introduction

Nonthermal radio waves have been observed in a number of
planetary magnetospheres (Chian et al., 1993). Traditionally,
it is believed that the nonlinear interaction of high-frequency
electron plasma waves with low-frequency density fluctua-
tions, such as ion-acoustic waves, is the main mechanism
for beam-driven turbulence, to produce nonthermal plasma
emissions at the fundamental plasma frequency. Recently,
we have shown that the nonlinear coupling of Langmuir
waves with low-frequency magnetic field fluctuations, such
as Alfvén waves, may also provide an efficient mechanism
for generating magnetospheric radio waves (Chian et al.,
1994; Lopes and Chian, 1996a; Chian et al., 2000). Evidence
of this emission mechanism has been obtained in rocket ex-
periments in the Earth’s auroral plasmas (Boehm et al., 1990;
Chian et al., 1994). In this paper, we present a nonlinear
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dynamical theory of three-wave interactions involving Lang-
muir, Alfvén and whistler waves in the planetary magneto-
spheres. By assuming linear growth for the Langmuir wave
and linear damping for both the Alfvén and whistler waves,
this wave triplet is shown to evolve from order to chaos via a
number of different routes. We identify two types of intermit-
tency in a given periodic window of the bifurcation diagram:
type-I Pomeau-Manneville intermittency and crisis-induced
intermittency. Numerical solutions of these nonlinear dy-
namical phenomena are presented, showing the time series
of the wave amplitude and the corresponding power spec-
trum and trajectory in the phase space. The characterization
of ordered and chaotic states is performed by calculating the
largest Lyapunov exponent. The relevance of this theory for
detecting chaos in the time series of magnetospheric radio
waves is discussed.

2 Nonlinear coupled wave equations

Consider the nonlinear parametric interaction of Langmuir
(L), whistler (W) and Alfv́en (A) waves, all propagating
along the ambient magnetic fieldB = B0ẑ. The three-wave
resonant interaction occurs if the phase-matching condition
and wave helicity conservation condition are satisfied. We
assume the following phase-matching condition

ωL ≈ ωW + ωA, (1)

kL = kW + kA, (2)

where we introduce a finite frequency mismatch but as-
sume perfect wave vector match. Since the electromagnetic
whistler wave has a right-hand circular polarization, the wave
helicity conservation implies that the Alfvén wave must be a
shear Alfv́en mode which has a left-hand circular polariza-
tion.

The set of coupled wave equations governing the nonlinear
interactionL 
 W + A, derived from a two-fluid theory, is
given by Chian et al. (2000) as

ȦL = νLAL + AWAA, (3)
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ȦW = νWAW − ALA∗

A, (4)

ȦA = iδAA + νAAA − ALA∗

W , (5)

with

AL =[
cLW cLA

4k2(vgA − v)(vgW − v)(∂DA/∂ωA)(∂DW /∂ωW )

]1/2

EL, (6)

AW =[
cWAcLW

4k2(vgL − v)(vgA − v)(∂DL/∂ωL)(∂DA/∂ωA)

]1/2

EW , (7)

AA =[
cWAcLA

4k2(vgL − v)(vgW − v)(∂DL/∂ωL)(∂DW /∂ωW )

]1/2

×EA exp i1t, (8)

whereE(z, t) is a slowly varying complex envelope of the
wave electric fields

Eα(z, t) =
1

2
Eα(z, t) exp iθα + c.c., (9)

such that|∂2
t Eα| � |ωα∂tEα| and|∂2

z Eα| � |kα∂zEα|, θα =

kαz−ωαt is the fast-varying phase, andα = (L, W, A). The
dispersion operators are given by

DL = −ω2
L + ω2

pe + γ v2
thk

2
L − iνLωL, (10)

DW = −ω2
W + c2k2

W +
ω2

peωW

ωW − ωce

− iνWωW , (11)

DA = −ω2
A + c2

Ak2
A − iνAωA, (12)

and the coupling coefficients are given by

cWA =
−eω2

pe

2me(ωW − ωce)

[
kA

ωA

+
kW (ωW − ωce)

ωW (ωA + ωce)

]
(13)

cLA =

(
ω2

W

ω2
L

)
cWA, (14)

cLW =

(
ω2

Ac2
A

ω2
Lc2

)
cWA, (15)

whereω2
pe = (n0e

2/meε0)
1/2 is the electron plasma fre-

quency,ωce = eB0/me is the electron cyclotron frequency,
vth = (KTe/me)

