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Abstract. The thermal conductivity of mantle materials has tentially important role played by radiative thermal conduc-
two components, the lattice compondmnt, from phonons tivity in controlling chaotic flows in time-dependent mantle
and the radiative componehyt,; due to photons. These two convection, the mantle heat transfer, the number of hotspots
contributions of variable thermal conductivity have a nonlin- and the attendant mixing of geochemical anomalies.

ear dependence in the temperature, thus endowing the tem-
perature equation in mantle convection with a strongly non-
linear character. The temperature derivatives of these twgq
mechanisms have different signs, with),; /0T negative and

dkraq/dT positive. This offers the possibility for the radia- Both the transport properties of momentum and heat in the
tive conductivity to control the chaotic boundary layer insta- garth’s mantle are dependent on both the temperature and
bilities developed in the deep mantle. We have parameterizeqepth. On the one side, in the past thirty years, since the ad-
the weight factor betweeky.. andk;,, with a dimension-  yent of plate tectonics much attention has been paid to the
less parametef, where f = 1 corresponds to the reference temperature-dependence of mantle viscosity because of the
conductivity model. We have carried out two-dimensional, feedback on the thermal evolution of the mantle (Tozer, 1965,
time-dependent calculations for variable thermal conductiv-1972), and the influence of the strong lithosphere on the style
ity but constant viscosity in an aspect-ratio 6 box for sur- of planetary convection (Richter et al., 1983; Ogawa et al.,
face Rayleigh numbers betweer®lind 5x 10°. The aver-  1991: Solomatov and Moresi, 2000; Monnereau anéru
aged Rclet(Pe) numbers of these flows lie between 200 and 2001) and the development of fast narrow plumes (Yuen et
2000. Along the boundary if separating the chaotic and g|. 1976; Christensen, 1984; Olson et al., 1988; Larsen and
steady-state solutions, th&e) number decreases and the yyen, 1997: Thompson and Tackley, 1998). On the other
Nusselt number increases with internal heating, illustratingside, not much attention has been devoted to thermal con-
the feedback between internal heating and radiative thefmadluctivity.

conductivity. For purely basal heating situation, the time- |t is well known from solid-state physics that heat is trans-
dependent chaotic flows become stabilized for valuesof  ported by conduction in crystalline solids by means of both
between 15 and 2. The bottom thermal boundary layer thick- phonon and photon propagation (e.g. Ziman, 1962). Re-
ens and the surface heat flow increases with larger amounigently a semi-empirical theory for mantle thermal conductiv-
of radiative conductivity. For magnitudes of internal heating ity based on absorption and reflection spectroscopy has been
characteristic of a chondritic mantle, much larger values ofygrked out by Hofmeister (1999, 2001). This conductivity
f, exceeding 10, are required to quench the bottom boundmodel x(T, z), which depends on the temperaty®) and

ary layer instabilities. By isolating the individual conductive gepth(z), has contributions from both the phonon and pho-
mechanisms, we have ascertained that the lattice conductivgp, transport mechanisms and has a nonlinear dependence
ity is partly responsible for inducing boundary layer insta- jn the temperature. The temperature equation contains now
bilities, while the radiative conductivity and purely depth- three nonlinear terms (e.g. Dubuffet et al., 1999), thus replac-
dependent conductivity exert a stabilizing influence and helping the simple Laplacian terms for linear heat diffusion as in
to control thermal chaos developed in the deep mantle. Thesge case for constant thermal conductivity. The dynamical
results have been verified to exist also in three-dimensionakffects of these conductivity nonlinearities in mantle convec-
geometry and would argue for the need to consider the potjon are manifold, such as a more focussed plume (Dubuf-
fet and Yuen, 2000) and a hotter interior (Dubuffet et al.,
Correspondence td=. Dubuffet (fabien@msi.umn.edu) 1999). Because of these nonlinearities, the temperature equa-
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tion changes from a simple advection-diffusion equation to(Eq. 2) which can account for the type of chemical bonding
a more complicated nonlinear advection-diffusion equationin mantle minerals (Hofmeister, 1999). These expressions,
with a mixed parabolic and hyperbolic character, similar to based on experimental phonon lifetimes and reflectance data,
the Kardar-Parisi-Zhang equation for growing interface (Kar- take the form:
dar etal., 1986) and used in geomorphology (Pelletier, 1999). 3
An outstanding characteristic .C(.)nqerning .th'e temperaturekmd (T) = Z b T 1)
dependence of thermal conductivity is the distinct difference =
between the temperature-dependence of the lattice conduc-
tivity k;4, (T, z) and that of the radiative conductiviky, (T) where the radiative portion has contributions fréhand 7'
from the photons. The temperature-dependenée,ofT, z) as well asT3, because of the use of the overtone modes
behaves similarly to the viscosity in thak;,;/dT is nega- (Hofmeister, 1999).
tive, while from local radiative equilibrium (e.g. Siegel and a
Howell, 1972) it is well known thatk,,;(T)/dT is positive. kiat (T, 2) = ko (@)
Such a sign difference in the temperature derivatives of the T
two components of the conductivity would mean that the two 1 r
mechanisms would work against each other in matters con- exp<<—4y + _) /2
cerning the boundary layer stability in mantle convection.
From a simple physical argument, one would expgegt

K’z

a(@)d@) <1+pg K/ ) (2

98

b bilizi . ) . di We note thatk;,, (T, z) has two nonlinear dependences
to be ;:a ! |Z|rr1]g,h3|ncelgr:j|ncrease Ihn tlemplelr?atulre_ V\éou "Mwith T, one exponential and the other power-law. The names
creasek,qq, Which would decrease the local Rayleigh num- g parameter values associated with thermal conductivity

ber and also broaden the wavelength of the thermal disturére provided in Table 1.

