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Abstract

Trace elements concentrations were determined in shallow snow samples from 21 sites
in the Italian Eastern Alps in order to identify the sources of the contaminants present
in the tropospheric winter boundary layer. The collection of superficial snow layers
was carried out weekly at altitudes between 1000 and 3000 m next to meteorological
stations, far away from villages, roads and ski slopes. Ultra clean procedures were
adopted in order to avoid contamination of the snow during the different experimental
phases. Trace elements (Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and
Zn) were determined by Inductively Coupled Plasma Sector Field Mass Spectrometer
(ICP-SFMS). Ancillary parameters such as major ions (SOi‘, NO;, Ca®*, Mg**, K*,
Na®, CI”) were measured by lon Chromatography (IC) and were useful in identifying
the trace elements sources. The structure of the data was studied by using Principal
Component Analysis (PCA) applied on the ranked data set matrix in order to minimize
the weight of the outliers. Although concentrations were low at high altitudes in the
heart of the Alps, and higher at lower altitudes (Pre-Alps), the structure of the chemical
content deposited by wet/dry mechanisms, resulted as rather uniform over the territory
studied during the time considered. PCA shows that the chemical content of the snow
is characterised by an anthropogenic component (V, Sb, Zn, Cd, Mo, Pb, Ag, Bi, soi‘,
NO;), mainly originating from the traffic in the adjacent Alpine valleys and the nearby

heavily industrialised area of the Po Valley, a crustal component (Ca2+, Mgz+, Mn, U, Ti,
Fe, Cr, Co, Cu and Ba) mainly from the geological carbonate background (Dolomites)
of the Eastern Alps, and a marine component (Na™, CI™) from the Mediterranean Sea.
It is likely that transport and mixing of trace elements in the winter boundary layer
occurred at a local (~10 km) and regional (~100 km) scale, and was due not only to the
weak convection within the winter boundary layer but also to orographically induced
winds and turbulences arising in the Alpine valleys due to the action of the synoptic
wind.
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1 Introduction

Snow deposited on the Alps has the potential to provide valuable information on the
atmospheric concentrations of short-living species, such as aerosol particles, and to
document the effects of anthropogenic emissions on air in Europe (Schwikowski, 2003).
In fact, since snow crystals form in the clouds, they entrap aerosol particles called ice
nuclei (Fuzzi, 1994). In addition, atmospheric water drops, containing condensation
nuclei, can freeze on the surface of a snowflake (riming process) and, during their pre-
cipitation, can scavenge other particles below the clouds (aerosol scavenging) (David-
son, 1989). These mechanisms are widely known as wet deposition processes. Alter-
natively, aerosol particles are transported by wind turbulences and directly deposited
onto the snow at the soil level (dry deposition process) (Cadle, 1991). This is the rea-
son why the snow is characteristically marked by the chemical content both of the cloud
generating air masses and by the aerosol particles contained in the troposphere dur-
ing and after a precipitation event. In this context, snow concentrations reflect better
the atmospheric concentration in the case of wet deposition, whereas fluxes are bet-
ter suited to describing atmospheric concentrations in the case of predominantly dry
deposition (Alley et al., 1995).

Since the last decade the interest in the snow and ice contaminants has extended
from studies conducted in the extremely remote polar site of Antarctica (Wolff Suttie,
1994; Gabrielli et al., 2005; Gaspari et al., 2006), Greenland (Hong et al., 1996; Bar-
bante et al., 2003; Gabrielli et al., 2004) and the Arctic (Gauchard et al., 2004; Krachler
et al., 2005; Shotyk et al., 2005) to cover the high altitude zones of different mountain-
ous areas in the world such as remote sites in the Andes (Ferrari et al., 2001; Correia et
al., 2003; Hong et al., 2004) and also those next to heavily populated areas such as the
European Alps (Van de Velde et al., 1998, 1999, 2000; Barbante et al., 2001a, 2002,
2004; Veysseyre et al., 2001). Although many studies, aiming at understanding the
evolution of atmospheric contaminants in Europe during the past few centuries have
been conducted on Alpine ice archives, studies regarding the present trace elements
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content of the Alpine snow are rare (Veysseyre et al., 2001). These kind of stud-
ies are extremely valuable because some contaminants can provide not only a better
understanding of important global biogeochemical cycles but also because some are
potentially very toxic to humans and to other organisms even at low concentrations.

Polar studies provide information about the presence of natural contaminants and
pollutants in the global atmosphere (Barbante et al., 2001b; Planchon et al., 2002;
Shotyk et al., 2005) and efforts on European Alpine Glaciers have been mainly de-
voted to the reconstruction of the history of trace elements pollution over the last few
centuries (Barbante et al., 2004; Schwikowski et al., 2004). However, this study aims at
identifying these contaminants by focusing on a regional scale and offering a picture of
the recent situation in the delicate and complex environment of the Alps. This mountain
chain is a valuable observation point since it is located in the centre of Europe, one of
the most densely populated and industrialised regions in the world. In addition, Alps
are themselves very heavily influenced by man, especially by the international and re-
gional highways, industries, refuse incineration plants and also by the highest density
of winter sport infrastructures for a mountain area in the world.

Due to the typically lower mixing heights during the winter, pollutants remain en-
trapped in the rather stable Alpine boundary layer, which extends its influence up to an
altitude of 3000 m in the Eastern Alps (Kappeberger and Kerkmann, 1997) and does
not allow an easy exchange between upper and lower levels. Thus we can expect the
winter snow collected at an intermediate altitude in the Eastern Alps (up to 3000 m) to
be representative of the atmospheric chemical content of the lower Alpine troposphere
and of the adjacent regions.

We collected shallow snow samples in the Italian Eastern Alps and we determined
trace elements (Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and Zn)
and major ions (SO?~, NO3, Ca®*, Mg?*, K*, Na*, CI7) in order to study directly the
chemical composition of the snow and indirectly the structure and the sources of the
contaminants present in the low Alpine troposphere. To have more specific information
on the atmospheric path taken by the contaminants to reach the Alpine snowfield,
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particular attention was paid to the relationship between the snow chemical content
and the meteorological conditions.

