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Abstract. The method of recurrence plots is extended to the
cross recurrence plots (CRP) which, among others, enables
the study of synchronization or time differences in two time
series. This is emphasized in a distorted main diagonal in
the cross recurrence plot, the line of synchronization (LOS).
A non-parametrical fit of this LOS can be used to rescale
the time axis of the two data series (whereby one of them is
compressed or stretched) so that they are synchronized. An
application of this method to geophysical sediment core data
illustrates its suitability for real data. The rock magnetic data
of two different sediment cores from the Makarov Basin can
be adjusted to each other by using this method, so that they
are comparable.

1 Introduction

The adjustment of data sets with various time scales occurs
on many occasions, e.g. data preparation of tree rings or geo-
physical profiles. In geology, often a large set of geophysical
data series is taken at various locations (e.g. sediment cores).
That is why these data series have a different length and time
scale. Before any time series analysis can be started, the data
series have to be synchronized to the same time scale. Usu-
ally, this is done visually by comparing and correlating each
maximum and minimum in both data sets by hand (wiggle
matching), which includes the human factor of subjective-
ness and is a lengthy process. An automatic and objective
method for verification should be very welcome.

In the last decades some techniques for this kind of corre-
lation and adjustment were suggested. They span graphical
methods (Prell et al., 1986), inverse algorithms, e.g. using
Fourier series (Martinson et al., 1982) and algorithms based
on similarity of data, e.g. sequence slotting (Thompson and
Clark, 1989).

However, we focus on a method based on nonlinear time
series analysis. During our investigations of the method of
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cross recurrence plots (CRP), we have found an interesting
feature. Besides the possibility of application of the recur-
rence quantification analysis (RQA) of Webber and Zbilut
on CRPs (1994), there is a more fundamental relation be-
tween the structures in the CRP and the considered systems.
This feature can be used for synchronization of data sets. Al-
though the first steps of this method are similar to the se-
quence slotting method, their roots are different.

First we give an introduction to CRPs. Then we explain
the relationship between the structures in the CRP and the
systems and illustrate this with a simple model. Finally, we
apply the CRP to geophysical data in order to synchronize
various profiles and to show their practical availability. Since
we focus on the synchronization feature of the CRP, we will
not give a comparison between the different alignment meth-
ods.

2 The Recurrence Plot

Recurrence plots (RP) were firstly introduced by Eckmann
et al. (1987) in order to visualize time dependent behaviour
of orbits xi in phase space. An RP represents the recur-
rence of the phase space trajectory to a state. The recurrence
of states is a fundamental property of deterministic dynami-
cal systems (Argyris et al., 1994; Casdagli, 1997; Kantz and
Schreiber, 1997). The main step in the visualization is the
calculation of theN ×N -matrix

Ri, j = 2
(
ε − ‖xi − xj‖

)
, i, j = 1 . . . N, (1)

whereε is a predefined cutoff distance,‖ · ‖ is the norm (e.g.
the Euclidean norm) and2(x) is the Heaviside function. The
valuesoneandzero in this matrix can be simply visualized
by the colours black and white. Depending on the kind of
application,ε can be a fixed value or it can be changed for
eachi in such a way that in the ball with the radiusε a pre-
defined amount of neighbours occurs. The latter will provide
a constant density of recurrence points in each column of the
RP.

The recurrence plot exhibits characteristic patterns for typ-
ical dynamical behaviour (Eckmann et al., 1987; Webber Jr.
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and Zbilut, 1994): A collection of single recurrence points,
homogeneously and irregularly distributed over the whole
plot, reveals a mainly stochastic process. Longer parallel
diagonals, formed by recurrence points and with the same
distance between the diagonals, are caused by periodic pro-
cesses. A paling of the RP away from the main diagonal
to the corners reveals a drift in the amplitude of the sys-
tem. Vertical and horizontal white bands in the RP result
from states which occur rarely or represent extremes. Ex-
tended horizontal and vertical black lines or areas occur if a
state does not change for some time, e.g. laminar states. All
these structures were formed by using the property of recur-
rence of states. It should be pointed out that the states are
only the “same” and recur in the sense of the vicinity, which
is determined by the distanceε. RPs and their quantitative
analysis (RQA) became better known in the last decade (e.g.
Casdagli, 1997). Their applications to a wide field of mis-
cellaneous research show their suitability in the analysis of
short and non-stationary data.