bance, thus suppressing small-scale boundary layer instabili- As discussed abové;,, behaves like mantle viscosity in

.t'etsr; Tfh|s.tstabll|ﬂn% phenom(:.non h?S ?Iigadybbe&ntobskerv?%at it decreases with a hotter temperature and increases with
inthe finite amplitude convection calculations by Matyska € greater pressure. Howeveéf,, acts in the opposite fashion,

al. (1.9.94) n which Onl.yc”?d(T.) was employe_d for the CON" it increases with higher temperature. Because of the rapid
ductivity. Since the distribution of the relative proportions rise in the temperature within the boundary layes, would
betweenk;q; andkyqa is still a s_ubject of debate_ (Shank- i rease a lot locally, whild;,; would decrease much lo-
ﬁnfd et.al., 19270%)1and alsoll?f. actlve_ studyh(HofrInelsiter, égt? 9;cally. In order to study the influence of an enhanced radiative
ofmeister, ). we will investigate the role played by contribution to the total thermal conductivity, we have sim-

krl“d N s_tabllhzmg tlmet-deperllldent %an:/ectlon. Wet\rlw\”” erln- ply multiplied the radiative thermal conductivity by a weight
ploy a simple parameter, callefl which measures the rel- factor f. This weight factorf will be regarded in this sta-

ative importance getv;/]eek}ad at?? k’“f’ and therllllvaryhthls | bility study as a control variable. Thus the expression of the
parameter to study the possibility for controlling thermal y, o5 conductivity used in this study is:
chaotic motions in mantle convection by increasing the value

of this.p'arameter. This type'of approach is very mu.ch akintog(T, 7) = £ x kyaa(T) + kias (T, 2) (3)
the spirit of controlling spatial-temporal chaos, which today
is one of the central problems in nonlinear dynamics (e.g. Ott We will vary f in Eg. 3 and study its influence on the
etal., 1994; Kim et al., 2001). stability of the global convective dynamics. Let us emphasize
In Sect. 2 we will describe the thermal conductivity model, here thatf is not to be regarded as having any strict physical
the scheme of parameterizing the relative importande gf interpretation in terms of solid-state physics but rather as a
to k;,¢, and the numerical model for thermal convection with control variable for quantifying the character of the flow. Van
variable thermal conductivity. In Sect. 3 we will focus pri- den Berg et al. (2002) have used this type of weight factoring
marily on the 2-D results in which the time-dependence inin f to study the effects of varying on the thermal evolution
mantle convection is shown to be controllable by the grow-of the mantle.
ing influence of radiative thermal conductivity. We will also ~ We have studied this problem of the influence of radia-
corroborate with 3-D calculations. In the final section we dis- tive conductivity with a simple constant viscosity convection
cuss the results and the geophysical implications of this newnodel in the Boussinesq limit but with variable thermal con-
physical mechanism for stabilizing boundary layer instabili- ductivity. The equations of convection for an infinite Prandtl
ties and influencing global geodynamics. number fluid are solved in a 2-D Cartesian geometry. The co-
ordinates are andz, with z the vertical axis pointing down-
wards. With a variable thermal conductivity, the dimension-
2 Description of the thermal conductivity and numeri- less temperature equation takes the following form:
cal model
DT )
— =« (T, 2)V°T
First, we describe the thermal mantle conductivity model, D?
which comes from Hofmesister (1999, 2001). It has both the +8—K(T, 2 (VT + 3_"(T7 Z)ﬂ LR )
kiat (T, z) andk,,q(T). There is a parametet™in k;,; (T, z) oT 0z 0z
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Table 1. Values of the conductivity parameters (from Hofmeister, 1999)

Parameter Definition Value unit
bo Constant associated with radiation ~ .783x 1002~ w.m~ 1K1
b1 “ —1.0365x 1004 wW.m 1k—2
by “ 2.2451x 107  w.m1k-3
b3 “ —3407x 1011 wm1lk—4
a Power-law index ®
K0 Surface thermal diffusivity ®1x 106 m2.s1
y Griineisen parameter A
K Bulk modulus 265 GPa
K’ Pressure derivative of the bulk modulus 5

Table 2. Values of the parameters used in the thermal convection model

Parameter Definition Value unit

h Mantle thickness B8 x 10° m
AT Temperature difference across the mantle 2702 K

o Thermal expansivity % 107° K1

H Chondritic abundance of heating x610~12 W.Kg—1

ko Surface thermal conductivity 3 WK 1m-1

g Gravity as1 m.s2

where D/Dt is the substantive derivative andT,z) = Temperature H T

k(T,z)/ (,oC,,Ko) is the dimensionless thermal diffusivity.
We refer the reader to Table 2 for the definitions and param-
eter values. The dimensionless internal heating paranketer
is given by:

a) X

Stream function [N

Hdz 0 - 9.298 -55.905 77.4877 210.88

= 5
koAT ®) N 0.

ko is given in Table 2. A typical value for radioactive internal
heatingR is around 12 based on the chondritic abundance” Conductivity D
from meteorites (Leitch and Yuen 1989). We will study the e
effects of varyingf in stabilizing flows for different amounts '
of R, varying fromR = O (purely base-heated configuration)
to the chondritic value. The particular temperature at the base
of the mantle plays an important role in the radiative heat
transfer. We note that the temperature of 3000 K assumed

at the core-mantle boundary is on the low side (Zerr et al.Fig- 1. Temperature fielda), stream function(b), and thermal
1998). conduct|V|ty field (c), for a model with a Rayleigh number of