2 Experimental
2.1 Sampling sites

Shallow snow samples were collected weekly from December 1997 to April 1998 in 21
sampling sites located in the North-East of Italy (see Fig. 1 and Table 1). This area has
a surface of ~15000km?. The mean sampling site density was 1.4x100 km?, which
constitutes a high level of detail for this kind of study. This mountain area is approxi-
mately 100 km from the Gulf of Venice, and has a maximum elevation of 3905 m (Mount
Ortles). It is located on the southern slope of the ltalian Eastern Alps, which is crossed
by the important highway connecting Northern Europe with the south through the Bren-
ner Pass in the Southern Tyrol. This territory is roughly divided into two main geological
domains, the eastern part (the Dolomites) is characterised by carbonates (dolomite),
whereas the western part (Mount Adamello and Mount Ortles groups) is mostly silicate
(granites and metamorphic rocks). During winter this area is normally characterized by
an anti-cyclonic pressure field, whose influence is alternated with an Atlantic meteoro-
logical regime that conveys humid air masses to the southern Alpine slopes, producing
snowfall events that often run concurrently with strong southern winds (Latini, 1987).

The 21 sampling sites were chosen mainly in rural/remote areas in order to avoid
contamination from nearby sources of emissions such as roads, villages, tourist sta-
tions, Alpine huts and artificial snow guns. However, most of the sampling sites were
close to ski areas at an average altitude of ~1800m. The lowest site was located at
1040 m (Noana valley) and the highest at 3040 m (Mount Presena).

Each sampling site was chosen by proximity to manual and/or automatic meteoro-
logical stations, which recorded local meteorological parameters such as maximum,
minimum and average temperature, average and maximum wind intensity, typology
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start/end time of snowfall/rain, depth of snow, quantity of rain and presence/absence
of superficial rime. These data were ancillary to our data set and allowed us to have
precise information, especially concerning precipitation and snow conditions. The ter-
ritorial meteorological offices provided daily data, which were significant for the entire
sampling area, such as the wind velocity/intensity, the wind flow in the free troposphere
(estimated from the on line station of Mount Pradazzo (Dolomites)), the vertical profile
of temperature (at soil level, 1000, 2000, 3000 m) and the altitude of the 0°C isotherm
(from the radiosonde vertical profile in Udine).

2.2 Sampling and materials

Snow collection was carried out by adopting the stringent contamination free proce-
dures used to sample the snow in Antarctica (Planchon et al., 2001). During the winter
of 1998, shallow snow was collected weekly at all sites, obtaining a total amount of
366 samples. Operators wore special clean-room clothing and polyethylene gloves.
Sampling was conducted by plunging low-density polyethylene (LDPE) ultra cleaned
wide mouth bottles (500 ml) directly into the snow, downwind of the technicians. The
containers were then capped, sealed in double polyethylene bags and stored frozen
until analysis (Barbante et al., 1997; Planchon et al., 2001).

LDPE sampling bottles were previously acid cleaned inside a class 100 clean bench
installed inside a class 10000 clean room. For the acid cleaning we adopted a 5-
step procedure (Barbante et al., 1997) using ultra pure water, obtained by coupling
a reverse osmosis system (Milli-RO) with a four-column ion exchange system Milli-Q
(Millipore, Bedford, MA), Merck “Suprapur” HNO; (Merk, Darmstadt, Germany) and
HNO; (70%) doubly distilled at the National Institute of Standards and Technology
(NIST, Gaithersburg, MD) were used for the acid cleaning stages. At the end of the
cleaning steps the LDPE bottles were rinsed three times and filled with ultra pure water
for storage, the water was discarded just before snow collection at the sampling site.
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2.3 Analytical methods

Samples were treated and melted in LDPE sampling bottles in a class 100 laminar
flow clean bench inside a clean laboratory (Boutron, 1990). A 5ml aliquot was trans-
ferred in a 10 ml ultra clean LDPE vial and acidified (2%) with ultra pure concentrated
HNO3(NIST) for the quantification of Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb,
Sb, Ti, U, V and Zn by Inductively Coupled Plasma Sector Field Mass Spectrometry
(ICP-SFMS) (Finnigan MAT Element, Thermo, Bremen, Germany) according to the
procedure described by Barbante and co-workers (Barbante et al., 1999). The rela-
tive standard deviation ranged from 12% to 46% depending upon the metals and the
concentration levels. Accuracy was verified by adopting the standard reference mate-
rial SLRS-3 Riverine Water from the National Research Council of Canada. Working
analytical conditions, blanks, accuracy and precision are described in detail elsewhere
(Barbante et al., 1999).

30 ml aliquots were also taken in a 100 ml ultraclean LDPE bottle for the determi-
nation of SOi', NO3, Ca®*, Mg®*, K*, Na*, CI” by lon Chromatography (IC), ac-
cording to the procedure described in detail elsewhere (Gragnani et al., 1998), using
a DIONEX AS5 column and NaOH (Baker) as eluant for anion determination and a
DIONEX CS12 column with Methane sulphonic acid (MSA) as an eluant for the de-
termination of cations. In addition a Cation Self Regenerating Suppressor (CSRS-
DIONEX) and an Anion Self Regenerating Suppressor (ASRS-DIONEX) were applied
at the end of the columns. The relative standard deviation ranged from 0.5% to 9.2%
depending upon the different species and ion concentration. Other analytical aspects
are given in detail elsewhere (Gragnani et al., 1998).
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3 Results and discussion
3.1 Main characteristics of the data set

The main statistics of the chemical data set are given in Table 2. As expected,
low average concentrations were found for trace elements, ranging from 8.6 ppt of U
(1 ppt=1pg g'1 =102 g g'1) up to 27 ppb of Fe (1 ppb=1ng g’1 =107° g g'1), whereas
higher mean values were determined for the major ions ranging between ~900 ppb of
NO; and ~100 ppb for Mg®*.