1/2 is the electron thermal velocity,cA =

B0/(µ0ρ0)
1/2 is the Alfvén velocity,γ is the ratio of spe-

cific heats; the dot denotes the derivative with respect to
τ = k(z − vt), v andk are the arbitrary wave velocity and
wave vector, respectively; the frequency mismatch parame-
ter δ = 4/[k(vgA − v)], 4 = ωL − ωW − ωA, wherevgα

represent the group velocities;να represent the normalized
growth/damping parameters (Chian et al., 2000). We assume
the Langmuir wave is linearly unstable(νL > 0) and set
νL ≡ 1, whereas the whistler wave and the shear Alfvén
wave are linearly damped and setνW = νA ≡ −ν < 0.

3 Bifurcation diagram

The set of coupled wave Eqs. (3)–(5) exhibits rich dynam-
ical behaviors, such as fixed point, divergence, limit cycle
and strange attractor (Wersinger et al., 1980; Meunier et al.,
1982; Lopes and Chian, 1996b; Lopez et al., 1998; Chian
et al., 2000). The system dynamics can be studied by con-
structing a bifurcation diagram which shows the birth, evo-
lution, and death of attracting sets (Alligood et al., 1996).
The bifurcation diagram is determined by varying only one
control parameter and keeping all other control parameters
fixed. A phase diagram in terms of two control parameters,
ν andδ, depicting the overall nonlinear dynamics of three-
wave interactions, has been systematically obtained by Me-
unier et al. (1982). Based on the (ν, δ) phase diagram of
Meunier et al. (1982), we fixδ = 2 arbitrarily and vary
the parameterν in order to see how the system dynamics
change as the growth/damping parameter varies. Other val-
ues ofδ can be chosen, which will yield different bifurca-
tion diagrams. For each value of the control parameterν,
we numerically integrate Eqs. (3)– (5) by dropping the ini-
tial transient. The Poincaré points are the projections of
the 3-dimensional trajectory onto the 2-dimensional Poincaré
plane ((|AL|, |AW |)). A period-2 window of the numerically
computed bifurcation diagram is shown in Fig. 1a, where
the Poincaŕe points refer to the maxima ofAW . The cor-
responding behavior of the maximum Lyapunov exponent
λmax is plotted in Fig. 1b. Chaos (aperiodic solutions) occurs
whenλmax > 0, and order (periodic solutions) occurs when
λmax < 0. This periodic window indicates that a saddle-
node bifurcation (SN) takes place nearν = 29.56, where
a pair of period-2 stable and unstable periodic orbits is cre-
ated. The stable periodic orbit undergoes a cascade of period-
doubling bifurcations, leading to chaos. At a critical param-
eter,ν = νIC = 33.23, the chaotic attractor collides with
a period-2 unstable periodic orbit evolving from the saddle-
node bifurcation, leading to an interior crisis (IC) due to a
global bifurcation. Figure 1b shows that to the right of the
saddle-node bifurcation pointνSN , λmax is negative (order);
whereas to the left ofνSN , λmax is positive (chaos). In ad-
dition, we can see from Fig. 1b that in the vicinity ofνIC ,
the values ofλmax increase abruptly, indicating a sudden in-
crease in the system chaoticity.

4 Pomeau-Manneville intermittency

In the type-I Pomeau-Manneville intermittency, the coales-
cence of a pair of stable and unstable limit cycles gives rise
to a chaotic orbit as the control parameterν reaches a criti-
cal valueνSN , where a (local) saddle-node bifurcation occurs
(Manneville and Pomeau, 1979; Lopes and Chian, 1996b;
Chian et al., 2000). In Fig. 2, we plot a return map for
ν = 29.56, which shows that in the vicinity of a saddle-node
bifurcation, the curve is nearly tangent to the bisectrix. Forν

just slightly greater than 29.56, namely atν =νSN , the curve
is exactly tangent to the bisectrix, which leads to a saddle-
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Fig. 1. (a) Bifurcation diagram for|AW | as a function ofν for
a period-2 window.(b) Maximum Lyapunov exponentλmax as a
function ofν. The dashed lines in Fig. 1a denote the period-2 unsta-
ble periodic orbit; SN denotes saddle-node bifurcation; IC denotes
interior crisis.

node bifurcation due to the coalescence of a pair of unstable
and stable periodic orbits of period-2 (see Fig. 11 in Chian
et al., 2000). In Fig. 2, each arrow indicates an approximate
site of the tangency (i.e. saddle-node bifurcation). More-
over, the occurrence of a saddle-node bifurcation at 29.56
< νSN < 29.57 can be seen by comparing Figs. 3a with 3b,
4a with Figs. 4b, and Figs. 4d with 4e.