3 The Cross Recurrence Plot

Analogous to Zbilut et al. (1998), we have expanded the
method of recurrence plots (RP) to the method ofcross re-
currence plots. In contrast to the conventional RP, two time
series are simultaneously embedded in the same phase space.
The test for closeness of each point of the first trajectoryxi
(i = 1 . . . N) with each point of the second trajectoryyj
(j = 1 . . .M) results in aN ×M array

CRi, j = 2
(
ε − ‖xi − yj‖

)
. (2)

The visualization of this is called thecross recurrence plot.
The definition of the closeness between both trajectories can
be varied as described above. Varyingε may be useful to
handle systems with different amplitudes.

The CRP compares the considered systems and allows us
to benchmark the similarity of states. In this paper, we fo-
cus on the bowed “main diagonal” in the CRP, because it is
related to the frequencies and phases of the systems consid-
ered.

4 The line of synchronization in the CRP

Regarding the conventional RP, Eq. (1), one always finds a
main diagonal in the plot because the(i, i)-states are identi-
cal. The RP can be considered as a special case of the CRP,
Eq. (2), which usually does not have a main diagonal as the
(i, i)-states are not identical.

In data analysis one is often faced with time series that
are measured on varying time scales. These could be sets
from borehole or core data in geophysics or tree rings in
dendrochronology. Sediment cores might have undergone
a number of coring disturbances such as compression or
stretching. Moreover, cores from different sites with differ-
ing sedimentation rates would have different temporal reso-
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Fig. 1. Cross recurrence plots of sine functionsf (t) = sin(ϕt) and
g(t) = sin(ϕt+a sin(ψt)), wherea = 0 for the black CRP,a = 0.5
for the green CRP anda = 1 for the red CRP. The variation in the
time domain leads to a deforming of the synchronization line.

lutions. All these factors require a method of synchroniza-
tion.

A CRP of two corresponding time series will not contain
a main diagonal. But, if the sets of data are similar, e.g. only
rescaled, a more or less continuous line in the CRP that is like
a distorted main diagonal can occur. This line contains infor-
mation on the rescaling. We give an illustrative example. A
CRP of a sine function with itself (i.e. this is the RP) contains
a main diagonal (black CRP in Fig. 1). Hence, the CRPs in
the Fig. 1 are computed with embeddings of dimension one;
further diagonal lines from the upper left to the lower right
occur. These lines typify the similarity of the phase space
trajectories in positive and negative time direction.

Now we rescale the time axis of the second sine function
in the following way

sin(ϕt) −→ sin
(
ϕt + a sin(ψt)

)
(3)

We will henceforth use the notion rescaling only in the
mention of the rescaling of the time scale. The rescaling of
the second sine function, with different parametersϕ, results
in a deformation of the main diagonal (green and red CRP
in Fig. 1). The distorted line contains the information on the
rescaling which we will need in order to re-synchronize the
two time series. Therefore, we call this distorted diagonal the
line of synchronization (LOS).

In the following, we present a toy function to explain the
procedure. If we consider a one dimensional case without
embedding, the CRP is computed with

CR(t1, t2) = 2
(
ε − ‖f (t1)− g(t2)‖

)
. (4)
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Fig. 2. Cross recurrence plots of two sine functionsf (t) = sin(ϕt)
andg(t) = sin(ψt2)) which is the basis of the determination of
the rescaling function between both data series. The embedding pa-
rameters were dimensionm = 2, delayτ = π/2 and a varying
thresholdε, in such a way that the CRP contains a constant recur-
rence density of 20%.