In some cases, concentrations of some major ions were found to be below the de-
tection limit. This mainly occurred for K, which was determined only in 153 of the 366
samples. Looking at the distributions, median values represent in average 47% of the
arithmetic mean; the mean skewness (positive asymmetry of the distribution) value is
7 and the mean kurtosis (indicating the distribution around a central value) is 70. The
chemical data set is therefore characterised by log normal like distributions.

In general, mean trace elements concentrations found on the Eastern Alps are higher
than those obtained by Veisseyre and co-workers (Veysseyre et al., 2001) in shallow
snow samples taken in the French western Alps (1150-3532 m) at comparable alti-
tudes. This is essentially due to the fact that in the Veyssyre’s study, only fresh snow
samples, representative of wet deposition, were considered. If we take the lowest
Eastern Alps concentration values, which were determined in fresh snow samples as
well, then concentrations found in the two studies are in good agreement. For example
Pb shows a minimum concentration of 23 ppt in a sample collected during the snow
event recorded on 3 December 1997 at Mount Presena (3020 m) whereas minimum
Pb concentration reported by Veisseyre and and co-workers was 65 ppt at 3080 m in
the Vallée Blanche (Mount Blanc, France). As previously observed (Veysseyre et al.,
2001), trace elements concentrations in Alpine fresh snow collected at medium alti-
tudes can be comparable to values determined in remote Greenland snow samples
(Barbante et al., 2003). In the Eastern Alps, for instance, a minimum U concentration
of 0.1 ppt was found on 3 December on Mount Presena whereas in Greenland, the
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minimum U concentration found in samples from a snow pit was 0.2 ppt (Barbante et
al., 2003).

In general, the Eastern Alps trace elements data set is more directly comparable with
concentrations determined in relatively recent (after 1970) summer firn and ice, such
as those drilled at Colle Gnifetti (4450 m) (Mount Rosa, Swiss-ltalian Western Alps), a
particular Alpine site where summer snow accumulation is dominant (Barbante et al.,
2004). For instance, mean Zn and Cd concentration were found to be 3176 ppt and
58 ppt on Colle Gnifetti, whereas at the lower altitudes of the Eastern Alps sampling
sites, mean winter values of ~3450 ppt and ~60 ppt were determined. This similarity is
likely due to the fact that the trace elements content of summer snow taken on the high
altitude Alpine glaciers and trace elements deposited on and within the winter snow
layers of the lower Eastern Alps snow fields, originate from areas characterized by the
same categories of emissions.

A strong vertical air mixing occurs in fact in the Alpine region especially during sum-
mer, that transports anthropogenic contaminants from cities, roads and industrialized
areas, such as the Po valley for instance, upwards to ~4000 m of altitude. In con-
trast during winter, the occurrence of a rather low altitude stable boundary layer, does
not allow contaminants to reach the highest Alpine glaciers and confines them in this
portion of troposphere. For example, winter firn/ice drilled above the winter boundary
layer, such those drilled at Dome du Gouter (4304 m, Mont Blanc, French-Italian west-
ern Alps), show much lower values (Van de Velde et al., 1998) than in summer. In
this latter case, since winter snow concentrations are minimally influenced by regional
emissions, they can represent a larger scale atmospheric trace element background.
In contrast, summer Alpine snow at whatever altitude and Alpine winter snow within
the winter boundary layer (this study) are more likely to be representative of a regional
(~10—-100 km) tropospheric background.
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3.2 Temporal variability and fluxes

Snowfalls affected the entire territory from December until the first half of January and
then again in April. In contrast, from the second half of January until the end of March,
stable weather conditions were observed with a general lack of snowfall. Thus, wet de-
position occurred mainly in the first and in the last part of the sampling period whereas
dry deposition dominated in-between. In general, for all trace elements and at all sam-
pling sites, maximum concentrations were observed in periods characterized by dry
deposition, whereas minimum concentrations coincided with wet deposition.

For instance, Ba concentrations determined in fresh and old (several weeks old)
snow samples, taken in Malga Bissina (1780 m), varied by 2—-3 orders of magnitude
from 0.05 up to 13 ppt (see Fig. 2). Fe varied in a similar way at Folgarida (1910m)
from 0.1 up to 79ppb. In general, trace elements temporal profiles were found to be
redundant and concentrations varied by about 2—3 orders of magnitude depending only
on whether snow samples were collected during or just after wet deposition events, or
after a period of dry deposition. The Ba profile reported in Fig. 2 is quite representative
of the relative temporal variation of most of the trace elements in the whole territory
considered. The only clear exception is Cd, which generally varied by less than one
order of magnitude during the sampling period as can be shown, for instance, from
snow samples collected on the Mounts of Ornella (2250 m) where Cd concentration
values varied only from 0.02 ppb up to 0.07 ppb during the field season.

The long dry deposition period during February and March, which was broken only
by two minor snow events on 23 February and on 23 March, offers the possibility of
estimating the dry fluxes of trace elements and species to the Eastern Alps. For this
investigation, concentration data from the four highest sampling sites were selected.
This minimized the influence of local contamination and ruled out the possibility of
percolation of molten snow that would have modified the original analyte concentra-
tions (Davis, 1991). Data from Mount Presena (3040 m), Ravales (2615 m), Mounts
of Ornella (2250 m) and Mount Pradazzo (2200 m) were thus selected specifically dur-
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ing two time periods when the maximum temperature was continuously below 0°C (19
January—4 February ; 24 February—11 March. The flux (F) was obtained as:

F = {(AC/At) ) x p x (1)

where (A C/At),, is the mean difference of concentration of samples collected in suc-
cessive week, p is the mean snow density (~300 kg m‘s) and h the height of the snow
layer sampled (~2cm).

