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Abstract. Long-term evolution of westward-travelling non-
local modons on theβ-plane, i.e. dipolar vortices imbed-
ded in slowly damping Rossby wave fields, is studied nu-
merically. In the framework of the nondivergent (barotropic)
model, two stages of the evolution are observed. At the first
stage (for about 30 synoptic periods), the parameters and the
form of the vortex practically remain constant, whereas at
the second stage, vorticity filaments are emitted. Due to the
filamentation, the vortex core contracts, the potential vortic-
ity peaks of the vortex pair get closer, and the modon speeds
up. In the divergent (equivalent-barotropic) model, nonlocal
modons and the Lamb modon (that has no wave field outside
the dipolar core) evolve much more slowly, essentially pre-
serving the initial shape and propagation speed until about
100 synoptic periods.

1 Introduction

Vortex pairs consisting of two oppositely signed regions of
vorticity that travel as a single entity represent one of the
main types of coherent structures in geophysical fluid dy-
namics. The existence of a significant dipolar component
in the observed synoptic eddies in the ocean (the so-called
mushroom structures) was clearly confirmed by remote sens-
ing imaginary (Ginsburg and Fedorov, 1984; Ikeda et al.,
1984; Ikeda and Emery, 1985; Ahnlas et al., 1987; Fedorov
and Ginsburg, 1989; Johannessen et al., 1989; Hooker et al.,
1995). In laboratory experiments, vortical dipoles were ob-
served in many circumstances. For example, paired vortices
may appear as a well-organized product of a pulsed turbulent
jet (van Heijst and Fĺor, 1989; Flierl, et al., 1983; Flór and
van Heijst, 1994), in the wake of a cylinder moving through
a soap film (Couder and Basdevant, 1986) or through a ro-
tating fluid (Velasco Fuentes and van Heijst, 1994). Electric
pulses in a layer of mercury, subjected to a magnetic field
to make the motions two-dimensional, can also lead to the

Correspondence to:Z. Kizner (zinovyk@mail.biu.ac.il)

formation of dipolar vortices (Nguyen Duc and Sommeria,
1988). High-resolution numerical simulations also show the
emergence of dipolar vortices from unstable structures both
on thef -plane (Orlandy et al., 1994) andβ-plane (Kizner
and Berson, 2000, hereafter KB).

In the framework of a nondivergent (rigid-lid condition),
barotropic model on theβ- plane, Stern (1975) derived an ex-
act standing localized dipolar solution and suggested the term
“modon” to designate it. The vorticity in Stern’s modon is
confined within a certain circular domain, equals zero outside
this region and jumps at its boundary. Larichev and Reznik
(1976) have considered a divergent (equivalent-barotropic),
quasi-geostrophic model and found an exact localized dipo-
lar solution that can be understood as a generalization of
Stern’s modons for the case of propagating vortices with a
continuous vorticity field. Below, we will refer to solutions
of such a degree of smoothness as high-smoothness ones,
while the abbreviation LR will be used to refer to the pub-
lication of Larichev and Reznik (1976) and their specific
modon solution. In fact, the first high-smoothness modon,
which served as a prototype for Stern’s and LR constructions,
was that suggested by Lamb (1932), who provided an ex-
ample of a steadily propagating dipolar solution to the clas-
sical Euler equations of the two-dimensional inviscid fluid
dynamics. The cited works of Stern and LR had a signifi-
cant impact and initiated a series of subsequent publications
treating barotropic, two-layer, or three-dimensional modons
(e.g. Flierl et al., 1980; Berestov, 1979, 1981; Kizner, 1984,
1986a, b, 1988, 1997; Reznik, 1985; Reznik and Sutyrin,
2001; Pakyari and Nycander, 1996).

Verkley and Tribbia have extended the modon concept to
spherical geometry. Superimposing the dipole and monopole
stream functions, Verkley (1984; 1987) constructed a nondi-
vergent, high-smoothness westward-propagating modon on
the sphere, while Tribia (1984) found a similar divergent
modon. Boyd (1994) adopted spherical solutions of Verkley
and Tribbia to obtain the so-called nonlocal modons for the
case of theβ-plane. In contrast with the localized modons
of Lamb (1932), Stern (1975), LR, and Flierl et al. (1980)
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that decay more or less rapidly outside the matching circle,
thus providing finite integral characteristics (such as the total
vorticity, energy and entrophy), when the nonlocal modons
decay too slowly in the above sense. Nonlocal modons are
actually vortical cores of essentially nonlinear Rossby waves.
In the travelling frame attached to such a modon, the latter is
characterized by two different proportionalities between the
potential vorticity (PV) and the stream function, inside some
circle, where the main vorticity is concentrated, and outside
it, in the wave field area.

KB showed numerically that, on theβ-plane under the
rigid-lid condition (nondivergent case), multipolar vortices
given by the solutions of Stern and LR, the so-called shielded
modons, as well as some non-stationary vortical structures,
collapse, giving birth to the eastward-propagating LR dipoles
and the westward-propagating vortical structures. The lat-
ter demonstrated remarkable persistence (surviving head-on
collisions with LR modons), and were identified as nonlocal
modons. It should be noted that, in addition to the general-
type nonlocal modons, Boyd (1994) also considered a spe-
cial case of “minimum amplitude” solutions, in which he
imposed a restriction on the parameters by minimizing the
external wave field. A reason for such a consideration is
stated in his later publications (Boyd, 1998a, b): in some
nonlinear wave equations important in fluid dynamics, par-
ticle physics and nonlinear optics (such as the fifth-order
Korteweg-deVries equation, the so-calledφ4 model and the
third-order Schr̈odinger equation), when a nonlocal structure
evolves from a localized pulse the far field at large times
must be of minimum amplitude. However, no similar (or any
other definite) constraints upon the modon parameters were
revealed using the identification procedure of KB (true, in the
experiments of KB, the evolution of the vortex was followed
for a few to tens of synoptic periods, whereas according to
Boyd (1998b), the far field takes a long time to settle into the
theoretically predicted steady state). The asymptotic solution
of Flierl and Haines (1994) constructed under the rigid-lid
condition and representing a strongly nonlinear westward-
propagating vortical pair surrounded with a weak wave field
has much in common with the nonlocal modon of Boyd, but
strictly speaking, the vorticity is discontinuous in this solu-
tion.