Ra = 10°, a dimensionless internal heating rate®f= 0, and
We note that the three terms on the right hand side ofy yeight factorf = 1.0. 1025x 512 grid points are used in a box

the temperature equation are non-linear because of the varjgith an aspect ratio 6.

able thermal conductivity, instead of the linear diffusion term

in the constant conductivity case. An alternating-direction-

implicit (ADI) scheme (e.g. Morton and Mayers, 1994) and finite-difference scheme in the vertical directionfor each hor-
the finite difference method are used to solve the temperaizontal wave number.

ture (Eq. 4). This implicit scheme is of second order of ac- 9T

curacy in space and time. The constant viscosity momentunv4¢ = —Ra, — (6)

(Eq. 6), which is unaffected by the introduction of variable 9%

conductivity, is solved in the spectral domain, using a Fastg is the stream function, the other parameters are defined in
Fourier Transform along the horizontal and a second-ordeiTable 2, whereRra, is the surface Rayleigh number.
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30 plume, appears at this Rayleigh number. Such kind of plume
25 4 MWWW/\AWWWWW branching is present in convective flows with constant ther-
20 4 mal conductivity at higher Rayleigh numbég greater than
Nu 15 | 10° (Vincent and Yuen, 2000). This type of behaviour has
00 002 004 006 008 already been observed in convection modeling with a non-
Time Newtonian viscosity for effective Rayleigh numbers of the

a)

same order of magnitude (Malevsky et al., 1992). The en-
hancement of plume branching at lower Rayleigh number
comes from the non-linearities introduced by the variable
viscosity in the momentum equation (Malevsky et al., 1992)
and here by the variable thermal conductivity in the energy
equation. Three cells (Fig. 1b) are present in this model.
Even though the flow is unsteady due to boundary layer in-
o5 o 1 stabilities, a large scale flow exists (Hansen and Ebel, 1988).
<T>(z) <k>(z) . . .
b) c) The conductivity field (Fig. 1¢) shows a strong decrease of
the conductivity in the top thermal boundary layer due to
Fig. 2. Evolution with time of the surface Nusselt numb@),  the strong increase of the temperature, leading to a decrease
horizontally averaged temperature profif(z)) (b), and the hori-  of the lattice thermal conductivityk;,;). The conductivity
zontally averaged conductivity profilég, ) (dashed-dotted line),  g|ightly increases with depth due to the hydrostatic pressure
{kia:) (dashed line) andk) (solid line) (c), for a model with @ affacts ink,, (T, 7). The conductivity is greater than the am-
Rayleigh number oRa = 10°, a dimensionless internal heating bient value in downwellings and smaller in the plumes lo-
rate of R = 0, and a weight factoy = 1.0. For simplicity, the
surface Nusselt number is defined¥s = (3T/0z) qa_ted_ near the bottom boundary layer. Th(_e smaller con(_juc—
. The brackets denote horizontal average. tivity inside the plumes traps the heat inside. After being
trapped, the hot anomaly is released close to the surface, thus
creating a hot and thin layer beneath the top boundary layer

The thermal and free-slip boundary conditions are im- (Fig. 1a). A low conductivity layer is associated with this hot
posed at the top and bottom boundaries, where the tempefayer under the surface. The conductivity field clearly shows
atures are specified, and the horizontal boundaries are impefbat the variations of the thermal conductivity are essentially
meable. We note that the particular value of the temperaturélue to the variations df,,. In a previous study (Dubuffet et
assumed at the bottom boundary or the core-mantle boundar-» 1999), we have shown that fgr = 1, k,4q is smaller
(CMB) will exert a definite dynamical influence, because of thanki, in an horizontally averaged sense. In Fig. 2 we
the intrinsic temperature-dependent nonlinearity in the therShow the evolution of the surface Nusselt number with time
mal conductivity. In order to resolve correctly the tempera- (Fig. 2a), the horizontally averaged temperature praflig
ture and thermal conductivity gradients in the boundary lay-and the horizontally averaged conductiviy) with the ra-
ers, more grid points are necessary in the numerical experdiative componentk, ;) (dashed-dotted line) and the lattice
iments involving variable thermal conductivity than in the componentk;,,) (dashed line). The Nusselt number is de-
constant conductivity cases (Dubuffet et al., 1999). We havdined here to b&d7/dz), the horizontally averaged value of

ratio 6 for all models presented in this study. nonlinear two-point boundary value problem for the back-

ground temperature in the presence of variable thermal con-

ductivity. We note that thék,. ;) mimicks the(T') profile and
3 Results increases at the bottom, while both tfkg,;) and(k) develop

a low conductivity zones at the base of the top boundary layer
The values of the parametes«™in the lattice conductivity, and at the bottom. In spite of the pressure-dependence of
the bulk modulusk, and the derivative of the bulk modulus conductivity the value ofk) in the lower mantle is smaller
K’, in k4, are all functions of the composition of mantle than the surface value because of the strong decrease of the
rocks. We have chosen values (see Table 1) suitable for ththermal conductivity with depth frorky,, (7).
lower mantle (Hofmeister, 1999). In Figs. 1 to 8, we present Now we have increased the valyegradually from 1 to
the temperature, stream function conductivity fields, the hor-1.2 and so on in an incremental manner. In Fig. 3, we dis-
izontally averaged temperature and thermal conductivity proplay the results for the same values of parameters as in Fig. 1
files for different values of the parametgy different dimen-  (Ra = 10f and R = 0) but now, we have multiplied the
sionless heating ratR but for the same Rayleigh number of radiative componentk,,,) by a factorf = 1.5. The flow
10°. Figure 1 displays the results for the cage= 1 and  shows a more quiescent behaviour (Fig. 3a). Thermal bound-
R = 0. The temperature field (Fig. 1a) shows clearly an un-ary layer instabilities are found only in the bottom boundary
steady flow with thermal boundary layers instabilities in the layer. As in the previous case (Fig. 1), we note the pres-
top and bottom boundary layers. Plume brancling: 4.6), ence of a hot thermal layer under the top cold boundary layer
resulting from the growth of secondary instabilities in the (Dubuffet et al., 2000b). Increasing the parametdrom 1