Fluxes obtained for each trace element and ions are reported in Table 3. It should
be noted that the fluxes calculated over the two different periods show on average a
deviation of only ~24%, which can be considered for most of the trace elements and
ions within the range experimental error. It is also interesting to compare the fluxes
found for trace elements and major ions with the critical loads that are available for
these ecosystems in the literature (Posch et al., 2005). Critical loads of Pb and Cd for
forests and soils are 10 and 1g ha’1y'1 whereas Pb and Cd fluxes to the Eastern Alps
are estimated to be 4.2 and 0.09g ha™" y‘1, respectively. For S and N the critical loads
in alpine and sub-alpine grassland are 39 and 42kg ha™" y'1 whereas S and N fluxes
(estimated from the fallout of sulphate and nitrate only) are 0.44 and 0.63 kg ha™’ y_1.
It can be observed that trace elements and major ions fluxes are significantly below
the critical loads, with the exception of Pb, indicating that it needs to be more carefully
monitored in the future.

3.3 Spatial variability

The spatial variability of the average concentrations is illustrated in Table 4. This
is very high, reflecting the heterogeneity of the sampling sites due to their different
altitudes, geographic positions and distances from anthropogenic sources of emis-
sion. In general the lowest concentrations are found in snow collected at more than
2000 m of altitude, whereas higher concentrations are determined in snow taken at
low-medium altitudes and especially in the Pre-Alps. For instance, mean V concentra-
tions on Mount Pradazzo (2200 m) were 0.08 ppb, on Mount Vioz (2030 m) 0.09 ppb, on
8791
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Mounts Ornella (2250 m) 0.1 ppb and on Presena Summit (3040 m) 0.1 ppb whereas at
Viote (1500 m) it was 0.23 ppb, on Mount Grappa (1540 m) 0.4 ppb and in Faverghera
(1605 m) 0.5 ppb.

Our results are in contrast with other studies performed by determining heavy metal
concentrations in mosses sampled on the Alps. They observed in fact the highest
concentrations at mid altitudes (1400—-1800 m) (Gerdol, Bragazza, 2006) or reported a
remarkable increase in heavy metals concentrations with rising altitude (Zechmeister,
1995) (these two studies both occurred in late summer). The decrease of concen-
trations values concomitant to the increasing altitude observed in our study can be
explained by first considering that the higher Alpine sites are less influenced by the
anthropogenic emissions originating from the adjacent Alpine valleys (Veysseyre et al.,
2001) and secondly that snow accumulation at higher altitudes is likely to be higher
than at lower altitudes, causing a dilution effect. Very high concentrations on the Pre-
Alps can be explained by taking into account the proximity of the Pre Alpine sites to the
Po valley, the most extended industrialised area of Italy, that probably heavily contami-
nates the closest sub Alpine areas.

High concentrations are observed sometimes also at rather elevated Alpine sites but
in these few cases this observation is explained by the presence of local intense anthro-
pogenic sources, which strongly influenced the chemical composition of the snow, es-
pecially during the dry deposition periods. This is the case of the Tonale Pass (1860 m)
snow samples that were certainly influenced by the emissions from the intense traf-
fic of the adjacent (~1km) tourist station. This is also the case for the snowfield of
Ravales in the Dolomites. This station is at 2615 m of altitude and is exactly above
the very important tourist station of Cortina d’Ampezzo (1200 m). In Ravales, average
concentrations of 3.3 ppb of Zn, 3.8 ppb of Ti, 0.052 ppb of Sb and 0.30 ppb of Cu were
found. In comparison, at the heavily anthropized Tonale Pass, average concentrations
of 7.4 ppb of Zn, 9.3 ppb of Ti, 0.56 ppb of Sb and 3.13 ppb of Cu were found, whereas
at the remote site of Val Noana (1025 m) 0.6 ppb of Zn, 1.3 ppb of Ti, 0.027 ppb of Sb
and 0.17 ppb of Cu were observed.
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3.4 Sources assessment of the contaminants
3.4.1 The statistical method

To evaluate the origin of the trace elements determined in the snow of the Eastern
Alps, a principal component analysis (PCA) (Stanimirova et al., 2005) was carried out
in order to reveal linear relations existing in the chemical data set.

The large range covered by the concentrations values (~6 orders of magnitude), the
lognormal like distributions of the chemical variables and the frequent occurrence of
several outliers, highlighted the need to adopt a data set transformation before applying
the PCA. This consisted of the substitution of the chemical concentration with its rank
position (Baxter, 1995). This yielded several advantages: firstly, ranking avoids the data
set being constrained by the unity of measure that could produce a virtual variability,
secondly a PCA based on ranks can be expected to be more robust to outliers (Baxter,
1995) and thirdly this transformation accentuates the essential variability of the data
set, by ignoring the secondary variability (background noise) (Molinaroli et al., 1999).

Coherent with the ranking, is the substitution (before the rank transformation) of
missing data with the median, a robust parameter depending only on the rank position
(Thomson, 1993). PCA was adopted by applying the varimax rotation. In order to
represent at least one variable, the minimum acceptable variance (eigenvalue) of the
principal components selected for the following discussion was 1. In addition, a variable
was considered significant and representative for this statistical description when the
fraction of its explained variance (communality) obtained at least the value of 0.50.

3.4.2 Results of the PCA

PCA applied on the entire chemical data set put in evidence three principal compo-
nents, summarising the information contained in 22 chemical variables on the 23 avail-
able. K* resulted in fact as not significant when compared to the above fixed criteria.
Variance distribution of the first three principal components and the scores of the chem-
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ical variables are reported in Tables 5 and 6 respectively. It is remarkable to mention
that the application of PCA to sub groups of selected samples such as those coming
from high/low altitude sampling sites, fresh/old snow samples, remote/rural sampling
sites did not produce substantially different results from those reported below for the
PCA applied to the entire data chemical set (Gabrielli, 1998).