In contrast to the localized modons travelling either west-
ward at supercritical speeds (faster than the Rossby waves)
or eastward, the nonlocal modons on theβ-plane propa-
gate westward at subcritical speeds (slower than the longest
Rossby waves). As will be shown in the present paper, the so-
lution that discriminates between LR and the nonlocal mod-
ons, i.e. the vortex pair that travels westwards exactly at the
critical speed, is the Lamb modon adapted to theβ-plane.

Persistence of the eastward-propagating modons was
shown using numerical techniques by McWilliams et al.
(1981), McWilliams and Zabusky (1982), and Larichev and
Reznik (1982, 1983). Numerical simulations of Makino et
al. (1981), Zabusky and McWilliams (1982), and Hesthaven
et al. (1993) revealed the important difference between the
eastward- and the westward-travelling localized modons: the

eastward-travelling LR modons were shown to be stable (at
least within the limits, in which stability can be studied nu-
merically), whereas the westward-travelling localized mod-
ons turned out to be unstable to the tilt perturbations, i.e.
when launched with some angle to the east-west axis. Nycan-
der (1992) explained the mechanism of the tilt instability of
the westward-propagating vortex through theβ-effect, while
Velasco Fuentes and Van Hejst (1994) have proved the dif-
ference between the eastward- and the westward-travelling
dipoles in a series of laboratory experiments. Their results
were similar to those of Hesthaven et al. (1993) and clearly
showed that a small deviation of an eastward-travelling
modon from its stationary pathway results in small oscilla-
tions of the modon’s trajectory around the equillibrium “lat-
itude”, whereas, in the case of a westward-travelling modon,
such a perturbation implies large displacements of the dipole
trajectory in the northern or southern directions. Despite that
in the cited papers of Nycander (1992) and Hesthaven et al.
(1993) the problem of tilt instability was considered in rela-
tion to the divergent localized westward-travelling modons,
their main results remain valid when considering nonlocal
modons (KB).

Many researchers explain “blocking” events in the at-
mosphere by westward-travelling dipolar vortices (e.g.
McWilliams, 1980; Tribia, 1984; Haines and Marshall, 1987;
Haines, 1989; Butchart et al., 1989; Verkley, 1984, 1987,
1990, 1993; Haupt et al., 1993). Others argue that, due
to their instability, the westward-propagating dipole vortices
are unlikely to be the cause of blocking (Nycander, 1992;
Hesthaven et al., 1993; DiBatista and Polvani, 1998). In the
case of nonlocal modons, in addition to the tilt instability, the
Rossby wave radiation must be taken into consideration. All
of these arguements make a thorough study of the evolution
of the nonlocal modons especially important.

Our previous experiments (KB) lead to the conclusion that,
when moderately tilted, nonlocal modons may drift mainly
westwards for a few to tens of synoptic periods – a time suf-
ficient for a blocking phenomenon to appear. There is, how-
ever, another more delicate problem. As shown by KB, even
if only anti-symmetric perturbations are permitted, i.e. when
the nonlocal modon propagates exactly westward, it emits
vorticity filaments. When this filamentation becomes suffi-
ciently strong (or lasts long enough), it must affect the vortex
evolution process. Therefore, the main question is: what is
the effect of the vorticity filamentation on the form, transla-
tion speed and other parameters of the nonlocal modons?

The first study devoted to the evolution of the westward-
travelling vortex pairs on theβ-plane under the rigid-lid con-
dition was that of Flierl and Haines (1994). They initialized
their numerical model by using the westward-propagating
Lamb modon (which has no wave periphery outside the vor-
tical core). Due to Rossby wave radiation, a wave periph-
ery developed rapidly and the vortex evolved into a quasi-
shape-preserving nonlocal modon. The computations, how-
ever, were performed for the weakβ-effect and covered the
initial stage of the evolution, when the filamentation was un-
detectable.
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In the present work, we focus on the long-term evolution
of the nonlocal modons in the presence of aβ-effect, which
is not regarded as small. In the framework of the nondiver-
gent model, two main stages of the evolution of a moderately
nonlinear, nonlocal modon are observed. The first, quasi-
shape-preserving stage is similar to the dynamics described
by Flierl and Haines (1994) and lasts for about 30 synop-
tic periods. During the second stage (a few tens of synoptic
periods at least), due to the filamentation, the vortex core
contracts considerably (i.e. its radius decreases) and speeds
up, but the vortex remains essentially of the nonlocal modon
type.

In the framework of the equivalent-barotropic model, non-
local modons prove to be even more persistent: their shape-
preserving propagation lasts for about 100 synoptic periods,
the subsequent filamentation being relatively weak. How-
ever, the question remains as to whether a speeding-up diver-
gent, nonlocal modon (if its initial translation speed is suf-
ficiently high) may evolve into the Lamb modon. Similarly,
if the Lamb modon emits filaments, will it transform into a
LR modon? These questions are also addressed in the present
paper and none of the above scenarios is found to be realistic.
An interesting result is that the closer the nonlocal modon is
to the Lamb modon, the more robust it is. On thef -plane,
the Lamb modon is known for its high robustness (van Gef-
fen and van Heijst 1998; Babkin et al., 2000). This is why
it is not surprising that, in ourβ-plane experiments, it turned
out to be very persistent (tilt instability apart).