0 0
01 017
02 02
03 03 |
0.4 0ad !
z os4Nu =22.32 Z 05§ !
0.6 06
0.7 073
083 083
097 099 |

1

T T T
0 0.25 0.75 1 0 0.25
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Temperature

Conductivity
0.345725 0.481189 0.616653 0.88758 1.02304

0.752116

)

Fig. 3. Temperature fielda), stream functionb), and thermal
conductivity field (c), for a model with a Rayleigh number of
Ra = 10°, a dimensionless internal heating rateff= 0, and
a weight factorf = 1.5.

30
25 4

20 4
Nu 15 |
10

0.04 0.06

Time

0.08

a)

0.1 014
0.2 029
034 034
0.4 044
iNu =23.41 Z o059
0.6 4 0.6 4
0.7 4 0.7 4
0.8 0.8
0.9 0.9

T T
0 0.25 75 1 0

TOYS 0.
b) <) o)

Fig. 4. Evolution with time of the surface Nusselt numbg),
horizontally temperature profiléT’)(z) (b), and the horizontally
averaged conductivity profileg;,4) (dashed-dotted line)k; ;)
(dashed line) andk) (solid line) (c), for a model with a Rayleigh
number of Ra = 10°, a dimensionless internal heating rate of
R =0, and a weight factof = 1.5.

(Fig. 1b) to 15 (Fig. 3b) leads to a slight increase the num-
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Temperature
0

[ e

0 0.2 0.4 0.6 _ 0.8

T T Ts
) ‘

Y

a) X
Stream function
-144.381

-79.0727 -13.7648

51.5432

116.851

b)
Conductivity

0.302682 0.442145 0.581609 0.721073 0.860536

Fig. 5. Temperature fielda), stream functior{b), and the conduc-
tivity field (c), for a model with a Rayleigh number &z = 105,
a dimensionless internal heating ratefof= 5, and a weight factor

f=1

whereas the value was around 2V.K—t.m~! in the case

f 1 (Fig.1c). Although these changes in the conduc-
tivity are small, they do exert a great deal of influence on
the boundary layer stability. In the center of the plumes, in
the lower part of the box (see= 0.6), the conductivity is
slightly higher (around 2\ ~1.m~1) than the conductivity

in the plume near the center (aroun®W.K-1.m=1). At

this depth { = 0.6), the surrounding flow, has a conductivity
of around 2WK~1.m~1. At a shallower depth, the conduc-
tivity becomes more uniform inside the plume and is higher
than the surrounding (see = 0.2). In the lower mantle,
there exists a high conductivity layer due to the increase in
kraqa(T). The value off = 1.5 appears to be a critical value
above which the flow is steady. The resolutionfpffor this

Ra is 0.5, i.e. solutions aff = 2.0 appear quite similar to

f = 1.5. Further increase ifi to f = 3.0 would bring about

a steady state. From now on, we will designate the critical
value of f for this transition to bef.. In Fig. 4 we plot the
associated Nusselt number evolutiéh), (k,.q), (kiq:) and
(k). The Nusselt number and, ;) both increase witty.

As is well known, internal heating causes a greater time-
dependence in mantle convection (McKenzie et al., 1974).
Therefore, we have put in a moderate amount of internal-
heatingR = 5, around half the chondritic value in order

bers of cells. The convective flow is now composed of 4to determine the critical value of required for stabilizing

cells, with 2 cells that have the same siz& flocated be-
tweenx = 0 andx = 3) . Thus the number of upwellings is

flows with only a small amount of radioactive heating. We
show in the next four figures (Fig. 5 to Fig. 8) the results of

changed by an enhanced radiative conductivity. We note thathe numerical modeling, for two cases with = 5 and a

the size of the cells is more similar than in the cgse- 1

Rayleigh number oRa = 10°. The parametey is set to

(Fig. 1b). The conductivity (Fig. 3c) decreases in the top 1 in Fig.5. The flow produces a chaotic behaviour (Fig. 5a)
boundary layer. This conductivity is smaller than the sur- more so than withR = 0 and f = 1. There are more up-
rounding one, in the downwelling flows. But now the value wellings and downwelling than in the pure-basal heating case
of the conductivity in the center of downwellings located in (R = 0) (Fig.1a). Both internal heating and variable ther-

the center of the box;(= 0.5) is around 2.2\WWK~1.m~1,

mal conductivity drive a greater asymmetry between the top
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Temperature
01

N 0.5
NuU 15 4
10 ; ;
0 0.02 904 X
Time a)
a) Stream function
0 0 -232.186 -139.479 -46.7716 45.9353 138.642 231.349
014 014 -
0.2 024
034 034
044 044
z osiNu = 21.83 Z o
0.6 4 0.6 4 b)
e e Conductivity
08 08 0630686 1.07974 15288 197785 2.4269 287596
094 094
1 T T T 1
0 0.25 0.5 0.75
<1>(2)
b) <)
Fig.6. Evolution with time of the surface Nusselt numhg), R

horizontally averaged temperatuE)(z) (b), and the horizontally
averaged conductivity profileg;,4) (dashed-dotted line)k; ;)
(dashed line) andk) (solid line) (c), for a model with a Rayleigh

Fig. 7. Temperature fielda), stream functior(b), and conductiv-
ity field (c), for a model with a Rayleigh number & = 106, a

number of Ra = 106, a dimensionless internal heating rate of dimensionless internal heating rate Bf= 5, and a Welght factor
R =5, and a weight factof = 1. f=8.