Trace elements (Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and Zn)
obtained high scores on the first principal component, CI~, Na*, SOi' and NO; on
the second, Mg2+ and Ca®*on the third. It should be noted that some trace elements
such as Ti, U, Mn, Fe, Ba and to a lesser extent Cu, Co and Cr obtained rather high
scores also on the third principal component governed by Mg2+ and Ca®*. On the
other hand, another group of metals, composed of V, Sb, Zn, Cd, Mo, Pb obtained sig-
nificant scores also on the second principal component governed by SOi', NO, CI7,
Na™. This is visually emphasized, by applying a cluster analysis on the principal com-
ponent score matrix (Fig. 3), adopting the Euclidean distance and the Ward method for
group aggregation (Swan Sandilands, 1995). Trace elements are into two sub-groups
composed of Ti, U, Mn, Fe, Ba, Cu, Co, Cr on one side and V, Sb, Zn, Cd, Mo, Pb, Ag
and Bi on the other. In addition, the cluster analysis disaggregates distinctly also the
second principal component in two sub-groups composed of SOi‘ and NO; on one
side and Na* and Cl~on the other.

3.4.3 Sources analysis

The crustal contribution

An explanation of the trace elements disaggregation into two distinct clusters
can be obtained by comparing the trace elements concentrations in the snow with the
average trace element concentration determined in the carbonates (Taylor McLennan,
1985), that constitute the geological background of the Dolomites. The Ca®* contri-
bution from remote crustal sources can be considered negligible since no significant
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transport of Saharan dust to the Alps occurred during the winter of 1998. This type
of transport is in fact usually not occurring in the Alps during the cold season (De
Angelis Gaudichet, 1991). Ca®* can thus be adopted as the most characteristic
crustal species over the examined territory. The prevalent regional origin of Ca?* (but
also of Mgz+) is confirmed considering that its average concentrations in the sampling
sites, mostly characterised by a granitic and metamorphic background such as Malga
Bissina (226 ppb), Presena Summit (88 ppb) and Mount Vioz (149 ppb), are mainly
lower than elsewhere (~300—600 ppb), where, in contrast, carbonates dominate.

For a given trace element, Mn for instance, the percentage of the carbonates contri-
bution to its budget can be calculated as

[(Mn),/(Ca®*),)/(Mn),/(Ca®*),)] x 100 (2)

where, (Mn), and (Ca2+)s represent the concentration in the snow sample and (Mn),
and (Ca2+), the average concentration in the carbonates (Taylor McLennan, 1985).
The carbonates average contribution resulted as high for Mn (100%), U (91%), Ti
(65%), Fe (50%), Cr (32%), V (24%), whereas for Ag, Cd, Co, Sb, Mo, Cu, Pb, Ba
and Zn it was less than 3%. Thus we can conclude that trace elements such as Ti,
U, Mn and Fe obtained rather high scores on the third principal component governed
by Ca®*and Mg2+ because they were most likely originating from the Alpine geological
background and in particular from the Dolomites. However, a concurrent secondary
crustal contribution from different geological backgrounds, such as granitic and meta-
morphic rocks, which are particularly diffuse in the western part of the examined terri-
tory (and more in general in the entire Alpine chain), is likely not only for Ti, U, Mn, Fe
but especially for Cr, Co, Cu and Ba. These latter elements showed in fact a crustal
behaviour linked to their association with Ti, U, Mn, Fe but had rather low or negligible
carbonate contributions.

An important rock and soil dust contribution for Cu, Mn, Ti, Fe, Ba, Co and U was
found in Alpine ice and snow also from Van de Velde and Veysseire and co-workers
(Van de Velde et al., 1998; Veysseyre et al., 2001). Interestingly, U on the Eastern
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Alps was not found to show an excess above the crustal contribution, in contrast with
the excesses recently reported for U determined in Mont Blanc snow and ice, which
was attributed to extensive mining activity in former Eastern Germany (GDR) during
the ’80s (Barbante et al., 2001a).

The marine contribution

The excellent linkage between Na* and CI, concurrently with the mean mass
concentration ratio CI"/Na™ of 2.5 (not far from the marine ratio of 1.8; the slight CI~
excess in our samples could be attributed to a minor anthropogenic contribution of
HCI; Puxbaum, 1991; Nickus et al., 1997; Winiwarter et al., 1998), clearly shows a
prevalent marine input for these two major ions. This is likely due to the close proximity
of the Mediterranean sea and the Adriatic sea in particular, since there is an apparent
spatial concentration gradient (also shown previously by Della Lucia and co-workers;
Della Lucia et al., 1996) amongst the more sea exposed sampling sites in the Pre-Alps
(for Na™, Mount Tomba (170 ppb), Mount Grappa (330 ppb), Faverghera (138 ppb))
and the more internal snow fields in the north western part of Trentino (for Na*, Mount
Presena (47 ppb), Mount Vioz (43 ppb), Malga Bissina (53 ppb)).

A prevalent marine origin for SOi‘ can be ruled out because the non sea salt-
sulphate average contribution is ~90%. This calculation was carried out by considering
the nss-sulphate concentration as

(SO% )nss=(S0%7)s=(CI")4(SO37),,/(CI7) 1. 3)

where CI™ is considered as the marine reference (the calculation performed with
Na™ gives essentially the same result), (SOi')s and (ClI™), are concentrations in the
snow and (SOi')m/(CI')m is the mean concentration ratio in the sea. The marine
contribution to the budget of trace elements determined in the Eastern Alps snow was
found also always negligible.
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The anthropogenic acid factor

The linkage between SOi‘ and NO; suggests an anthropogenic origin for these
two major ions and this study also demonstrates this well known anthropogenic acid
factor (SOi‘ and NO;) (Maupetit et al., 1995; Schwikowski et al., 1999; Preunkert et
al., 2001). The emissions of their original compounds (NO, and SO,) are in fact greatly
predominant when compared to their corresponding natural sources. SOi‘ and NO,
average concentrations in snow were found generally higher in the Pre-Alpine sites,
which are next to the heavily anthropized Po Valley (NO; in Faverghera (1288 ppb),
Mount Grappa (1371 ppb) and Mount Tomba (1047 ppb)), when compared to other
less exposed internal sites (NO,; on Mount Vioz (743 ppb), Prarodont (752 ppb) and
Viote (888 ppb)) in the western part of the territory examined. Similar north-south
spatial gradients were previously reported by Nickus and co-workers for SOi' (Nickus
et al., 1998) and from Balestrini and co-workers (Balestrini et al., 2000). Interestingly,
the NO;/SOi' ratio is very often higher than 1, as already previously reported in
the Eastern Alps (Nickus et al., 1997). This can be ascribed to the fact that air
masses coming from the Po Valley contain higher concentrations of NO, compared
to SO, because of the large use of methane in domestic heating, which enriches
the air in NO, (Camuffo et al., 1991). In addition, in Trentino, emissions of NO,
(15000kg y_1) mainly due to road transport are much higher than emissions of SO,
(1000 kg y‘1) that are mainly due to agriculture and industry (Provincia di Trento, 1998).