If we set ε = 0 to simplify the condition, Eq. (4) gives a
recurrence point if

f (t1) = g(t2). (5)

In general, this is an implicit condition that links the variable
t1 to t2. Considering physical examples of above, it can be
assumed that the time series are essentially the same – this
means thatf = g – up to a rescaling function of time. So we
can state that

f (t1) = f
(
φ(t1)

)
. (6)

If the functionsf (·) andg(·) are not identical, our method
is, in general, not capable of deciding if the difference in
the time series is due to different dynamics (f (·) 6= g(·)) or
if it is due to simple rescaling. So the assumption that the
dynamics are alike up to a rescaling in time is essential, even
though, for some cases wheref 6= g, it can be applied in the
same way. If we consider the functionsf (·) = a · f̄ (·) + b

andg(·) = ḡ(·), wheref (·) 6= g(·) are the observations and
f̄ (·) = ḡ(·) are the states, normalization with respect to the
mean and the standard deviation allows us to use our method.

f (·) = a · f̄ (·)+ b −→ f̃ (·) =
f (·)− 〈f (·)〉

σ (f (·))
(7)

g̃(·) =
g(·)− 〈g(·)〉

σ (g(·))
(8)
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Fig. 3. The rescaling function (black) determined from the CRP
in Fig. 2. This has the expected parabolic shape of the squared
coherence in the time domain. In red the square function.

With ḡ(·) = f̄ (·) the functionsf̃ (·) andg̃(·) are the same af-
ter the normalization. Then our method can be applied with-
out any further modification.

In some special cases Eq. (6) can be resolved with respect
to t1. Such a case is a system of two sine functions with
different frequencies

f (t) = sin(ϕ · t + α) (9)

g(t) = sin(ψ · t + β) (10)

Using Eq. (5) and Eq. (6) we find

sin(ϕ t1 + α)− sin(ψ t2 + β) = 0 (11)

and one explicit solution of this equation is

⇒ t2 = φ(t1) =

(
ϕ

ψ
t1 + γ

)
(12)

with γ = (α − β)/ψ . In this special case the slope of the
main line in a cross recurrence plot represents the frequency
ratio and the distance between the axes origin and the inter-
section of the line of synchronization with the ordinate gives
the phase difference. The functiont2 = φ(t1) (Eq. 6) is a
transfer or rescaling function which allows us to rescale the
second system to the first system. If the rescaling function is
not linear the LOS will also be curved.

For the application, one has to determine the LOS – usu-
ally non-parametrically – and then rescale one of the time se-
ries. In the Appendix we describe a simple algorithm for es-
timating the LOS. Its determination will be better for higher
embeddings because the vertical and cross-diagonal struc-
tures will vanish. Note that the embedding of the time series
involves difficulties. The Takens Embedding Theorem holds
for closed, deterministic systems without noise only. If noise
is present, one needs its realization to find a reasonable em-
bedding. For stochastic time series it does not make sense
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Fig. 4. Reference data series (upper panel) and rescaled data series
before (red) and after (black) using the rescaling function of Fig. 3
(lower panel).

to consider a phase space and so embedding is, in general,
not justified here either (Romano, to be published; Takens,
1981).

The choice of a special embedding lag could be correct
for one section of the data but incorrect for another (for an
example see below). This can be the case if the data is non-
stationary. Furthermore, the choice of method for computing
the CRP and the thresholdε will influence the quality of the
estimated LOS.

The next sections will be dedicated to application.

5 Application to a simple example

First, we consider two sine functions,f (t) = sin(ϕt) and
g(t) = sin(ψt2), where the time scale of the second sine
differs from the first by a quadratic term and the frequency
ψ = 0.01ϕ. Sediment parameters are related to such kind
of functions because gravity pressure increases nonlinearly
with the depth. It can be assumed that both data series come
from the same process and were subjected to different de-
posital compressions (e.g. a squared or exponential increas-
ing of the compression). Their CRP contains a bowed LOS
(Fig. 2). We have used the embedding parameters dimension
m = 2, delayτ = π/2 and a varying thresholdε, so that the
CRP contains a constant recurrence density of 20%. Assum-
ing that the time scale ofg is not the correct scale, we denote
that scale byt ′′. In order to determine the non-parametrical
LOS, we have implemented the algorithm described in the
Appendix. Although this algorithm is still not mature, we ob-
tained reliable results (Fig. 3). The resulting rescaling func-
tion has the expected squared shapet = φ(t ′′) = 0.01t ′′2