and bottom boundary layers. The downwelling currents are
stronger than the upwelling plumes. The flow with internal
heating consists of 12 cells (Fig. 5b), much more numerous
than the purely basal-heating case (Fig. 1b). The conductiv-
ity field (Fig. 5¢c) shows the same behaviour than in the case ,
with R = 0 and f = 1. This results in a strong decrease

of the conductivity in the upper boundary layer, a smaller
conductivity than the surrounding in the plumes, a higher
conductivity in the downwellings, a low conductivity layer z
under the top thermal boundary layer and an increase in the
conductivity with depth outside the boundary layers. These
changes represent then the characteristic properties of the
variable thermal conductivity withf = 1. But with internal
heating, the value of the conductivity is smaller in the down- ®
wellings (around BW.K~1.m~1) than in the case without
heating(R = 0). The conductivity is now slightly higher
at the base of the plumes (at= 0.8) than in the down-
wellings. These new effects are caused by the higher interiog

30

25 4
20 1
U 15 4

10

0

0.02

0.04
Time

0.06 0.08

014

024

0.6

094

0sINU = 23.68

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

T
0.25

<T>(2)

T
0.75

1<k>(z)2

Fig.8. Evolution with time of the surface Nusselt numbg),

horizontally averaged temperature profi#)(z) (b), and the hori-
zontally averaged conductivity profiles, ;) (dashed-dotted line),
kiq:) (dashed line) andk) (solid line) (c), for a model with a

temperature induced by the internal heating. The increasgeaweigh number oRa = 10P, a dimensionless internal heating

of the interior temperature leads to a decrease in the latticgate ofR = 5, and a weight factof = 8.

component of the conductivit§k;,;), and an increase in the
radiative componern,.4). Figure 6 displays the associated
Nusselt number evolutionT), (ki ), (krqq) and({k) profiles.

wellings. The number of convective cells is 6. By increasing

Internal heating decreases the trough in the conductivity nea,q weight factorf to 8, we observe a decrease in the number

the CMB.
In order to determine the critical value ¢f above which

of cells. The conductivity field (Fig. 7c) shows much larger
variations of the conductivity, between 2¥/1.m~1 and

we can stabilize the flow with an dimensionless internal heat-9 W.K~1.m~1, than in the case witlf = 1 where the con-
ing rate ofR = 5, we have carried out numerical simulations ductivity varies between 1W~t.m~tand 32W.K-1.m=1.

at incremental steps of up to 12. In Fig. 7, we show the
results for a value off = 8 andR = 5. The tempera-

In the model withR = 5 andf = 8 (Fig. 7c), the conductiv-
ity increases in both thermal boundary layers whereas in the

ture field (Fig. 7a) and the stream function (Fig. 7b) revealmodel withR = 5 andf = 1 (Fig. 5c), the conductivity de-
a much more stable flow with fewer upwellings than in the creases in the upper thermal boundary layer and it becomes
case withf = 1 (Fig. 5). It consists of 3 plumes and 4 down- nearly constant in the bottom boundary layer. This results in
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Temperature | NN |
0 0 0.2 0.4 0.6 0.8
T # T j_

a) X
Stream function
0 528413 336252 -144.091  48.0694 240.23 432.391

a)

b)

0.298727 3.10552 5.9123 8.71909 11.5259 14.3327

c)

Fig. 10. Temperature fielda), stream functionb), and thermal
conductivity field(c), for the model with the expression for thermal
conductivityk(z) = kj,;(z) (Eq.7),Ra = 10° andR = 0.

d

Fig. 9. Maps showing the ratio between the radiative thermal con a high radiative conductivity and a small lattice conductiv-
ductivity k..., and the lattice componet,, . (a) and(b) show this ity resulting from the high temperature in the plumes. The

ratio for the model withk — 5 andf — 1 (Fig. 5),(c) and(d) for 1Ot Patch (Dubuffet et al., 2000b) beneath the surface dis-
the model withR = 5 andf = 8 (Fig. 7). We show this ratio in the played previously in Fig. 5a, corresponding to a low conduc-

small boxes located at the bottom fifth of the box in the panels (a)tivity layer, shows a distinctly higher radiative conductivity
and (c) in panels (b) and (d), respectively. than the lattice conductivity. This is caused by a rather high

temperature at this shallow depth. For the model \&ith 5
and f = 8, the ratiok, .4/ k;.; Shows greater variations than
the model withR = 5 and f = 1. This ratio ranges from
0.3 to 143 for the model withf = 8, whereas it ranges from

. Lo 0.03 to 15 for th del withf = 1. The latti ductiv-
leading to a general degree of stabilization of the global flow. ° or the model with/ © lathice conguctv

o R ity is smaller than the radiative conductivity only in the upper
These variations of the thermal conductivity in the boundaryty y onty PP

layers are caused by the variations of the radiative componerﬁart of the top boundary layer. The radiative conductivity is
. : reater than the lattice conductivity elsewhere. The greatest
kr4a(T). We have found that = 8 is around the characteris- y g

i I t ab hich the flow b i_stead anlues of the ratio lie in the hot patch beneath the top bound-
Ic value of above which fhe Tlow becomes quasi-steady. eary layer, where the radiative conductivity is more than 10
can thus claim foR = 5 that the critical valug, is around 8.