The trace element anthropogenic contribution

V, Sb, Zn, Cd, Mo, Pb, Ag and Bi cannot be linked to a regional geological
background because they have a low or negligible carbonate contribution and very low
scores on the third principal component, governed by the crustal variables. With the
exception of Ag and Bi, this group of trace metals obtains rather significant scores on
the second principal component, showing a relationship with its governing variables,
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represented by the anthropogenic acid factor (soi‘ and NO;) (Maupetit et al., 1995;
Schwikowski et al., 1999; Preunkert et al., 2001) and the marine component (Na* and
CI7).

Among these trace elements, Pb and Cd can be associated to anthropogenic emis-
sions, as concluded from other Alpine snow and ice studies (Van de Velde et al., 1998;
Barbante et al., 2004; Schwikowski et al., 2004), because their contribution from an-
thropogenic sources is greatly prevalent over natural sources (Nriagu Pacyna, 1988;
Pacyna, 2001). Just to give an example, in Italy in 1992, Pb was emitted mostly by
road transport traffic (~2000ty'1) and industrial activities (~1000ty‘1), and Cd by
refuse incineration/electric power plants (~20ty’1), industrial activities (~15ty‘1) and
road transport traffic (~15ty‘1), whereas natural emissions where negligible; Techne,
1998). In particular the intensive automobile and truck traffic in the alpine valleys was
likely responsible for the emission of Pb and Cd in the considered territory. For in-
stance in Trentino, these sources were responsible in 1995 of the emission of remark-
able quantities of Cd (~0.25ty™") and Pb (~40ty~") (Provincia di Trento, 1998). In
addition, significant contributions of Pb and Cd could have originated from the elec-
trometallurgical and electrochemical industries present in the Po Valley.

The linkage with two typically anthropogenic trace elements such as Pb and Cd to-
gether with the association with the anthropogenic acid factor (SOi‘ and NO;) and the
negligible carbonate contribution, leads us to consider as anthropogenic other trace
element determined in our snow samples and emitted by different activities (in paren-
theses) such as Mo and Sb (coal and oil combustion in power plants), Ag (waste incin-
eration plants), Zn (refuse incineration, nonferrous metal and steel production) and V
(thermal power plants and industrial, commercial and residential use of fuel).

The significant relationship evidenced by the second principal component (see Ta-
ble 6) between the anthropogenic acid factor (SOi_, NO;) (Maupetit et al., 1995), and
the anthropogenic trace element contribution (V, Sb, Zn, Cd, Mo, Pb) but also, unex-
pectedly, with the marine component (Na*, CI”) can be tentatively explained with a
common transport trajectory that was taken by the air masses from the Adriatic basin
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to the Alpine sites through the Po Valley (Seibert et al., 1998). These air masses prob-
ably had an initially prevalent marine signature and, due to their passage above the Po
Valley, they became polluted by anthropogenic contaminants such as SOi', NO;, V,
Sb, Zn, Cd, Mo, and Pb. This tentative explanation is supported by the high occurrence
of southern winds observed during the winter of 1998. In general the second principal
component might thus show a southern provenance for ionic species such as Na*, CI~,
SOi_, NO5 and the anthropogenic trace elements.

3.5 Meteorological data and transport processes

Chemical data, determined from our samples with the frequency of a week, were cou-
pled to the continuous meteorological data set, by calculating for every meteorological
data point a mean time period from the snowfall day until the sampling day. The PCA
applied to the entire chemical and meteorological data set evidenced a clear separa-
tion between chemical and meteorological parameters. This could be due to the fact
that strictly local meteorological parameters are independent from wet and dry depo-
sition phenomena characterized by a larger spatial scale. This could also mean that
the descriptive linear statistics used (PCA) and/or the frequency of sampling was not
suitable to evidence possible non-linear relationships between the meteorological and
wet/dry deposition phenomena.

However, the evidenced independence of the chemical variables from large-scale
transport parameters, such as the wind direction in the free troposphere, is also con-
sistent with the kind of transport characterized by convective turbulences that diffuse
local and regional contaminants within the boundary layer. During the winter of 1998,
particularly high temperatures were recorded at soil level and in the free troposphere
(isotherm of 0°C at 3000 m during the first half of February, for instance). This may
have produced a frequent enhancement of the upper limit of the winter boundary layer.
Eastern Alps sampling sites, located between 1000 m and 3000 m, were therefore prob-
ably within the boundary layer and were often exposed to the deposition of local and
regional contaminants.
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In any case, it seems unlikely that the weak convection originating from the low tem-
perature gradient was the unique cause of the transport of contaminated air masses
from the lower to the upper tropospheric levels. During the sampling period, the Alpine
troposphere had very often conditions of neutral stability up to 3000 m (with a gradi-
ent of 6°C/km in average). Orographic induced vertical transport, originating from the
action of the synoptic wind, was probably responsible for a more efficient vertical air
mixing. Air masses impacting frequently on the southern slope of the Alps might have
in fact transported contaminants from the Po Valley to the more exposed slopes of the
Pre-Alps. In addition, turbulences generated by the synoptic wind within the more inter-
nal Alpine valleys, might have assisted in mixing contaminants at different levels. This
interpretation is coherent with the suggestions of Seibert and co-workers that defined
as “sub-grid vertical transport” these modalities of advection not included in their model
(Seibert et al., 1998).