2 Formulation

The nondivergent barotropic quasi-geostrophic equation and
the equivalent-barotropic equation (in which the divergence
of the horizontal currents appears) can be regarded as two
opposite limiting cases of the two-layer quasi-geostrophic
model. The first corresponds to the case of zero depth of
the lower layer, while the second describes the currents in
the upper layer under the assumption that the lower layer is
infinitely deep (i.e. when the movements in the lower layer
can be neglected). In terms of stream functionψ , the quasi-
geostrophic PVq can be represented as

q = ∇
2ψ −m2ψ + βy , (1)

wherem2
= 0 andm2

= f 2
0 /(g

′h) 6= 0 correspond to the
first (nondivergent) and the second (divergent) cases, respec-
tively, while the conservation ofq is described by the equa-
tion
∂q

∂t
+
∂(ψ, q)

∂(x, y)
= 0, (2)

where t is time; x andy are the zonal and meridional co-
ordinates, respectively;∇2 is the Laplacian in the horizon-
tal plane;∂( , )/∂(x, y) is the Jacobian of the corresponding
functions with respect tox andy; f = f0 + βy is the Cori-
olis parameter,f0 andβ are constants (theβ-plane model);
h is the unperturbed depth of the upper layer; andg′ is the
reduced gravity.

Let us consider a form-preserving current system trav-
elling in the zonal direction at constant translation speed
U . For such structures, in the travelling reference frame
ξ = x − Ut , y, Eq. (2) can be simplified to

∂

∂(ξ, y)

(
ψ + Uy, q

)
= 0, (3)

where the differentiations are carried out with respect toξ

instead ofx (LR; Kamenkovich et al., 1986). The physical
meaning of Eq. (3) is that the quasi-geostrophic vorticity is
constant along the contours of the full stream function (taken
in the moving reference frame),9 = ψ + Uy. When rel-
atively compact structures are considered, characterized by
damping ofψ at ξ → ∞, the specific dependence ofq upon
9 outside some closed contourq =const. can be shown to
be simple proportionalityq = ±l29, so thatU = ±β/l

(LR). Following Lamb (1932), Stern (1975) and LR, we will
assume this contour to be a circle, inside which the depen-
dence ofq on9 is also proportionality:

1ψ −m2ψ + βy =

{
−k2(ψ + Uy) , r < r0
±l2(ψ + Uy) , r > r0.

(4)

Here,r =

√
ξ2 + y2; parametersk, l andr0 are constants.

Solutions to Eq. (4) can be shown to be localized (i.e. damp-
ing fast enough atr → ∞) if l2 in Eq. (4) bears a plus sign,
in which caseU > 0 or, alternatively, ifl2 bears a minus sign
andU < −β/m2 (LR). The first solution of Eq. (4) for the
casem2

= 0 andU = 0 was suggested by Stern (1975). This
is not a high-smoothness solution, since its exterior and inte-
rior vorticity fields do not match at the contourr = r0. The
only high-smoothness localized solution of Eq. (4) known to
date is the LR modon, which, in the polar coordinate system,
r, θ , can be presented in the form:

ψ =



[
ALJ1

(√
k2 −m2r

)
− U

k2
± l2

k2 −m2
r

]
sinθ ,

r < r0 ;

BLK1

(√
m2 ± l2r

)
sinθ ,

r > r0 ,

(5a)

whereU = ±β/l2andAL, BL are constants (ifl2 bears a
minus signm2 > l2). Hereinafter,Jν , Kν andNν are the
ν-order Bessel, McDonald and Neuman functions. The con-
ditions of matchingψ, ∂ψ/∂r and∂2ψ/∂r2 at r = r0 deter-
mine the coefficientsAL andBL (as functions ofr0, l and
k) and impose the so-called “dispersion relationship” on the
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parametersr0, l, k andm:

AL = −U
(m2

± l2)r0(
k2 −m2

)
J1

(√
k2 −m2r0

) , (5b)

BL = −U
r0

K1

(√
m2 ± l2r0

) , (5c)

−

J2

(√
k2 −m2r0

)
√
k2 −m2J1

(√
k2 −m2r0

)
=

K2

(√
m2 ± l2r0

)
√
m2 ± l2K1

(√
m2 ± l2r0

) . (5d)

The characteristic property of the LR modon is that atr →

∞, this solution drops off exponentially.
As mentioned in the Introduction, stability of the

eastward-travelling dipolar (non-shielded) LR modons can
be regarded as proven numerically (McWilliams et al., 1981;
Larichev and Reznik, 1982, 1983; McWilliams and Zabusky,
1982). In contrast, the shielded LR modons were shown to be
unstable (KB): they radiate high-smoothness vortical dipoles
travelling both east (LR dipoles) and west (nonlocal dipoles).
The latter obey Eq. (4), wherel2 bears a minus sign. In the
general case, in whichm2 may be non-zero, butm2 < l2, the
high-smoothness solutions of this category are given by the
following formula:

ψ =



[
ANJ1

(√
k2 −m2r

)
− U

k2
+ l2

k2 −m2
r

]
sinθ ,

r < r0 ;[
BNJ1

(√
l2 −m2r

)
+CNN1

(√
l2 −m2r

)]
sinθ

r > r0 ,

(6a)

where again,U = −β/l2 andAN , BN , CN are constants
(Boyd, 1994). A similar strongly nonlinear solution was
studied by Flierl and Haines (1994) for the special case of
m2

= 0, BN = 0. The solution they studied was, strictly
speaking, a low-smoothness one, as they used the dispersion
relationshipship of Lamb (1932),J1(kr0) = 0, for a dipole
on thef -plane (an asymptotic approach was applied).