Figure 8 shows the associated Nusselt number evolution tht8imes greater than the lattice conductivity. The stabilization
. . 7 of the flow results from an enhancement in the radiative con-
(T, (kiat), {(krqq) and the(k) profiles. Because of the high W resu ! afv

Mo ductivity of the boundary layers. For this value pt= 8, the
Interior temperature(kmfi ) now becomes much !arger t'han radiative conductivity is everywhere greater than the lattice
Kiat)- T_hus theck) p_“’f"?‘ re_semblgs th?f” proflle._ This conductivity, in particular within the bottom boundary layer.
change in thek) profile with increasingf is responsible for In order to demonstrate the stabilizing effects on the flow
the stabilization of the plumes. .
from a purely depth-dependent conductivity, we have con-

We will now demonstrate that an increase in the local ra-gucted one experiment with a thermal conductivity in which
diative thermal conductivityk,,,(T)) versus the lattice con- \ye have removed both the radiative component and the
ductivity k4, (T, z) would lead to a stabilization of the global  temperature-dependence of the lattice conductivity. Other
flow, as shown previously in Fig. 8. This phenomenon is il- types of depth-dependent thermal conductivities, based on
lustrated in F|g 9, which shows a 2-D map ShOWing the ratiOa seismic equation of State, have been proposed by Ander-
Of kyaq/ kiar for the model withk = 5andf =1 (Fig.9aand  son (1987) and were used in numerical modelling (Yuen and
b), and for the more radiatively pacified model with= 5 zhang, 1989; Leitch et al., 1991; Tackley, 1996a). The

and f = 8 (Fig.9c and d). The model witk = 5 and  pyrely depth-dependent thermal conductivity has the follow-
f = 1 has a radiative conductivity smaller than the lattice jng expression:

conductivity in the thermal boundary layers, in the down-
wellings and in the plumes at the bottom. The ratig;/ k1., /
is smaller in the downwellings than in the plumes because of2(2) = ko {1+ pg K @)

a decrease of the local Rayleigh number in the boundary lay
ers associated with the model haviRg= 5 andf = 8, thus
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Fig. 11. Evolution with time of the surface Nusselt numb@y), 9 %
horizontally temperature profiléT’)(z) (b), and the horizontally _ ) )
averaged Conductivity prof”ea{rad) (dashed_dotted |ine)cklat) Flg 12. Temperature flel(ﬂa), stream funCtIOI'(b), and the thermal

(dashed line) andk) (solid line)(c), for the model with the expres- conduct?v?ty field(c), for the model with the expression for thermal
sion for thermal conductivity(z) = ki (z) (EQ. 7),Ra = 1P and  conductivityk(z) = ki (2) (EQ. 7),Ra = 10° andR = 5.
R=0.

30

25 1

The thermal conductivity increases only with depth. We 20 WWW\N\'\/WW’V\J\MM\W\WW\/WWV

note that the non-linear term wittV 7')2 is now no longer NU 15 ]

present in the right hand side of the temperature Eq. (4). Fig- 10 : ‘ ‘

ure 10 shows the results for a convective model with the ex- ° 002 Time 008 008
pression of the conductivity given by Eq. (Ra = 10° and 3 , ,

R = 0. The flow (Fig. 10a) is more stable than in the case

with the expression of the reference variable conductivity N N

(Hofmeister, 1999) withf = 1 (Fig.1). The flow consists

of 3 large cells plus a smaller one. Some instabilities are 2 °*3Nu=19.38 ‘o

present in the thermal boundary layers. The stabilization of

the flow results from the large increase in depth of the con- .. oo ]

ductivity (Fig. 10c). We show that the increase in the conduc- e S EEaEAARaas ARSI
tivity with depth does exert a stabilizing effect on the global <T>(z) o <k>(2)

flow. Figure 11 show the associated evolution of the surface

Nusselt numbexT) and(k) profiles. We see that withoutthe Fig. 13. Evolution with time of the surface Nusselt numk@y,
decreasing influence @&f,, (T') the conductivity increases by horizontally averaged temperatu(g)(z) (b), and the horizontally
a factor of 3 across the mantle, as in the conductivity modelaveraged conductivity profile&,,,) (dashed-dotted line)k;,;)
based on seismic velocities by Anderson (1987). (dashed line) andk) (solid line)(c), for the model with the expres-

The influence of internal heating on the purely depth- Sion for thermal conductivity (2) = ki (2) (EQ. 7), Ra = 10° and
dependent thermal conductivity is shown in Fig. 12, where® =5
the temperature and stream function fields in addition to
the thermal conductivity field are displayed. The time- y, o jependence form the lattice conductivity. We have used
dependenceT is stronger_ with internal heating, as ewdencefLJ our convective model, the following expressionfgy, (2):
by the growing complexity of the plume structures, and the
cell sizes have increased. The larger aspect-ratio flow cause;{s . K’z
a reduction in the surface Nusselt number to41(%ig. 13b). lar (2) = ko (1 trg K > 8)
Other panels of Fig. 13 include the time-history of the sur-__ = o
face Nusselt number, the horizontally averaged temperaturd NS 1S the same as Eq. (7) used in Figs. 12 and 13. The ex-
(T), which has increased because of the internal heating, anB€Ssion of the thermal conductivity becomes now:
the conductivity(k) profile. _

The lattice conductivity(k;,;) is both temperature- and ka(T22) = f X krad(T) + Ktar 2) ©
depth-dependent. We have studied the effects on the flow, We note thabk3/dT is positive now. Figure 14 shows the
of the depth-dependence and the temperature-dependencerasults for a model with the expression of the thermal con-
the lattice conductivity. First, we have removed the tempera-ductivity given by Eq.(9),f = 1, Ra = 1¢° andR = 5.
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Fig. 14. Temperature fielda), stream functior{b), and the thermal
conductivity field(c), for the model with the expression fg(T, z)
given by Eq.8 and Eq. % = 1, Ra = 10° andR = 5.
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Fig. 15. Evolution with time of the surface Nusselt numb@),
horizontally averaged temperature profi#)(z) (b), and the hori-
zontally averaged conductivity profilés,,,) (dashed-dotted line),
(k14¢) (dashed line) andk) (solid line) (c), for the model with the
expression fok3(7T, z) given by Eq.8 and Eq. 9 = 1, Ra = 108
andR = 5.