4 Conclusions

We found that trace element content and structure of the winter snow of the Eastern
Alps is complex because of the superimposition of several contributions from different
sources. The crustal component is represented mainly by Ca®* and Mg2+ originating
from the carbonates background of the Eastern Alps (Dolomites) and from trace ele-
ments such as Mn, U, Ti, Fe and to a lesser extent Cr, Co, Cu and Ba. The marine
component as represented by Na* and CI~, probably originated from the nearby Adri-
atic basin. The anthropogenic contribution is represented by trace metals such as V,
Sb, Zn, Cd, Mo, Pb, Ag, Bi and by the major ions SOi‘ and NO; representing the an-
thropogenic acid factor. Considering the winter structure of the low Alpine troposphere,
the anthropogenic contaminants entrapped within the boundary layer, have probably
a local and a regional origin. Our data suggests that the very industrialised Po Valley
can affect especially the more exposed Southern Pre-Alpine slopes. The influence on
the chemical snow composition of other very diffuse sources of emission (roads, tourist
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stations, villages) in the internal alpine valleys is also very likely. The mechanism of
transport of contaminants from low altitude to the snow of the Alpine fields could be
due, in addition to the weak convective turbulence inside the winter boundary layer, as
well as the vertical transport and turbulences generated by the synoptic wind.
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Table 1. Sampling sites in Trentino (TN) and in Veneto (Province of Belluno (BL), Province of
Vicenza (VI) and Province of Verona (VR)) in the Italian Eastern Alps. Further information can
be found in Internet on http://www.meteotrentino.it/AspWeb/Monitoraggi/stations/yeti/Campi_
neve/mappa/mappa-neve.asp and http://www.arpa.veneto.it/csvdi/nivo.htm\#ubicazione.

ACPD
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N° Area Locality Altitude (m)
1 Mount Vioz Tarlenta (TN) 2030
2 Brenta Prarodont (TN) 1530
3 Bondone Viote (TN) 1500
4 Lagorai Panarotta (TN) 1875
5 Ledro Tremalzo (TN) 1550
6 Lagorai Brocon Pass (TN) 1550
7 Adamello Malga Bissina (TN) 1780
8 Primiero Noana valley (TN) 1025
9 Adamello/Presanella Tonale Pass (TN) 1880
10 Presanella Folgarida (TN) 1910
11 Adamello/Presanella Mount Presena (TN) 3040
12 Latemar Pampeago (TN) 1900
13 Comelico Mount Croce Pass (BL) 1960
14 Tofane Ravales (BL) 2615
15 Dolomites Mounts of Ornella (BL) 2250
16 Dolomites Mount Pradazzo (BL) 2200
17 Agner Gosaldo (BL) 1350
18 Pre — Alps Faverghera (BL) 1605
19 Pre — Alps Mount Grappa (VI) 1540
20 Folgaria-Asiago Campomolon (VI) 1735
21 Lessini Mount Tomba (VR) 1620
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Table 2. Summary of statistics.
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N° Mean SD Median Minimum Maximum Max/Min Skewness Kurtosis
(ppb) (ppb) (ppb) (ppb) (ppb)

Ag 366 0.005 0.007 0.003 0.001 0.11 107 9.4 117.3
Ba 366 1.3 27 0.5 0.009 36.5 365 7.7 85.7
Bi 366 0.006 0.011 0.003 0.0001 0.12 116 5.9 47.5
cd 366 0.061 0.033 0.052 0.016 0.22 14 1.7 35
Co 366 0.048 0.084 0.025 0.002 0.97 487 6.1 50.9
Cr 366 0.10 0.21 0.045 0.003 3.0 995 8.5 97.9
Cu 366 0.72 1.86 0.28 0.008 29.1 2911 11.2 157.4
Fe 366 27.3 74.6 10.1 0.067 1.1x10> 10577 9.4 112.3
Mn 366 4.3 14.0 1.2 0.001 173 1731 9.1 97.3
Mo 366 0.052 0.054 0.040 0.011 0.72 66 6.4 66.5
Pb 366 1.8 2.9 0.87 0.023 33.7 337 52 447
Sb 366 0.076 0.362 0.031 0.0017 6.2 3087 14.7 233.8
Ti 366 2.6 6.7 0.9 0.008 106 1063 10.9 158.4
U 366 0.0086 0.0228 0.0025 0.0001 0.27 2654 7.8 73.6
v 366 0.22 0.37 0.13 0.003 46 460 6.2 58.3
Zn 366 3.5 6.2 1.7 0.002 63.1 631 5.4 38.4
ca®* 332 051x10° 0.84x10° 0.23x10° 4 74x10° 1862 4.3 245
CI- 365 162 0.33x10° 70 5 4.0x10° 800 6.5 58.0
K* 153 114 0.29x10° 32 1 2.7x10° 2700 5.9 43.3
Mg?* 302 102 133 63 4 1.1x10° 282 4.0 23.4
Na* 325 112 0.24x10° 37 1 2.7x10° 2729 6.1 52.6
NOé 366 0.90x10° 0.81x10° 0.64x10° 27 54x10° 198 2.1 6.2
SO,” 362 0.53x10° 1.3x10° 0.31x10° 15 22.3x10° 1488 13.9 230.3

Atmospheric trace
elements in Alpine
snow

P. Gabrielli et al.

8808

i

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/8781/2006/acpd-6-8781-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/8781/2006/acpd-6-8781-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

Table 3. Mean trace elements and major ions fluxes to the snow and the deviation of the
two mean fluxes averaged for each of the two selected periods of dry deposition (data from
19 January—4 February; 24 February—11 March on sites N° 11 Mount Presena (3040m) in
Trentino, N° 14 Ravales (2615 m), N°15 Mounts of Ornella (2250 m) and N° 16 Mount Pradazzo
(2200 m) in Veneto).

