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Abstract. Recent observations and analyses evidenced that
the magnetotail, as well as the magnetospheric dynamics are
characterised by a scale-free behaviour and intermittence.
These results, along with numerical simulations on cellu-
lar automata, suggest that the observed scale-invariance may
be due toforced and/or self-organised criticality(FSOC),
meaning that the magnetotail operates near a marginally sta-
ble state (Chang, 1999). On the other hand, it was underlined
that a complex magnetic field topology in the geotail regions
may play a relevant role in the impulsive energy relaxation
(Consolini and Chang, 2001).

1 Introduction

The conditions of solar wind and the interplanetary magnetic
field strongly affect the state of the Earth’s magnetosphere,
which responds to the external driving in a highly organised
and complex way (Klimas et al., 1996). This complex be-
haviour is due mainly to a nonlinear dynamics related to the
energy storage, transport and release in the geomagnetic tail
regions. Moreover, as a consequence of the continuous solar
wind driving, the coupled magnetosphere-ionosphere system
is believed to be in an out-of-equilibrium configuration.

In the past, significant progress in the knowledge of the
general features of the magnetospheric dynamics and re-
sponse to solar wind changes was achieved on the basis
of the magnetohydrodynamic (MHD) concepts. These ad-
vances have led to the realisation that a deeper understanding
of the magnetospheric phenomena, and, in particular, of the
highly dynamic character of the geotail dynamics might ben-
efit from new concepts and approaches based on the physics
of complex systems (Consolini and Chang, 2001, 2002). In
detail, it has been realised that topological structures and
connectivity, associated with nonlocal and global features,
play a relevant role in the magnetospheric dynamics.
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Recently, modern techniques, based on nonlinear dynam-
ics, have been applied to study the magnetospheric activity as
revealed by geomagnetic indices. These new techniques have
led to different views of the magnetospheric system. At the
beginning of the 1990s, some analyses suggested the magne-
tospheric dynamics to be characterised by low-dimensional
chaos (Baker et al., 1990; Roberts et al., 1991; Vassiliadis et
al., 1990). At the present time, autonomous attractor dynam-
ics does not seem to be relevant; the Earth’s magnetosphere
is, indeed, better described as an input-output nonlinear dy-
namical system (Klimas et al., 1996).

Looking at the magnetosphere as a nonlinear stochastic
system, Chang (Chang, 1992a, 1992b, 1999) proposed a new
point of view. He showed that a nonlinear stochastic sys-
tem, driven far from equilibrium near criticality, can exhibit
low-dimensional behaviour, and that the relevant number of
dimensions could change continuously due to the evolution
of the system itself from one critical point to another. He sug-
gested that the magnetosphere might be an open, dissipative
dynamical system near a forced and/or self-organised criti-
cal (FSOC) state showing anomalous dimensions. In such
a state the temporal output of the magnetosphere should be
intermittent and characterised by power-law power spectra,
exhibiting scale-invariant and self-similar spatial structure.
Evidences of this intermittent dynamics were found by Con-
solini et al. (1996), who investigated the scaling properties of
the auroral electrojet index. The non-Gaussian shape of the
distribution function of theAE index fluctuations (Consolini
and De Michelis, 1998) further confirmed this intermittence.
In the same period, Consolini (1997), analysing theAE-
index bursty behaviour, revealed the existence of a power-law
distribution in the energy released during substorm events.
Further experimental evidences of this scale-invariance in the
energy releases have been found in the duration of the “bursty
bulk flows” (BBF) (Angelopoulos et al., 1999) and in the au-
roral displays (Lui et al., 2000). All of these observations
of free-scale phenomena have been considered to be an in-
dication of a near-criticality dynamics, supporting the previ-
ous suggestion by Chang (Chang, 1992a, 1992b). However,
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this interpretation is still quite controversial; some authors do
not, indeed, rule out the possibility that the observed scale in-
variant features may be a simple manifestation of solar wind
properties and that the Earth’s magnetosphere responds pas-
sively to solar wind changes (Freeman et al., 2000; Takalo et
al., 2000; Price and Newman, 2001).