(red curve in Fig. 3). Substituting the time scalet ′′ in the
second data seriesg(t ′′) by this rescaling functiont = φ(t ′′),
we get a set of synchronized dataf (t) andg(t) with the non-
parametric rescaling functiont = φ(t ′′) (Fig. 4). The syn-
chronized data series are approximately the same. The cause
of some differences is the meandering of the LOS which it-
self is caused by partial weak embedding. Nevertheless, this
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Fig. 5. ARM data of the boreholes PS 2178–3 GPC and PS 2180–
2 GPC in the Central Arctic Ocean before adjustment.

can be avoided by using a more complex algorithm for esti-
mating the LOS.

6 Application to real data

In order to continue the illustration of the working of our
method we have applied it to real data from geology.

In the following, we compare the method of cross recur-
rence plot matching with the conventional method of visual
wiggle matching (interactive adjustment). Geophysical data
of two sediment cores from the Makarov Basin, central Arc-
tic Ocean, PS 2178-3 and PS 2180–2, were analysed. The
task should be to adjust the data of the PS 2178–3 data (data
lengthN = 436) to the scale of the PS 2180–2 (data length
N = 251) in order to get a depth-depth-function which al-
lows us to synchronize both data sets (Fig. 5).

We have constructed the phase space with six normalized
parameters, low field magnetic susceptibility (κLF ), anhys-
teretic remanent magnetization (ARM), ratio of anhysteretic
susceptibility toκLF (κARM/κLF ), relative palaeointensity
(PJA), median destructive field ofARM (MDFARM ) and
inclination (INC). A comprehensive discussion of the data
is given in Nowaczyk et al. (2001). The embedding was
combined with the time-delayed method according to Tak-
ens (1981) in order to increase further the dimension of the
phase space with the following rule: If we haven parameters
ai , the embedding with dimensionm and delayτ will result
in a (m · n)-dimensional phase space:

x(t) =
(
a1(t), . . . , an(t),

a1(t + τ), . . . , an(t + τ),

a1(t + 2τ), . . . , an(t + 2τ), . . .

a1(t + (m− 1)τ ), . . . , an(t + (m− 1)τ
)

(13)

For our investigation we have used a dimensionm = 3
and a delayτ = 1, which finally led to a phase space of
dimension 18 (3× 6). The recurrence criterion wasε = 5%
nearest neighbours.

The resulting CRP shows a clear LOS and some cluster-
ing of black patches (Fig. 6). The latter occurs due to the
plateaux in the data. The next step is to fit a non-parametric
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Fig. 6. Cross recurrence plot based on six normalized sed-
iment parameters and an additional embedding dimension of
m = 3(τ = 1, ε = 0.05).

function (the depth-depth-curve) to the LOS in the CRP (red
curve in Fig. 6). With this function we are able to adjust the
data of the PS 2178–3 core to the scale of PS 2180–2 (Fig. 8).

The determination of the depth-depth-function with the
conventional method of visual wiggle matching is based on
interactive and parallel searching for the same structures in
the different parameters of both data sets. If the adjustment
does not work in a section of the one parameter, one can use
another parameter for this section which allows the multi-
variate adjustment of the data sets. The recognition of the
same structures in the data sets requires a degree of experi-
ence. However, human eyes are usually better in the visual
assessment of complex structures than a computational algo-
rithm.

Our depth-depth-curve differs slightly from the curve
which was gained by the visual wiggle matching (Fig. 7).
However, despite our (still) weak algorithm used to fit the
non-parametric adjustment function to the LOS, we obtained
a good result of adjusted data series. If they are well adjusted,
the correlation coefficient between the parameters of the ad-
justed data and the reference data should not vary so much.
The correlation coefficients between the reference and ad-
justed data series is about 0.70 – 0.80, where the correlation
coefficients of the interactive rescaled data varies from 0.71
– 0.87 (Table 1). Theχ2 measure of the correlation coef-
ficients emphasizes more variation for the wiggle matching
than for the CRP rescaling.