Again, the conditions of matchingψ , ∂ψ/∂r and∂2ψ/∂r2

atr = r0 determine the coefficientsAN ,BN andCN as func-
tions ofr0, l andk:

AN =
βr0λ

2

l2κ2J1(κr0)
= −U

r0λ
2

κ2J1(κr0)
, (6b)

BN =
AN

D
[λJ2(κr0)N1(λr0)− κJ1(κr0)N2(λr0)] , (6c)

CN =
AN

D
[κJ2(λr0)J1(κr0)− λJ1(λr0)J2(κr0)] , (6d)

where

D =
λ2

κ
[J2(λr0)N1(λr0)− J1(λr0)N2(λr0)] , (6e)

κ =
√
k2 −m2 andλ =

√
l2 −m2; subscript ‘N ’ designates

that here we are dealing with a nonlocal modon. Note that the
only constraints imposed upon the parametersr0, l andk of
the solution (6) are thatm2 < k2, m2 < l2 andJ1(κr0) 6= 0
(contrary to the condition applied by Flierl and Haines (1994)
and the minimization of the external wave field considered
by Boyd, 1994). The meaning of the inequalitym2 < l2

is that−β/m2 < U < 0, i.e. the translation speed of the
current system determined by Eqs. (6) falls into the interval
of phase speeds of Rossby waves (see, e.g. Kamenkovich et
al., 1986). Correspondingly, in contrast to the LR modons,
this high-smoothness solution damps slowly at infinity:

ψ ≈ −

√
2

πλr

[
B cos

(
λr −

π

4

)
+ C sin

(
λr −

π

4

)]
at r → ∞

thus, justifying its name “the nonlocal modon” suggested by
Boyd (1994).

In the particular case ofm2
= l2, the localized high-

smoothness solution to Eq. (4) is the Lamb modon:

ψ =


−

(
2U

κJ2(κr0)
J1(κr)+ Ur

)
sinθ, r < r0

−
Ur2

0

r
sinθ, r > r0 ,

(7)

whereU = Ucr = −β/m2 is the so-called Rossby critical
(“long wave”) speed. The “dispersion relationship” for this
solution isJ1(kr0), i.e.kr0 = j1,i , wherej1,i is theith root of
the functionJ1. Based on the results of KB (see also Orlandi
et al., 1994), we may confine ourselves to the simplest dipo-
lar solution corresponding to the first root ofJ1, i.e. when
kr0 = j1,1 ≈ 3.83 (otherwise, the vortex is strongly unsta-
ble).

The Lamb modon on theβ-plane (m2
= l2) separates the

westward-propagating LR modons (m2 > l2) from the non-
local modons (m2 < l2) given by Eq. (6) and provides a
limiting case of both of them atl2 → m2

± 0. To show this,
let us first consider the westward-propagating LR modon
Eqs. (5) (in which case,l2 in Eqs. (4) and (5) bears a mi-
nus sign) and postulate thatm2

− l2 tends to zero from the
right (so thatl2 tends tom2 from the left). Since the functions
K1(z) andK2(z) can be asymptotically represented as

K1(z) ≈
1

z
, K2(z) ≈

2

z2
at z → 0 , (8)

one immediately obtains from Eqs. (5a) and (5c) thatψ =

−(Ur2
0/r) sinθ at r > r0. On the other hand, from Eqs. (5d)

and (8) we have

J1(κr0) ≈ −
J2(κr0)

2κ
(m2

− l2)r0 at m2
− l2 → 0 , (9)

(where again,κ =
√
k2 −m2 ), i.e. J1(κr0) tends to zero,

which is the “dispersion relationship” for the Lamb modon.
According to Eqs. (9) and (5b),AL → −2U/[κJ2(κr0)].
Thus, the westward-propagating LR modon tends to the
Lamb modon whenl2 approachesm2 from the left.
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Now let us consider the nonlocal modon Eqs. (6) atm2
−

l2 → 0−, i.e. whenλ → 0. Suppose that the coefficient
AN in Eq. (6a) is finite, i.e. 0< AN < ∞. By virtue of
Eq. (6b), this implies:J1(κr0) ∼ λ2

→ 0. Using the follow-
ing asymptotic representations of the functionsJ1(z), J2(z),
N1(z) andN2(z)

J1(z) ≈
z

2
, J2(z) ≈

z2

8
,

(10)

N1(z) ≈ −
2

πz
, N2(z) ≈ −

4

πz2
at z → 0 ,

one obtains from Eq. (6e) thatD ≈ 2λ/(πκr0). Hence, in
view of Eqs. (10), (6c) and (6d), the terms that appear in the
bottom row of Eq. (6a) forr > r0 become asymptotically

BNJ1(λr) ≈
AN

4
Eπκr0r ,

(11)

CNN1(λr) ≈
AN

2
κJ2(κr0)

r2
0

r
,

whereE = λJ2(κr0)N1(λr0) − κJ1(κr0)N2(λr0). Accord-
ing to Eqs. (11),E must tend to zero in order for the solu-
tion (6) to be bounded atr → ∞. This requirement, along
with Eq. (10), implies thatJ1(κr0) → λ2r0J2(κr0)/2κ and,
subsequently,

AN →
−2U

κJ2(κr0)
, BNJ1(λr) → 0 ,

(12)

CNN1(λr) ≈ −
Ur2

0

r
.