A possible way to reconcile the apparent controversy be-
tween the organised low-dimensional nonlinear behaviour
and the near-criticality (SOC-like) behaviour seems to be
to look at magnetic substorms in terms of noise induced
nonequilibrium and/or topological phase transitions (Chang,
2001a,; Sharma et al., 2001; Sitnov et al., 2000, 2001; Con-
solini and Chang, 2002). As a matter of fact, the theory of
topological phase transitions in out-of-equilibrium systems
provides a natural framework for the understanding of the
solar wind-magnetosphere coupling mainly because of its
input-output nature. As is well known, one of the main fea-
tures of extended out-of-equilibrium systems is their ability
to organise themselves in metastable states. The dissipation
events will then be the consequence of first and/or second or-
der phase transition among these metastable configurations.

Here, looking at the statistical features of the waiting times
among successive activity bursts inAE-index, we will inves-
tigate the possible occurrence of metastability in the magne-
tospheric dynamics. In detail, we will show how fractal time
statistics ofAE-index burst waiting statistics is in agreement
with a random walk in a complex free-energy landscape.

2 Data description and analysis

Data used in this work refer to the auroral electrojet (AE) in-
dex and come from both the National Geophysical Data Cen-
tre (NGDC, Boulder, Colorado) and the World Data Centre
I (Kyoto, Japan). In detail, we have considered a continu-
ous time series of theAE-index covering the period from 1
January 1978 to 30 June 1988. Data time resolution is 1 min
for a total amount of points of the order of 6 M-points. We
selected such a long period without any preliminary assump-
tion in order to have good statistics for our analysis. More-
over, the choice of theAE-index as an indicator of the global
magnetospheric activity has been made because of the com-
mon point of view thatAE-indices are able, in some sense,
to sample the state space of the magnetospheric system.

As previously shown (Consolini and De Michelis, 1998),
one of the main features of theAE-index is its intermittent
character, which is evidence of a punctuated dynamics of the
magnetospheric system in response to solar wind changes.
In detail, theAE-index is characterised by periods of rela-
tive stasis punctuated by crises of different sizes. The exis-
tence of two dynamical phases has also been confirmed by
the bimodal feature of theAE-index probability distribution
function (Pdf). In Fig. 1, we report the probability density
function of theAE-index as evaluated on the basis of the
data set considered here.
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Fig. 1. The probability density functionP(AE) of the auroral elec-
trojet (AE) index data set, considered in this work. Solid line refers
to a nonlinear best fit using the superposition of twoLog-normal
distribution function (see text Eq. 1). The two dotted lines show the
two components (Pq andPd ) relative to quiet and active periods,
respectively. The vertical dashed line is the threshold evaluated on
the basis of expression (2). The inset shows the product of the two
componentsPqPd .

Due to the avalanche-like and multifractal nature of the
AE-index, the Pdf can be fitted using a superposition of two
Log-normaldistributions:

P(x) =
1

√
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x
exp
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ln2(x/x0)

2σ 2

]
⇔ 0+ < x < ∞ (1)

associated with quiet (AE < 100 nT) and active (AE > 100
nT) periods, respectively. In order to discriminate between
quiet and active times, taking into account the bimodal char-
acter of theAE-index Pdf, we have introduced a threshold
valueφthr , defined in a different way with respect to our pre-
vious analysis (Consolini and De Michelis, 1998) and evalu-
ated as follows:

φthr =

∫
∞

0+ φPq(φ)Pd(φ)dφ∫
∞

0+ Pq(φ)Pd(φ)dφ
, (2)

wherePq(φ) andPd(φ) are the two components of the Pdf
associated with quiet and active periods, respectively (see
the inset in Fig. 1). The numerical value of the threshold
is φthr = 80 nT, which is well in agreement with the usual
definition of the quiet condition of theAE-index (AE < 100
nT). In Fig. 2, we show a two-day interval of theAE-index.
The horizontal dashed line refers to the threshold, which al-
lowed us to discriminate the quiet periods from the active
ones.