In the Pomeau-Manneville intermittency of type-I, the
laminar phases of nearly periodic oscillations are suddenly
interrupted by chaotic bursts. This intermittency occurs in
the transition region of the saddle-node bifurcation when
ν < νSN . An example of time series for this intermittency
is given in Fig. 3. Figure 3a shows a periodic solution with
period-2 whenν > νSN ; Fig. 3b shows an intermittent so-
lution just to the left ofνSN ; and Fig. 3c shows a stronger
chaotic solution further away fromνSN .

The power spectra and phase-space trajectories for a given
time interval corresponding to Fig. 3 are displayed in Fig. 4.
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Fig. 2. Return map for the saddle-node bifurcation in the vicinity of
ν = 29.56.

Figures 4a–c illustrate the power spectra in the log-linear
scale. In Fig. 4a, the power spectrum of the periodic so-
lution at ν = 29.57 consists of discrete peaks. The corre-
sponding period-2 attractor (limit cycle) is shown in Fig. 4d.
At ν = 29.56, the power spectrum (Fig. 4b) becomes broad
band and continuous, indicating the onset of chaos. Note,
however, that the peaks of Fig. 4a are still recognizable in
Fig. 4b. Figure 4e shows that, just to the left ofνSN , the orbit
spends a long time close to the periodic attractor that exists
when ν > νSN . At ν = 29.55, the discrete peaks of the
power spectrum (Fig. 4c) decrease considerably, whereas the
flucutations of the power spectrum at frequencies around the
peaks increase significantly; the trajectory now spends much
less time in the vicinity of the former period-2 attractor, as
seen in Fig. 4f. The changes noted in Figs. 4a–c imply that
as the system evolves from order to chaos, energy is trans-
ferred from the discrete peaks to other frequencies.

The maximum Lyapunov exponents for the time series of
Fig. 3 are shown in Fig. 5. Forν = 29.57 > νSN the maxi-
mum Lyapunov exponent is negative, characterizing periodic
behavior. The increasing chaoticity of trajectories shown in
Figs. 4e and 4f is revealed by a rise in the maximum Lya-
punov exponent asν decreases fromν = 29.56 toν = 29.55.



438 A. C.-L. Chian et al.: Chaos in magnetospheric radio emissions

0 200 400 600
τ

0

50

100

150

|AW|

ν=29.55 (c)

0 200 400 600
τ

0

50

100

150

|AW|

ν=29.56 (b)

200 210 220 230
τ

0

20

40

60

80

|AW|

ν=29.57 (a)

Fig. 3. Time series of|AW | as a function ofτ for the type-I Pomeau-
Manneville intermittency route to chaos for(a) ν = 29.57, (b) ν =

29.56 and(c) ν = 29.55.

5 Crisis-induced intermittency

The crisis-induced intermittency is characterized by a time
series containing “laminar” phases of weak chaotic fluctua-
tions which are randomly interrupted by strong chaotic bursts
(Grebogi et al., 1983; Chian et al., 1998). This intermittency
is due to a type of global bifurcation known as interior cri-
sis, which occurs when a weak chaotic attractor collides with
an unstable periodic orbit, leading to an abrupt expansion of
the size of the attractor to form a strong chaotic attractor. A
Poincaŕe plot of the chaotic attractor before, at and after the
crisis pointνIC (indicated in Fig. 1a) is given in Fig. 6, where
the two crosses represent the saddle points of the period-2
unstable periodic orbit responsible for the crisis. For this
figure we chose the Poincaré plane defined by|AW | = 1
in order to simplify the numerical procedure for finding the
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Fig. 4. Power spectra for(a) ν = 29.57, (b) ν = 29.56 and(c)
ν = 29.55; with the corresponding trajectories in the phase space
(|AL|, |AW |) in (d) to (f).
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Fig. 5. The maximum Lyapunov exponentλmax as a function of
τ for the type-I Pomeau-Manneville intermittency route to chaos of
Fig. 3.

saddle points. The head-on collision of the attractor with the
period-2 saddle is clearly seen in Fig. 6b.