Due to Eqs. (12), the nonlocal modon tends to a Lamb
modon if l2 → m2

+ 0. Note that, in contrast with a LR
modon that always tends to a Lamb modon atl2 → m2

− 0,
two conditions must be applied to provide a transition from
nonlocal modon to a Lamb modon: (i) the limiting solution
must be bounded (AN < ∞, E → 0), and (ii) it must be
non-trivial (0< AN ); otherwise, as seen from Eqs. (6), (10),
if AN → 0, then the solution tends to a zonal flowψ =

βy/m2.
Westward-propagating modons are known to be unsta-

ble to tilt perturbations (Makino et al., 1981; Zabusky and
McWilliams, 1982; Nycander, 1992; Hesthaven et al., 1993;
Velasco Fuentes and Van Hejst, 1994; KB). In addition, the
nonlocal modons, even when travelling exactly westwards,
radiate Rossby waves (Fierl and Haines, 1994; KB). Nev-
ertheless, in our preliminary numerical experiments (con-
ducted atm2

= 0), they died out slowly and exhibited quite a
good survival in head-on interactions with LR modons (KB).
Therefore, much more ambitious computations are needed
to follow the evolution of the structures given by Eqs. (6) at
m2

= 0.

3 Numerical scheme

The calculations discussed below were based upon the nu-
merical model quite similar to that described in KB. A rect-
angular basin (−X ≤ x ≤ X, −Y ≤ x ≤ Y ) with periodic
boundary conditions atx = ±X was considered. The non-
divergent and divergent versions of the model differed in the
boundary conditions aty = ±Y . The conditionψ

∣∣
y=±Y

= 0
was applied in the nondivergent case, while in the divergent
case, at every time step the constant values of stream function
at the boundariesy = ±Y were computed from the boundary
condition:
X∫

−X

∂2ψ

∂t∂y
dx = 0 at y = ±Y ,

which is valid for the periodic free-surface channel (Buch-
wald, 1973; Larichev, 1974; see also Kamenkovich et al.,
1986).

Nondimensional finite-difference analogues of Eqs. (1)
and (2) were used, the scales beingL = 50 km andT =

1/βL ≈ 10 days for the space and time variables (synoptic
length and time scales), andψ∗

= βL3 andq∗
= βL for

the stream function and PV, respectively. In the experiments
presented below, the basin dimensions were 60L× 60L, the
mesh size beingδ = 0.1L. In the course of the computa-
tions, the time step was controlled by the gradients ofψ and
q and did not exceed 2.5 × 10−3 T . At every time step, PV
andq were computed from the discrete version of Eq. (2)
first, and thereafter, the stream function,ψ , was found as a
solution to the discrete analogue of the Helmholtz Equation
(1). When computingq for the currentt , a combination of
the direct and Matsuno schemes and Arakawa approximation
for the Jacobian operator in Eq. (2) were adopted (Mezinger
and Arakawa, 1976). The decomposition into eigenfunctions
in thex-direction and the marching method in they-direction
(Samarsky, 1989) were utilized while solving Eq. (1). Con-
servation of total energy and enstrophy were found to hold
within 0.1 to 0.3% in all our experiments.

In the following text, we use dimensional variables and
constants, whereas in the figures and Table 1, all the quanti-
ties are nondimensional.

4 Results and discussion

4.1 Evolution of a nondivergent, nonlocal modon

Solution (6) can be characterized by three space scales:r0,
1/l and 1/k. The first is an overall scale; the second is the
scale in the exterior area, where the contours of PV are open;
and the third is the scale for the interior area, where the con-
tours are closed (trapped fluid area). In order to make the
rigid-lid condition valid and theβ-effect significant in the
balance of PV, these scales should be of the same order of
magnitude. On the other hand, for the relationship (4) at
U < 0 to be nonlinear, i.e. for Eqs. (6) to represent a non-
linear solution, the parametersl andk must differ from each
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Fig. 1. The nondivergent, nonlocal modon in terms of stream func-
tion (a) and potential vorticity(b) (for parameters, see Table 1). The
interval between the contours is 10% of the maximum.

other (l < k), and the larger the ratiok/l is, the stronger the
nonlinearity of the solution. Based on this fact, the solutions
in which the values ofl andk are close in order of magnitude
will be referred to below as moderately nonlinear.

A moderately nonlinear, nondivergent, nonlocal modon
(NDNM) was chosen for the first evolutionary experiment
(Figs. 1a, b and 2a, b); its nondimensional parameters are
presented in Table 1. This NDNM displayed considerable
robustness. Its dynamics can be roughly divided into two
stages. At the first stage, until the timet ≈ 30T , no no-
ticeable change in form was observed (Fig. 2a–d), with in-
significant fluctuations of the translation speed being within
the measurement error. During this period, the modon moved
westward by about 15L, where the vorticity filament emis-
sion began (Fig. 2d). At the second stage (up tot = 50T ),
the filament emission grew stronger, while the main amount
of PV was kept inside the vortical core around the poles
(Figs. 2e, f). Since the interior area bounded by the zero
q contour must (formally) remain constant, to which a high
degree of accuracy was held in all our experiments, the area
of the vortex core decreased during this period (Figs. 2e, f).

Although the absolute value of the translation speed in-

Table 1. Nondimensional parameters of the nondivergent nonlocal
modon (NDNM), divergent nonlocal modon (DNM), and the Lamb
modon (LM) used for the initialization of the models in the evolu-
tionary experiments

m2 r0 k2 l2 U = −β/l2

NDNM 0 1.25 7.9942 2.0 −0.5
DNM m2

= 1.50 8.6101 2.5 −0.4
0.9l2 = 2.25

LM m2
= l2 = 2 1.50 8.5252 2.0 −0.5

creased remarkably during the second stage of evolution, the
changes were relatively slow, with the characteristic time of
this positive trend in|U | being much longer than the time
scaleT (Figs. 3a, e). This fact allows for the treatment of the
evolving vortex as quasi-stationary at everyt . We approxi-
mated the vortex by an exact solution of the type (6) for the
times t = nT , n = 1, . . . , 50. This fitting has proved that,
in spite of the filamentation and a very slight ellipticity of
the vortical core, the vortex structure, while evolving, keeps
its generic features, i.e. it remains of the NDNM type, with
the zeroq contour (that bounding the core) being essentially
circular everywhere aside from the filament area.