By means of the threshold, we have evaluated the duration
of the quiet periods as the time interval between two suc-
cessive (downward-upward) crossings of the threshold (see
Fig. 2). In the following, these time intervals will be called
“waiting times” (τ ). Successively, the probability distribu-
tion functionψ(τ) of the waiting times has been computed.
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Fig. 2. A sample of a 2-day interval ofAE-index records. The
horizontal dashed line refers to the threshold used to discriminate
quiet and active periods (grey in the figure).

Figure 3 shows the waiting times Pdfψ(τ) in a double loga-
rithmic plot. The results are robust with respect to the pecu-
liar choice of the threshold in the range 60÷ 120 nT.

From a preliminary analysis of the trend of the probability
distribution functionψ(τ), we find that it follows a power
lawψ(τ) ∝ τ−η over more than 2 orders of magnitude with
a scaling exponent equal toη = [1.42± 0.01]. If theψ(τ)
would be a simple power law, then, in the case ofη < 2,
the average waiting time〈τ 〉 would be infinite. This result of
an approximate power law in a limited range of scales may
be seen as evidence of a scale-invariance of the Pdf of at
least two orders of magnitude that we will term as “fractal
statistics” of waiting times. Moreover, scale-invariance of
the waiting times’ statistics could be an indication of a time
correlation among the bursts, i.e. of a sort of aging effect
(Sornette, 2000).

As noted by Boffetta et al. (1999), fractal waiting time
statistics seems to be in contrast with the occurrence of a
classical SOC dynamics (Bak et al., 1987). As a matter
of fact, in the case of a SOC system, we would expect a
near Poisson distribution function of the waiting times: i.e.
ψ(τ) = 〈τ 〉−1 exp(−τ/〈τ 〉). The inset of Fig. 3 shows a
comparison between the expected Poisson distribution and
the observed one. However, the presence of fractal time
statistics of the waiting times could be interpreted in terms
of more general complex dynamics associated with the ex-
istence of metastable states in an out-of-equilibrium sys-
tem (Conoslini and Chang, 2001, 2002). Recently, Chang
(Chang, 2001a, 2001b) has introduced a new point of view
where the configuration of the magnetospheric plasma and
field topology might be close to a colloidal phase. In particu-
lar, it has been proposed that the dynamics of coherent struc-
tures could be similar to that of a stirred colloidal suspension,
showing topological phase transitions in the evolution from
one critical state to another. Applying such a view to the
magnetotail plasma sheet regions, the magnetotail system it-
self might naturally evolve toward a region of the configura-
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Fig. 3. The waiting times distribution functionψ(τ). The solid line
refers to a power-law nonlinear best fit. The inset shows a compari-
son between the observed distribution and the expected Poissonian
distribution characterized by the same average waiting time.

tion space characterised by many metastable states. There-
fore, the evolution of the global system could be equivalent
to a random walk in this configuration fractal space.

3 Topological randomness and waiting time statistics

In the last years, a great interest has been focused on the rel-
evance of topological disorder in physical systems. Converse
to the traditional approach that treats disorder in terms of a
perturbation, it was realised that randomness and disorder
may introduce new and unexpected behaviours in physical
systems. One of the most relevant characteristics of disor-
dered systems is the occurrence of metastability as a conse-
quence of the intrinsic space-time randomness. For example,
quenched disorder in spin systems involves the existence of
many competing minima in the energy landscape that pre-
vents the ergodicity. In such disordered systems, the dynam-
ics may result in a wandering in a separate multi-valley en-
ergy landscape; i.e. a sequence of jumps between the many
competing minima. The ergodicity breaking and the exis-
tence of a complex topology of the energy landscape will
strongly affect the statistics of residence times, i.e. of the
waiting time τ (which can be, indeed, associated with the
time between two successive jumps from a local minimum
to another).