Some examples of the time series for this crisis-induced
intermittency are shown in Fig. 7. The corresponding power
spectra and phase-space trajectories in a given time interval
are displayed in Fig. 8. Figures 8a–c show the variation of
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Fig. 6. Poincaŕe map(|AL|, |AW |) for the interior crisis.(a) Before
crisis atν = 32.50, (b) at crisis atν = νIC = 33.23, (c) after crisis
at ν = 33.24. The crosses denote the saddle points of the period-2
unstable periodic orbit.

the power spectra in log-log scale forν = 33.23 (at crisis),
ν = 33.24 (after crisis) andν = 33.25 (further away from
crisis). The slope of the power spectra at high frequencies
decreases asν increases. At crisis, the trajectory is confined
to a small region of the phase space occupied by the weak
chaotic attractor (Fig. 8d). After crisis, atν = 33.24, the
trajectory spends a long time in the region previously occu-
pied by the weak chaotic attractor, after which it “bursts” to
a wider region of phase space, before quickly going back to
the neighborhood of the weak chaotic attractor (Fig. 8e). For
ν = 33.25, strong chaotic bursts become more frequent in
the time series (Fig. 7c); the trajectory now spends much less
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Fig. 7. Time series of|AW | as a function ofτ for the crisis-induced
intermittency for(a) ν = 33.23, (b) ν = 33.24 and(c) ν = 33.25.

time in the vicinity of the weak chaotic attractor (Fig. 8f).
The maximum Lyapunov exponents for the time series

of Fig. 7 are shown in Fig. 9. The increase in the system
chaoticity as the control parameterν is moved away from
the crisis point is revealed by the maximum Lyapunov expo-
nents.

6 Discussions and conclusions

Observational evidence of nonlinear coupling between
whistler, Langmuir and Alfv́en waves has been reported by
several satellite and rocket experiments. A close correlation
of auroral whistler waves and auroral Langmuir waves was
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Fig. 8. Power spectra for(a) ν = 33.23, (b) ν = 33.24, (c)
ν = 33.25; with the corresponding trajectories in the phase space
(|AL|, |AW |) in (d) to (f).

reported by Gurnett et al. (1983) and Beghin et al. (1989).
A close correlation of auroral whistler waves and auroral
Alfv én waves was reported by Gustafsson et al. (1990). In
particular, simultaneous detection of whistler, Alfvén and
Lagnmuir waves propagating along the auroral magnetic
field lines was reported by Boehm et al. (1990), in connection
with an intense flux of field-aligned electrons. The aforemen-
tioned observations render support for nonlinear interactions
of whistler, Langmuir and Alfv́en waves in space environ-
ment. In practice, for this three-wave interactions to occur,
the waves must satisfy the phase-matching conditions. It was
shown by Chian et al. (1994) that the phase-matching con-
dition required for the resonant interactions of these three
waves can be satisfied by Langmuir waves generated by a
parametric decay of either a beam-driven Langmuir wave or
a whistler wave.

In this paper, we have shown that chaos can appear in the
nonlinear three-wave model proposed by Chian et al. (1994)
for the auroral Langmuir-Alfv́en-whistler (LAW) events. In
particular, our nonlinear dynamical theory predicts that two
types of intermittency can be observed: type-I Pomeau-
Manneville intermittency, due to a saddle-node bifurcation
and crisis-induced intermittency, due to a global bifurcation
involving the collision of a strange attractor with an unsta-
ble period orbit. Our results suggest that chaos is an intrinsic
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Fig. 9. The maximum Lyapunov exponentλmax as a function ofτ
for the crisis-induced intermittency of Fig. 7.

behavior of magnetospheric radio emissions. The temporal
time series of radio emissions from planets, the Sun and pul-
sars often exhibit quasi-periodic, intermittent or chaotic tem-
poral patterns (Zhuravlev and Popov, 90; Isliker and Benz,
1994; Chian et al., 2000). Our theory shows that as the ex-
ternal parameters, such as the growth/damping parameters,
are varied, the nonlinear dynamical behavior of radio emis-
sions can change from periodic to chaotic temporal patterns
via two different intermittency processes. According to our
theory, the observed dynamical variations of radio emissions
can be attributed to the dynamical changes in the physical pa-
rameters in the source region or along the propagation path
of radio waves. A systematic analysis of the time series of
magnetospheric radio waves based on the nonlinear dynami-
cal techniques developed in this paper, such as the calculation
of the maximum Lyapunov exponent of the observed time se-
ries, will enable the observers to identify the intermittent and
chaotic features of magnetospheric radio emissions.
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