In fitting an exact solution to an instantaneousψ field, we
followed the procedure containing the following steps (for
details, see KB). For a fixedt , the radius of the nearly circu-
lar core,r0(t), could be defined as the mean radius of zero
contour of either the PV field or9 = ψ+Uy field. The zero
contours for these fields are identical if the functional depen-
dence (4) is held exactly. However, they differ slightly from
each other: the9 field is always smoother (has no filaments)
and is less elliptical. Therefore, in our experiments, we eval-
uatedr0 by analyzing the9 field. The other two parameters
describing NDNM are the two coefficients of proportional-
ity, k2 andl2, in theq vs.9 relation (4). They were obtained
from the scatter-graphsq vs.9 (see, e.g. Fig. 4). Notice that
l2 determined in such a way must be close to that determined
asl2 = −β/U , and this was the case in our experiment. This
fact allowed for the use of the instantaneous translation speed
U as the third parameter (instead ofl2), along withk2 and
r0, to identify the vortex in terms of NDNM at anyt .

The goodness-of-fit can be seen from the comparison of
the cross sections of the computed and fitted theoretical fields
of ψ andq at t = 50T (Fig. 5). The main difference is ob-
served far away from the core center and can be explained as
a boundary effect. Indeed, the exact solution tends slowly to
zero atr → ∞, while the computed solution satisfies zeroψ
conditions at the northern and the southern boundaries (this
discrepancy motivated us to consider a relatively large grid
square – see Sect. 3).

The time evolution of the main vortex parametersr0, k
andU (estimated through the fitting) is shown in Figs. 3c–
e. The changes in all the parameters byt = 30 were in-
significant (Figs. 3b–f). In the subsequent evolution, the vor-
tex contracted considerably, its radius and the interior stream
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Fig. 2. Long-term evolution of the nondivergent, nonlocal modon in terms of stream function (on the left –(a), (c), (e)) and potential vorticity
(on the right –(b), (d), (f)). The interval between the contours is 10% of the initial maximum.

function peak decreased (Figs. 3b, c), while the translation
speed increased in absolute value (Fig. 3e). Nonlinearity
of the NDNM (in the above sense) increased as well, be-
cause, due to the speeding up of the modon, the parameters
l =

√
−β/U andk decreased and increased, respectively,

(Fig. 3d). The decrease inl also means that the enhancement
of the translation speed is attended with an increase in the far
field “wavelength” and thus, with some smoothing down of
this field.

As explained above, the filament emission must result in
the decrease of the vortex radius, since, due to the PV con-
servation, the area inside a certain closed PV contour must
remain constant. In other words, at the second stage of evolu-
tion, the vortex core contracts (Figs. 2c, f and 3c), the points
corresponding to the peak PV values become closer, and the
nonlinearity (k to l ratio) increases, which leads to sharpen-
ing of the radial PV gradients in the interior. Other quantities
that must be conserved are the peak values ofq. It is worth
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Fig. 3. Evolution of the parameters
of the nondivergent, nonlocal modon.
Circles – pure experimental data, solid
lines – data computed via Eqs. (13),
large panels – close-up ranges of the
variables, insets – full-scale plots in-
cluding the origin:
(a) – x-coordinate of the vortex peaks;
(b) – the peak value of stream function;
(c) – the radius of the vortex core,r0;
(d) – square root of the factor of pro-
portionality between internalq and9
in Eq. (4),k;
(e)– the translation speed of the vortex,
U ;
(f) – parameterkr0.
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Fig. 4. Initial (a) and final(b) scatter
diagrams ofq vs. 9 = ψ + Uy for
the nondivergent, nonlocal modon: ex-
ternal (1) and internal (2) regions.

noting that the filamentation took place due to the emission
of fluid particles bearing quite small absolute values of PV
(Fig. 7). This is why the vortex core kept its dipolar shape
(the peak PV values being the poles in terms of isolines ofq).

In the described experiment, due to numerical effects, the
peak absolute values of PV increased slightly at the stage of
filament emission. Our simulation lasted while this devia-
tion from the initial peak value remained insignificant and
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Fig. 5. Fitting the vortex evolved from
the nondivergent, nonlocal modon in
terms of stream function(a) and poten-
tial vorticity (b). Solid lines – experi-
mental data; dashed lines – fitted theo-
retical modon.
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Fig. 6. Evolution of the integral pa-
rameters of the nondivergent, nonlocal
modon:
(a) – core area;
(b) – potential vorticity (integrated
within the upper half of the core);
(c) – core enstrophy;
(d) – core kinetic energy (large panels –
close-up ranges of the variables, insets
– full-scale plots including the origin).

the computations were stopped att = 50T , when the devia-
tion reached approximately the limit of 2% (see below). (We
attribute this small numerical error to the adverse influence
of the boundaries (due to the non-locality of the vortex), as

well as to the constantly increasing nonlinearity of the vor-
tex during the contraction phase or, more precisely, to the
increase in the radialq gradients in the interior: at the first
phase the error was extremely small.) Formally speaking,
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Fig. 7. Structure of the vorticity fila-
ment emitted by the nondivergent, non-
local modon. The contours correspond
to 0, 1, and 10 percent of the peak po-
tential vorticity value (upper panel –
equal scales in thex- andy-directions,
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Fig. 8. Dependence of the core radius
onk for the evolving nondivergent, non-
local modon.
Circles – “raw” experimental data;
solid lines – estimated via Eqs. (13) us-
ing different peak values of the poten-
tial vorticity:
1 – initial,
2 – final,
3 – changing-in-time raw values.

since the peak PV values of the vortex core must be con-
served during the vortex contraction, the peaks of the relative
vorticity (1ψ = q − βy) not only become closer, but in-
crease in their absolute value. This leads to a more intensive
interaction between the dipole halves and results in the accel-
eration of the westward drift of the vortex pair (Fig. 3e). Due
to the fact thatk increases andr0 decreases within the pe-
riod 30T < t < 50T , the productkr0 changes quite slowly,
demonstrating a tendency to increase (Fig. 3f). However, the
limit value j1,1 ≈ 3.83 (see Eq. 7) cannot be reached while
the vortex remains of the NDNM type.