In this framework, let us consider a complex energy land-
scape characterised by a stretched exponential distribution of
the local minima:

f (E) ∝ exp

[
−

(
E

E0

)α]
. (3)

Assuming that the jumping mechanism among the local min-
ima may be described within the framework of classical
Kramer’s reaction rate theory (Hänggi et al., 1990), the typ-
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Fig. 4. The comparison between the observed waiting times distri-
bution functionψ(τ) and the expression of Eq. (5). The solid line
refers to a nonlinear best fit.

ical residence (waiting) time will follow the well-known Ar-
rhenius activation law:

τ ∝ τ0 exp[βE] , (4)

whereβ plays the role of the inverse of an equivalent tem-
perature. From here, the resulting distribution function of
the waiting times should be as follows:

ψ(τ) = f (E)
dE

dt
∝

1

τ
exp

[
−A lnα(τ )

]
. (5)

We may note that in the case of a Poisson statistics (α =

1) of the energy local minima, the waiting time distribution
function will beψ(τ) ∼ τ−1−µ , with µ = 1/βE0 (Klafter
et al., 1997; Sornette, 2000).

We report in Fig. 4 the nonlinear best fit of theAE-index
waiting time statistics using the expression of Eq. (5). This fit
agrees with data over 3 orders of magnitude, showing a bet-
ter confidence than the simple power-law behaviour of Fig. 3.
The observed value ofα is α = [2.0 ± 0.1]. This result sug-
gests that the magnetospheric dynamics may be treated in
terms of a random walk in a complex free energy landscape
with Gaussian statistics for the local minima. In the follow-
ing section, we will discuss this result in connection with
metastability and topological complexity of magnetic field
in the tail regions.

4 Conclusions

The study of out-of-equilibrium, heterogeneous and disor-
dered systems has improved the development of new con-
cepts and of a new branch of statistical mechanics, called
the physics of complex systems. One of the main features
of complex systems is the role that the topological disor-
der plays in such systems. As a matter of fact, it has been
noted that disorder generally introduces new and surprising
effects not expected from the simple microscopic evolution

rules. Complex systems, indeed, self-organise their inter-
nal structure and their dynamics showing novel and surpris-
ing macroscopic properties. For example, a complex sys-
tem may display metastability, non-ergodicity, and coherent
large-scale collective behaviours that are the consequence
of the repeated nonlinear interactions among its elementary
parts.

In this framework, our findings on the waiting times dis-
tribution function seem to support the hypothesis that the
Earth’s magnetotail might work as a complex system. As
a matter of fact, if we figure out the magnetic topological
complexity emerging from Chang’s model (Chang, 1999),
in terms of topological disorder, we may immediately re-
alise that the associated dynamics should be characterised by
metastability. If we consider a physical system with a given
disorder magnetic field structure, the minimum free energy
is a function of the topological complexity of the magnetic
field. In such a system, any non-ideal process that modifies
the overall topology may be associated with a sort of a dy-
namical transition between two different local minima in the
configuration space during which a certain amount of free en-
ergy is relaxed. The emerging dynamical framework is that
of a random walk in a complex free energy landscape. If the
system evolves near criticality, this random walk in the free
energy space will be characterised by a time correlation in
the jumps and non-ergodicity.

In this framework, magnetic substorms are better de-
scribed in terms of noise-induced topological transitions in
an extended out-of-equilibrium system. In other words, the
magnetic substorm is the set of phenomena during which a
reduction in topological complexity in the tail regions takes
place (see also Chang, 2001a, 2001b, Consolini and Chang,
2001, 2002). The role of the solar-wind driver would be to
enhance the internal noise (i.e. the internal fluctuations) that
could induce a topological transition among metastable com-
plex topologies. In such a case, the evolution of the magneto-
spheric system (and in detail of the magnetotail regions) will
be the result of the combined effects of local couplings of the
magnetic and plasma structures, and of the noise intensity
through the nonlinearities of the system. This point of view
also supports the recent results of Sitnov et al. (2001) that the
substorm activity resembles the nonequilibrium (first and/or
second order) phase transitions.

At the moment, we believe that this framework is of a more
general character than the classical SOC phenomena (Bak
et al., 1987) and may involve space-time coupling among the
transition events, as revealed by our analysis on the waiting
time statistics. Clearly, much more work will be necessary to
better address this new picture of magnetospheric substorms
in terms of a noise-induced topological transition.
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