The flow withk3(T, z) is now much stable than in the model
with the same values of the parametefs=£ 1, Ra = 10°
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Fig. 16. Domain diagram delineating the chaoti)(and the quasi-
steady Q) regimes. The weight factof is the ordinate and the
dimensionless internal heating ratas the abscissa. The critic#}
values are marked by points, with the upper set represeRting

5 x 108, and the lower seRa = 10°. Values of £, are determined
up to £ +0.5 for 10 and f, + 2 for Ra = 5x 10°. We note that the
solutions more tharf, + 2 are locked on to a steady-state solution
with hardly any signs of time-dependence.

This results from a sharp increase in the lattice conductivity
with depth. This combination of both radiative and depth-
dependent thermal conductivity results in the greatest stabi-
lization of all flows examined up to now, since the destabi-
lizing influence of the lattice conductivity has now been re-
moved. In Fig.15 we show the associated evolution of the
surface Nusselt number, the horizontally averaged tempera-
ture and the profiles for thé,.4), (ki) and (k). With a
higher temperature at the CMB, like 4000 ¥,.4) can ap-
proach values close to 1, the surface value of the conductiv-
ity.

We have carried out a series of time-dependent calcula-
tion using a high resolution of 1026 257 points for locat-
ing the locus of points separating the chaoti¢ (egime and
the quasi-steadyd) regime. Each run has been integrated
for 30 000 timesteps to insure that we have gone beyond the
transient regime. Several runs are needed for each point dis-
played in Fig. 16, where we have constructed a domain dia-
gram delineating the values ¢f for different values of inter-
nal heating fromR = 0 to R = 10. Thus this undertaking is

and R = 5) and the inclusion of the temperature-dependentquite computationally intensive. Values fif are determined
lattice conductivity (Fig.5). Some small instabilities persist up to 2 units inf for the higherRa. Hence a non-trivial

in the thermal boundary layers (Fig.14a). The flow con- amount of computational resources is required for construct-
sists of 4 cells (Fig. 14b). The conductivity field (Fig. 14c) ing Fig. 16. Larger values of. are needed to stabilize the
shows larger variations of the conductivity than in the caseflow with an increasing amount of internal heating (larggr

with the temperature-dependencecpf (Fig. 5¢). The man-

and increasing convective vigor (larget). Number of up-

tle conductivity is always greater than the surface conductiv-wellings increases with botRa and R for the solutions dis-
ity. This results in the stabilization of the global flow, much played in Fig. 16. Anincrease ifileads to fewer upwellings.

more so than the case wikh(z) in Fig. 12. The lateral vari-

Let us remark here that flows with values pfin excess of

ations of the conductivity are quite not visible at the bottom. f, 4+ 2 are rendered to be steady states. The trendffor
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Fig. 17. Volumetrically averaged value of the local Peclet number
({Pe)), and the horizontally averaged surface Nusselt numiej,(

as a function of the dimensionless internal heatiRy for models
with Ra = 10° (a), andRa = 5 x 10° (b). All values displayed in
this figure are given by the models displayed in Fig. 16, which gives
the values off, for each case. These values have been average:
over the last 200 time steps. The loc&det number is calculated
at each grid point by the square root of the velocity components.

displays an asymptotic character with increasihdt tends
toward around 14 foRa = 10° and 20 forRa = 5 x 10P.
The values off, increase somewhat with a largea, but the
relative gain inf, is smaller than the increase Ru.

We show in Fig. 17 that these stabilizing phenomena are
operating in a regime very far from a weakly convective
regime. In this figure we plot as a function &f for the
points shown in Fig. 16 the corresponding volumetrically av-
eraged value of the localéelet number{,Pe), and the hor-

izontally averaged surface Nusselt number,. These val- Fig.18. Lo — norm of th(_e horizontal gradient of the temperature
(top surface) on the entire plane located under the top surface at

ues, with(Pe), between 200 ‘de 2000, and: gre_ater than a depth ofz = 0.05, and the temperature field (bottom surface)
20, demonstrate overwhelmingly that the nonlinear controli, the same plane, for a 3-D model of convection with a Rayleigh
wielded by variable thermal conductivity still lingers on in number ofRa = 5 x 108, a dimensionless internal heating rate of
spite of the presence of strong convective motions. Inspecg = 0, and three different values of the weight facforl, 3 and 5.
tion of Fig. 17 shows the somewhat paradoxical trend tha257 x 257 x 257 grid points are used in a box with dimensions of
with greater radiative participation due to highgrvalues, 4x4x1.

smaller values of Pe) are produced with increasing but

also greater heat transport, as evidenced by the higher val-

ues of Nu with larger values ofR. This same phenomenon  The effects of increasing on stabilizing planforms are
was also found in the steady-state calculations (van den Berglso observed in 3-D configurations. This phenomenon is il-
et al., 2001) for a radiatively dominated thermal conductiv- lustrated in Fig. 18, where we have shown that the stabiliza-

ity model, in which the largesYu was found for a giverRa. tion of the platforms also takes place with increasing value
But these parameter values for radiative conductivity fall out-of f. Three values of ranging from 1, 3, and 5 have been
side the geophysically relevant range. considered forRa = 5 x 10 and R = 0 in an aspect-