The evolution of the integral characteristics of the vorti-
cal core is shown in Fig. 6. The core area, enstrophy and
kinetic energy were computed by the integration within the
zeroq contour, with the filaments being cut off. The inte-
gral PV shown in Fig. 6b corresponds to the upper half of
the core (since due to the antisymmetry the integral PV cal-
culated over the vortex pair equals zero). Throughout the
experiment, the change of the total enstrophy was small but
monotonic (Fig. 6c): the two stages of the evolution can be
distinguished only through the difference in the slopes of this
graph byt = 30T and within the period 30T < t < 50T .
However, in the graphs of the core area, integral PV, and the

kinetic energy versus time (Figs. 6a, b, d), the two stages are
clearly seen: before the strong filament emission takes place,
Sin, Qin andKin hardly change, whereas at the filamenta-
tion stage, they decrease considerably. The loss inQin and
Kin is about 8% and 14%, respectively; the loss inSin is
the most impressive at about 18%. Thus, during the second
stage of the evolution, a considerable part of the vortex area
and PV is transferred into a continuously elongating thin fil-
ament (Fig. 7).

The question arises: is the 2% computational error in the
peakq value indeed, negligible or can it significantly affect
the apparent evolution of the vortex? To answer this question
the following computations were carried out.

Assume that in the course of the evolution the vortex core
and its close periphery (apart from the filament region – see
Fig. 7) remain those of the NDNM type. Suppose next that
the peakq value does not change in the time remaining equal
to the initial one (theoretically, this peak value must be con-
stant). Finally, let the stream function peak value andy-
coordinate of this peak be given as functions of time. Then
based on these data we can compute the parametersr0, k2

andU as functions of time by solving the following system
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Fig. 9. Experimental translation speeds
of the divergent nonlocal modon(a) and
the Lamb modon(b) (for initial param-
eters, see Table 1; large panels – close-
up ranges ofU , insets – full-scale plots
including the origin).

of equations that results from Eq. (6):

ψp =
βr0

k2

J1(kyψ )

J1(kr0)
−

(
β

k2
+ U

)
yψ ,

−βr0
[
J1(kyψ )− kyψJ2(kyψ )

]
+

(
β + k2U

)
yψJ1(kr0) = 0 , (13)

qp = β

[
yp − r0

J1(kyq)

J1(kr0)

]
,

r0
(
J1(kyq)− kyqJ2(kyq)

)
− yqJ1(kr0) = 0 .

Here,ψp andqp are the given peak values of the stream
function and PV, respectively, whileyψ and yq are they-
coordinates of these peaks. The first equation relates theψ

peak value to its coordinate. The second equation can be
obtained by differentiating Eq. (6a) atr < r0, and states
that they-derivative of the stream function at the peak is
zero. The third equation, which is obtained from the depen-
dence (4) ofq uponψ + Uy for the interior area, expresses
the PV peak value as a function of its coordinate. The fourth
equation (analogous to the second one) means that they-
derivative ofq at the peak point is zero. Given the parameters
qp = qp

∣∣
t=0 = const.,ψp(t) andyψ (t), the system (13) can

be solved to provide the values of the remaining variablesr0,
k, U andyq as functions of time.

As noted above, in the practical computations, the peakq

value does not remain constant, with the error being about

2%. On the other hand, as the stream function field is de-
termined from the second-order Eq. (1), it is much smoother
than the PV field and less distorted by computational errors.
For this reason, it is legitimate to use the experimental values
ψp(t) andyψ (t) (along with initialqp) to estimate the “theo-
retical” parametersr0, k andU . These estimates are shown in
Figs. 3c–f by continuous lines. The closeness of the “theoret-
icaly” estimated graphs to the “experimental” points testifies
to (i) the reliability of our simulations, and (ii) the consis-
tency of the assumption that the vortex remains essentially
of the NDNM type while contracting and speeding up.

In addition to the above calculations based on the given
qp = qp

∣∣
t=0 = const., we also calculated the “theoreti-

cal” estimates ofr0 andk using both the peakq values ob-
served during the simulation and based on the final peak
value (qp = qp

∣∣
t=50T = const.). These computations rep-

resent additional evidence of the reliability of our simulation
and its interpretation. As seen from Fig. 8, where ther0 ver-
susk scatter (raw experimental data) is shown, along with
the three kinds of “theoretically” estimated dependencies, the
four trends are very close to each other.

In the described experiment, no pronounced tendency for
minimization of the far field (similar to that predicted by the
theory of weakly nonlocal solitary waves, Boyd, 1998a, b)
was observed. One might suppose that the duration of the
simulation (t = 50T ) was insufficient for the vortex to reach
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Fig. 10. Evolution of the divergent nonlocal modon in terms of stream function (on the left –(a), (c)) and potential vorticity (on the right –
(b), (d)). Contours – as in Fig. 2.

such a steady state. We, however, are inclined to believe that
for the nonlocal modon solutions of the equation of PV con-
servation on theβ-plane, this issue is less topical than for the
nonlocal phenomena considered by Boyd (1998a, b). Most
likely, due to the filamentation, which becomes significant
by t = 50T , and the related core contraction, the modon
will essentially die out at the earlier times as compared to
that needed for the far field minimization.