Flux Deviation Flux Deviation
g ha™ yr‘1 g ha™ yr‘1 g ha™ yr‘1 g ha™' yr‘1

Ag 0.011 0.003 Ti 9 2

Bi 0.017 0.003 Mn 9 2

U 0.02 0.01 Zn 19 2

Mo 0.12 0.05 K+ 34 11

Cd 0.09 0.03 Fe 68 25

Co 0.14 0.03

Sb 0.19 0.05 Na* 243 122

Y% 0.5 0.3 Mg?* 254 58

Cr 0.27 0.03 Cl~ 240 7

Cu 1.4 0.4 SO 1314 289

Ba 2 1 Ca®* 1454 363

Pb 4.2 0.3 NO; 2797 280
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Table 4. Mean concentrations (ppb) of trace metals and major ions at the sampling sites in the
Eastern Alps.
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Ag 0005 0005 0007 0003 0002 0003 0007 0003 0011 0003 0005 0004 0004 0004 0002 0002 0002 0007 0005 0004 0.004
Ba 06 17 1.7 4 0.9 0.6 27 0.7 39 2.4 0.4 0.8 2.0 05 05 0.4 06 15 12 0.8 05
Bi 0002 0007 0004 0009 0003 0004 0015 0004 0013 0005 0003 0004 0004 0004 0002 0002 0003 0010 0009 0006 0.004
Cd 0046 0071 0050 0079 0068 0070 0070 0053 0088 0077 0054 0051 0063 0064 0044 0042 0048 0067 0054 0056 0.046
Co 0052 0039 0052 0026 0037 0030 0069 0036 0216 0048 0045 0045 0022 0043 0025 0019 0021 0046 0036 0032 0.030
cr 0050 0084 0116 0083 0061 0060 0154 0031 0398 0067 0065 0072 0047 0077 0071 0052 0080 018 0.116 0090 0.053
Cu 042 089 057 072 043 031 104 017 313 105 025 064 048 030 027 025 038 092 08 091 044
Fe 187 260 463 141 174 134 597 155 1187 282 127 263 130 145 156 112 107 368 270 152 114
Mn 30 89 1.3 5.4 1.0 1.7 45 3.1 8.9 280 14 25 1.7 1.7 2.0 1.6 28 37 21 21 15
Mo 0044 0049 0061 0051 0047 0038 0066 0039 0430 0061 0039 0047 0047 0052 0031 0028 0030 0060 0057 0053 0.042
Pb 07 27 1.8 15 13 1.1 36 1.0 47 29 08 1.4 1.4 1.2 07 06 0.9 3.0 25 1.7 1.2
Sb 0022 0044 0065 0041 0038 0034 0076 0027 0562 0053 0026 0045 0043 0052 0030 0023 0029 0082 0073 0057 0.045
Ti 08 18 4.1 08 37 1.9 3.0 1.3 93 23 09 25 23 338 1.3 1.4 31 4.0 23 15 0.9
u 0.0064 0.0084 0.0147 0.0030 0.0073 0.0038 0.0293 0.0041 0.0226 0.0087 0.0038 0.0066 0.0069 0.0058 0.0042 0.0025 0.0030 0.0128 0.0085 0.0057 0.0034
v 009 018 023 018 018 012 028 007 074 020 040 013 013 021 010 009 015 048 038 026 023
Zn 19 42 25 35 24 15 95 06 74 5.8 37 2.1 238 33 1.9 20 1.6 36 32 37 23
Ca® 149 214 772 177 1713 425 226 721 848 297 88 439 670 527 430 478 885 618 494 301 437
cr 66 81 349 87 402 140 93 45 219 160 65 133 122 82 74 71 73 247 448 101 286
K* 43 115 27 224 42 198 22 126 119 501 20 45 56 20 17 31 31 129 47 22 33
Mg? 59 53 164 58 72 79 46 137 101 80 29 160 137 100 104 87 13 161 168 88 74
Na* 43 54 202 40 298 96 53 17 155 81 47 92 126 47 1 127 42 138 330 62 170
NO; 743 752 883 786 947 904 858 261 113 1054 609 858 961 728 946 1017 760 1288 1371 795 1047
SO 282 316 395 892 675 205 383 154 615 396 384 630 1157 382 320 404 295 1774 596 451 703
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Table 5. Variance distribution of the first three extracted principal components.

Component Variance Variance % Cumulative variance Cumulative variance %
1 13,48 61 13,48 61
2 2,15 10 15,63 71
3 1,29 6 16,93 77

EG

c

8811


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/8781/2006/acpd-6-8781-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/8781/2006/acpd-6-8781-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

Table 6. Scores of the first three factors and cumulative communality of each chemical variable.
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PI P2 P3 Com.
Ag 0.74 0.02 -0.15 0.57
Ba 0.84 012 0.39 0.88
Bi 0.87 011 0.13 0.78
Cd 0.67 027 -0.07 0.52
Co 079 0.09 029 0.71
Cr 0.82 016 0.26 0.77
Cu 0.84 021 0.34 0.87
Fe 0.86 0.05 0.42 0.92
Mn 0.76 0.18 0.43  0.79
Mo 0.84 022 0.13 0.76
Pb 091 020 0.18 0.91
Sb 086 0.36 0.11 0.88
Ti 069 005 059 0.82
u 0.79 0.08 053  0.91
Vv 079 0.38 0.13 0.78
Zn 076 035 029 0.78
ca®* 037 026 075 0.76
cr 0.30 071 042 0.76
Mg?* 030 026 072 067
Na* 0.13 0.68 0.42 0.66
NCE’ 0.16 0.80 0.15 0.69
SO;” 0.8 0.83 -0.06 0.73
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Fig. 1. Sampling area in Trentino and Veneto (ltaly).
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Dec 97 Jan 98 Feb 98

Date of sampling

Fig. 2. Ba temporal profile at Malga Bissina (1780 m, Trentino) showing the sequence of wet
deposition (low values) and dry deposition (high values), which is essentially representative for
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most of the chemical variables at most of the sampling sites.
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Fig. 3. Cluster analysis calculated from the principal component score matrix of the entire data

set. The method for grouping is the Ward and distances are Euclidean.
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