The results shown in Figs. 16 and 17 support the previousatio 4 x 4 x 1 box. We have shown both the, — norm
findings of Dubuffet et al. (2000a) that the influence of vari- of the horizontal gradient of the temperature superimposed
able thermal conductivity is very much still present in the upon the surface temperature field. With the increas¢ of
high Rayleigh number regime, contrary to the conventionalmuch sharpevT gradients are developed along with the
conjecture that diffusion effects can only operate effectivelyformation of coherent horizontal platforms as manifested by
in the weakly nonlinear convective regime. formation of the narrow boundary-layer structure on the sur-
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face. This pattern is similar to those found in Soret-driven pendent components of the conductivity are switched off in
convection with nonlinear diffusion coefficient (Cerbino et a systematic manner, leaving finally a linear thermal conduc-
al., 2002), whose mass diffusivity derivative with respect to tivity with only depth-dependence. Therefore, the radiative
the composition has the same positive sigags,/dT. We component of thermal conductivity now joins the ranks of
suggest that the stability of the 3-D planform against chaoticother mantle properties, such as depth-dependent thermal ex-
fluctuations is caused by the nonlinear focusing due to thepansivity (Hansen et al., 1993), depth-dependent viscosity
temperature-dependence of the radiative thermal conductiviHansen et al., 1993; Zhang and Yuen 1995; Bunge et al.,
ity. 1996; Dubuffet et al., 2000c; Forte and Mitrovica, 2001), and
endothermic phase transition (Tackley, 1996b), which are all
mechanisms responsible for inducing mantle flow to a less
4 Discussion chaotic environment with fewer plumes and longer horizon-
tal wavelengths . This tendency is caused by the formation of
In this work we have employed a current model of mantle strong thermal attractors in the solution space, whose phys-
thermal conductivity which has some very interesting non-ical manifestations are the recurrent plume-plume merging
linear properties in the temperature. We have focussed herevents (Vincent and Yuen, 1988) occurring at nearly the same
on constant viscosity because variable viscosity would causelace in the bottom boundary layer. The valuefpfwill un-
other nonlinear feedback processes between the momentudoubtedly be lowered by depth-dependent thermal expansiv-
and energy equations. Contrary to traditional thinking, weity, as the thermal buoyancy is reduced locally in the bottom
have found that the influence of the nonlinear diffusive na-boundary layer. We have furthermore demonstrated that this
ture of the temperature equation extends out to the constabilization effect from radiative thermal conductivity also
vection regime with relatively high &let number or high  works in 3-D, similar to the effects played by nonlinear diffu-
Rayleigh number. These far-reaching effects of temperaturesion coefficient in colloidal convection (Cerbino et al., 2002).
dependent conductivity on mantle convection have alreadyHigher temperatures for the deep mantle than the value as-
been demonstrated by Dubuffet et al. (2000a) for Rayleighsumed here with a temperature of 3000K at the core-mantle
numbers as high as ¥ 10 in a Cartesian 3-D geome- boundary would causg. to be lower, because of the greater
try, where the sinking cold currents with higher conductiv- stabilizing influence ok, ., (T) at higher temperatures.
ity were found to be assimilated thermally much more read- \what are then the geophysical implications of this work?
ily than those with a constant conductivity. We can explain Qur results would suggest that in order to have relatively sta-
this somewhat counter-intuitive behaviour on the basis of &ionary deep mantle p|umes with variable thermal conduc-
nonlinear interaction between the boundary type flow with atjvity, the lower mantle should contain very little radioactive
huge contribution itV 7" and the variable conductivity, which  heating (Anderson, 1979) for a reference conductivity model
provides a feedback for sustaining the pervasive influence O(Hofmeister, 1999) withf = 1. For internal heating of the
nonlinear conductivity at high Rayleigh number. A similar gmount proposed by Kellogg et al. (1999) for the deep lower
kind of feedback has also been found in the nonlinear diffu-mantle, which was two times the chondritic valuedround
sion equation in two-phase flow within a geothermal context2s), there would be a very strong agitation of the mantle
(Woods, 1999). flow. However, enhanced thermal conductivity from & D
We have demonstrated that there is a sharp transition, simayer with a high temperature at the CMB, enriched by iron
ilar to a phase change, in the time-dependent behaviour witlnfiltration from the outer core (Manga and Jeanloz, 1996),
f, which delineates the relative importance between the rawould indeed help to stabilize the deep mantle plumes and
diative and the lattice components of the conductivity. Thismay influence the number of plumes in both the upper and
critical value f. is very close to the reference valfe= 1  |ower mantle (Malamud and Turcotte, 1999). Mixing of geo-
present in Hofmeister's model (Hofmeister, 1999) for purely chemical anomalies in the deep mantle would also be influ-
basally-heated configuration and does not change much witenced by the relative contribution of radiative component in
higher Rayleigh number. However, with the inclusion of the conductivity, since the intrinsic time-dependence of man-
mantle internal heating of even half of the chondritic value, tle convection and the number of hotspots are linked to the
the value of f. increases by a factor of nearly an order in particular value off,, which depends on many factors, such
magnitude, thus illustrating another feedback effect arisingas the amount of radioactive heating, the temperature at the
between internal heating, and temperature-dependent cortore-mantle boundary, the depth-dependent properties of the
ductivity (van den Berg et al., 2002). This notion of the sta- [ower mantle.
bilizing influence of radiative thermal conductivity was first

discovered by the time-dependent simul'ati.ons by MatySk%\cknowledgementSNe would like to thank A.M. Hofmeister,
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ductivity, with the exactly same formulation as used by Mac and M. Monnereau for stimulating discussions. We thank the en-
Donald (1959). We have also lent support to this idea of thelightening reviews by the two conscientious reviewers. This re-
ability of radiative conductivity to suppress time-dependentsearch has been supported by the geophysics section of the National
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