4.2 Evolution of a divergent, nonlocal modon

As discussed above, during the filament emission process,
the productkr0 in NDNM increases being bounded by the
limit kr0 = j1,1. The upper limit, however, cannot be
achieved because under the rigid-lid condition, there is no
westward-propagating solution to Eq. (4) that obeys this “dis-
persion relationship”. However, in the framework of the di-
vergent model, such a solution does exist. It is the Lamb
modon (7), which corresponds to the case ofm2

= l2.
We carried out an evolutionary experiment with a divergent
nonlocal modon (DNM) that initially was close to this case
(m2

= 0.9 l2), in order to check out whether during the fil-
amentation and speeding up of such a DNM can really ap-

proach a Lamb modon. The nondimensional parameters of
the DNM used in this experiment are given in Table 1: the
DNM chosen for the experiment was of moderate nonlinear-
ity, while its initial radius and translation speed were close to
those of NDNM.

Although this simulation lasted for a period of time twice
as long as that with the NDNM – up to 100T , no consider-
able increase in the translation speed was detected (Fig. 9a).
Moreover, throughout the experiment, the changes in the
form of the vortex were very slight, not only in the vortex
core but in the vortex periphery as well (Fig. 10). Very weak
filament emission appeared only at large times (Fig. 10d).
The DNM proved to be very robust, and no tendency of tran-
sition into a Lamb modon was observed. The computations
were stopped att = 100T , when the deviation in theq peak
value from the initial one reached approximately 2%.

4.3 Evolution of the Lamb modon

A moderately nonlinear lamb modon (LM), with the initial
radius and translation speed close to those of the NDNM
and the DNM treated above, was chosen for testing in
an evolutionary experiment (for parameters, see Table 1).



D. Berson and Z. Kizner: Contraction of westward-travelling nonlocal modons 277

−5 0 5
−5

0

5

(a)

t = 0 

+

−

−3 0 3
−3

0

3

(b)

t = 0 

+

+

−

−

−55 −50 −45
−5

0

5

(c)

t = 100 

+

−

−51 −48
−3

0

3

(d)

t = 100 

+

+

−

−

Berson & Kizner,  "Contraction ...",  Fig.11

Fig. 11. Evolution of the Lamb modon in terms of stream function (on the left –(a), (c)) and potential vorticity (on the right –(b), (d)).
Contours – as in Fig. 2.

During this run that lasted for 100T , the translation speed
of the LM actually remained constant (Fig. 9b), whereas the
modon hardly changed its form (Fig. 11), demonstrating no
tendency to evolve into a westward-propagating LR modon.
Filamentation started only a short time before the end of the
experiment and was extremely weak. The LM modon proved
to be the most persistent of the three vortices examined in the
present study, which is in good agreement with the numerical
experiments performed by van Geffen and van Heijst (1998)
and Babkin et al. (2000) on thef -plane.

5 Conclusion

Our simulations show that there are two stages in the long-
term evolution of a nondivergent, nonlocal modon on theβ-
plane. The first robust stage (t ≤ 30T ), characterized by
the fact that the vortex parameters and form change insignifi-
cantly, is in correspondence with the numerical evolutionary
experiments carried out by Flierl and Haines (1994) in the
case of a barotropic model under the rigid-lid and weakβ-
effect conditions initialized by a westward-travelling Lamb
modon. At the second stage, the emission of vorticity fil-

aments occurs, resulting in a considerable contraction and
speeding up of the vortex core. In spite of these changes,
the vortex remains essentially of the nonlocal modon type.
These results are in agreement with the laboratory experi-
ments of Velasko Fuentes and van Heijst (1994), who found
that as long as a dipole drifts westwards, it maintains approx-
imately constant translation speed, while its size decreases.
We attribute the constancy of the speed in their experiments
to the balance between two effects: the above-described ac-
celeration due to the contraction and the deceleration due to
viscosity.

The divergent (equivalent-barotropic) nonlocal modons
are, in general, more robust. More precisely, the closer the
modon translation speed is to the critical (long wave) speed
Ucr = −β/m2, the longer the form-preserving span of the
modon. For example, the nonlocal modon, whose initial
propagation speed equals 0.9Ucr , persists for about 100T
without significant change in form and propagation speed,
with the subsequent filamentation being much weaker than
that of the nonlocal modon in the nondivergent model. The
Lamb modon, which is the limiting case of both westward-
travelling LR and divergent nonlocal modons on theβ-plane
at l2 → m2 (i.e. when the translation speed tends to the
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critical one) proved to be the most persistent in our exper-
iments.

Even though the initial translation speed of the divergent
nonlocal modon in our experiment was very close to that of
the Lamb modon, the vortex pair did not speed up during the
simulation, i.e. no tendency of this modon to transform into a
Lamb modon was observed. Similarly, the Lamb modon did
not demonstrate any tendency to accelerate (i.e. to transform
into a LR modon).

It should be mentioned that in our previous work (KB),
several simulations with initially tilted (within a 5◦ angle)
nonlocal modons were considered. Despite the fact that the
westward-propagating modons on theβ-plane are known to
be unstable to tilt perturbations (see Introduction), nonlocal
modons usually kept the westward component of their drift
for 10T to 25T remaining coherent dipoles (especially if a
small tilt angle was applied to a slowly propagating nonlocal
modon). Thereafter, they turned to the east (transforming
into eastward-travelling LR modons) or disintegrated.

The results of our numerical experiments signify that non-
local modons may present a good candidate for the cause of
the atmospheric blocking phenomenon. They also suggest
that the abundance of paired vortices in the ocean and in the
atmosphere is due to both localized and nonlocal modons.
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