7 Discussion

Cross recurrence plots (CRP) reveal similarities in the states
of the two systems. A similar trajectory evolution gives a
diagonal structure in the CRP. An additional time dilatation
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Fig. 7. Depth-depth-curves. In black, the curve gained with the
CRP; in red the manually matching result. The green curve shows
the deviation between both results.

or compression of one of these similar trajectories causes
a distortion of this diagonal structure (Fig. 1). This effect
is used to look into the synchronization between both sys-
tems. Synchronized systems have diagonal structures along
and in the direction of the main diagonal in the CRP. Inter-
ruptions of these structures with gaps are possible because
of variations in the amplitudes of both systems. However,
a loss of synchronization is viewable by the distortion of
this structures along the main diagonal (LOS). Fitting a non-
parametric function to the LOS allows us to re-synchronize
or adjust both systems on the same time scale. Although
this method is based on principles from deterministic dynam-
ics, no assumptions about the underlying systems have to be
made in order for the method to work.

The first example shows the obvious relationship between
the LOS and the time domains of the considered time series.
The increasing frequency squared of the second harmonic
function causes a parabolic LOS shape in the CRP (Fig. 2).
Finally, with this LOS we are able to rescale the second func-
tion to the scale of the first harmonic function (Fig. 4). Some
differences in the amplitude of the result are caused by the
algorithm used in order to extract the LOS from the CRP.
However, our concern is to focus on the distorted main diag-
onal and its relationship with the time domains.

The second example deals with real geological data and al-
lows a comparison with the result of the conventional method
of visual wiggle matching. The visual comparison of the ad-
justed data shows a good concordance with the reference and
the wiggle matched data (Fig. 8 and 9). The depth-depth-
function differs up to 20 centimeters from the depth-depth-
function of the wiggle matching. The correlation coefficients
between the CRP adjusted data and the reference data varies
less than the correlation coefficients of the wiggle matching.
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Table 1. Correlation coefficients%1, 2 between adjusted data and
reference data and theirχ2 deviation. The correlation of the inter-
active adjusted data varies more than the automatic adjusted data.
The data length isN = 170 (wiggle matching) andN = 250 (CRP
matching). The difference between both correlation coefficients%1
and%2 is significant at a 99% significance level when the test mea-
sureẑ is greater thanz0.01 = 2.576

Parameter %1, wiggle matching %2, CRP matching ẑ

ARM 0.8667 0.7846 6.032
MDFARM 0.8566 0.7902 4.791
κLF 0.7335 0.7826 2.661
κARM/κLF 0.8141 0.8049 0.614
PJA 0.7142 0.6995 0.675
INC 0.7627 0.7966 1.990

χ2 141.4 49.1

However, the correlation coefficients for the CRP adjusted
data are smaller than these for the wiggle matched data. Al-
though their correlation is better, it seems that the interactive
method does not produce a balanced adjusting whereas the
automatic matching looks for a better balanced adjusting.

These two examples exhibit the ability to work with
smooth and non-smooth data whereby the result will be bet-
ter for smooth data. Small fluctuations in the non-smooth
data can be handled by the LOS searching algorithm. There-
fore, smoothing strategies, like smoothing or parametrical fit
of the LOS, are not necessary. The latter would damp one
advantage of this method, that the LOS is yielded as a non-
parametrical function. A future task will be the optimization
of the LOS searching algorithm in order to get a clear LOS
even if the data are non-smooth. Further, the influence of
dynamical noise to the result will be studied. Probably, this
problem may be bypassed by a suitable LOS searching algo-
rithm too.

Our method has conspicuous similarities with the method
of sequence slotting described by Thompson and Clark
(1989). The first step in their method is the calculation of
a distance matrix, similar to our Eq. (2), which allows the
use of multivariate data sets. Thompson and Clark (1989)
referred to the distance measure as dissimilarity; this is used
to determine the alignment function in such a way that the
sum of the dissimilarities along a path in the distance ma-
trix is minimized. This approach is based on dynamic pro-
gramming methods which were mainly developed for speech
pattern recognition in the 70’s (e.g. Sakoe and Chiba, 1978).
In contrast, RPs were developed to visualize the phase space
behaviour of dynamical systems. Therefore, a threshold was
introduced to make recurrent states visible. Involvement of
a fixed amount of nearest neighbours in phase space and the
possibility to increase the embedding dimensions distinguish
this approach from the sequence slotting method.
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Fig. 8. ARM data after adjustment by wiggle matching (top) and by
automatic adjustment using the LOS from Fig. 6. The bottom figure
shows the reference data.

8 Conclusion

The cross recurrence plot (CRP) can contain information
about the synchronization of data series. This is revealed
by the distorted main diagonal which is calledline of syn-
chronization (LOS). After isolating this LOS from the CRP
one obtains a non-parametric rescaling function. With this
function one can synchronize the time series. The underly-
ing more-dimensional phase space allows us to include more
than one parameter in this synchronization method as it usu-
ally appears in geological applications, e.g. core synchro-
nization. The comparison of CRP adjusted geophysical core
data with conventional visual matching shows an acceptable
reliability level of the new method which can be further im-
proved by a better method for estimating the LOS. The ad-
vantage is the automatic, objective and multivariate adjust-
ment. Finally, this method of CRPs can open a wide range of
applications as scale adjustment, phase synchronization and
pattern recognition, for instance in geology, molecular biol-
ogy and ecology.

Appendix: An algorithm to fit the LOS

In order to implement a recognition of the LOS we have used
the following simple two-step algorithm. Denote all recur-
rence points byriα̃,jβ̃ (α̃, β̃ = 1,2, . . .) and the recurrence
points lying on the LOS byriα,jβ (α, β = 1, 2, . . .). Be-
fore the common algorithm starts, find the recurrence point
ri1,j1 next to the axes origin. In the first step, the next re-
currence pointriα̃,jβ̃ , after a previous determined recurrence
pointriα,jβ , is to be determined. This is carried out by a step-
wise increasing of a squared(w × w) sub-matrix where the
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Fig. 9. The adjusted marine sediment parameters. The construction
of the CRP was done with the normalized parameters. In these plots
we show the parameters, which are not normalized.

previous recurrence point is at the(1, 1)-location. The size
w of this sub-matrix increases step-wise until it meets a new
recurrence point or the margin of the CRP. When the next
recurrence pointriα̃,jβ̃ = riα+δi,jβ+δj (δi = w or δj = w) in
thex-direction (y-direction) is found, the second step looks
to see if there are following recurrence points iny-direction
(x-direction). If this is true (e.g. there are a cluster of recur-
rence points) increase further the sub-matrix iny-direction
(x-direction) until a predefined size(w + dx̃) × (w + dỹ)

(dx̃ < dx, dỹ < dy) or until no new recurrence points
are met. This further increasing of the sub-matrix is done
for the bothx- and y-direction. Usingdx̃, dỹ we com-
pute the next recurrence pointriα+1,jβ+1 by determination of
the center of mass of the cluster of recurrence points with
iα+1 = iα + (dx̃ + δi)/2 andjβ+1 = jβ + (dỹ + δj)/2.
The latter avoids the fact that the algorithm is driven around
widespread areas of recurrence points. Instead of this, the
algorithm locates the LOS within these areas. (However, the
introducing two additional parametersdx anddy is a disad-
vantage which should be avoided in further improvements of
this algorithm.) The next step is to set the recurrence point
riα+1,jβ+1 to a new start point and to begin with the step one
in order to find the next recurrence point. These steps are

repeated until the end of the RP is reached.
We know that this algorithm is merely one of many possi-

bilities. The following criteria should be met in order to ob-
tain a good LOS. The number of targeted recurrence points
by the LOSN1 should converge to a maximum and the num-
ber of gaps in the LOSN0 should converge to a minimum.
An analysis with various estimated LOS confirms this re-
quirement. The correlation between two LOS-synchronized
data series arises withN1 and with 1/N0 (the correlation co-
efficient correlates most strongly with the ratioN1/N0).

The algorithm for computation of the CRP and recog-
nition of the LOS are available as Matlab programmes on
http://www.agnld.uni-potsdam.de/~marwan.
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