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Abstract. In this paper we develop analytical and numer- given as a data set. The main innovation of our method is
ical methods for finding special hyperbolic trajectories thatthat it provides an approximation to the DHT for the entire
govern geometry of Lagrangian structures in time-dependentime-interval of the data set. This offers a great advantage
vector fields. The vector fields (or velocity fields) may have over the conventional methods that require certain regions to
arbitrary time dependence and be realized only as data setonverge to the DHT in the appropriate direction of time and
over finite time intervals, where space and time are dis-hence much of the data at the beginning and end of the time
cretized. While the notion of a hyperbolic trajectory is cen- interval is lost.

tral to dynamical systems theory, much of the theoretical
developments for Lagrangian transport proceed under the

assumption that such a special hyperbolic trajectory exists .
This brings in new mathematical issues that must be ad—1 Introduction
dressed in order for Lagrangian transport theory to be appli-,

cable in practice, i.e. how to determine whether or not suchover the past 10 years there has been much work in apply-

a trajectory exists and, if it does exist, how to identify it in a Ing the approach and methods of dynamical systems theory

sequence of instantaneous velocity fields. We address thest% the study of tranqurt n fluids frqm the Lagranglan p0|r_1t
; . . S of view. Suppose one is interested in the motion of a passive
issues by developing the notion of a distinguished hyper-

X X ) - tracer in a fluid (e.g. dye, temperature, or any material that
bolic trajectory (DHT). We develop an existence criteria for can be considered as having a negligible effect on the flow);

certain classes of DHTs in general time-dependent veIocityhen nealecting molecular diffusion. the passive tracer fol-
fields, based on the time evolution of Eulerian structures thaf » Neg 9 ’ P

are observed in individual instantaneous fields over the entire " > fluid particle trajectories which are solutions of
time interval of the data set. We demonstrate the concept ofg

DHTs in inhomogeneous (or “forced”) time-dependent lin- Ex =u(x,1), )

ear systems and develop a theory and analytical formula for

computing DHTs. Throughout this work the notion of lin- Whereu(x, r) is the velocity field of the fluid flowx <
earization is very important. This is not surprising since hy- R".n = 2 or 3. When viewed from the point of view of
perbolicity is a “linearized” notion. To extend the analytical dynamical systems theory, the phase space of Eq. (1) is ac-
formula to more general nonlinear time-dependent velocitytually the physical space in which the fluid flow takes place.
fields, we develop a series of coordinate transforms includEvidently, “structures” in the phase space of Eq. (1) should
ing a type of linearization that is not typically used in dynam- have some influence on the transport and mixing properties
ical systems theory. We refer to it as Eulerian linearization,of the fluid. Babiano et al. (1994) and Aref and El Naschie
which is related to the frame independence of DHTs, as op{1994) provide recent reviews of this approach.

posed to the Lagrangian linearization, which is typical in dy-  To make the connection with the large body of literature
namical systems theory, which is used in the computation oPn dynamical systems theory more concrete, let us consider
Lyapunov exponents. We present the numerical implementa@ less general fluid mechanical setting. Suppose that the fluid
tion of our method which can be applied to the velocity field is two-dimensional and incompressible, although our theory
can be applied to compressible as well as viscid flows. Then

Correspondence tdS. Wiggins (s.wiggins@bristol.ac.uk) we know that the velocity field can be obtained from the
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derivatives of a scalar valued functio#(x1, x2, t), known Coulliette and Wiggins (2000) allows one to treat transportin

as the stream function, as follows basin scale models, such as a wind driven double-gyre sys-
d 8w tem. ' . .

Em = a—xz(xl, x2, 1), Lobe dypamlps prowd.es a'general theoretlca! framework,

d oy based on myarlan'g mamfold_@eas from dyn_ar_nlcal syst_ems
—xp = ———(x1, x2,1) . 2 theory, for discussing, describing and quantifying organized

dt dx1 structures in a fluid flow and determining their influence on

In the context of dynamical systems theory, Eq. (2) is a time-transport. This paper is concerned with issues related to the
dependent Hamiltonian vector field where the stream func-numerical implementation of the technique of lobe dynam-
tion plays the role of the Hamiltonian function. If the flow is ics. To begin with, one must identify certain hyperbolic tra-
time-periodic, then the study of Eq. (2) is typically reduced jectories (i.e. “moving saddle points”) whose stable and un-
to the study of a two-dimensional area preserving a Poincar stable manifolds divide the flow into different flow regimes.
map. Practically speaking, the reduction to a Poiaaaap  Earlier work of Malhotra and Wiggins (1998) developed the
means that rather than viewing a particle trajectory as a curvgeneral mathematical framework. However, implementing
in continuous time, one views the trajectory only at discretethese mathematical ideas for practical problems requires one
intervals of time, where the interval of time is the period of to face a number of new issues.
the velocity field. The value of making this analogy with  In order to begin applying dynamical systems theory to the
Hamiltonian dynamical systems lies in the fact that a vari- study of transport one needs the right-hand side of Eq. (2),
ety of techniques in this area have immediate applications toi.e. the velocity field. Until recently, applications have been
and implications for, transport and mixing processes in fluidlimited to the cases where the velocity field is expressed as an
mechanics. For example, the persistence of invariant curveanalytical function of space and time. Then one can compute
in the Poincag map (KAM curves) gives rise to barriers to velocity explicitly once the position and time are given.
transport and chaos, and Smale horseshoes provide mecha-This may not be the case when the velocity field is ob-
nisms for the “randomization” of fluid particle trajectories. tained through the solution of some fluid dynamical nonlin-
An analytical technique, Melnikov’'s method, allows one to ear partial differential equations of motion (e.g. the Navier-
estimate fluxes as well as describe the parameter regimeStokes equations). In general, such nonlinear partial differ-
where chaotic fluid particle motions occur. A relatively new ential equations cannot be solved analytically, i.e. the right-
technique, lobe dynamics, enables one to efficiently computdiand side of Eq. (2) cannot be represented in the form of
transport between qualitatively different flow regimes. some elementary or special analytical functions. However,
Dynamical systems techniques were first applied to La-they can often be solved numerically and the velocity field
grangian transport in the context of two-dimensional, time-may be given as output of the model simulation at a discrete
periodic flows. In recent years these techniques have beetime sequence which may be also spatially discrete. Another
extended to include flows having arbitrary time dependencevay in which the right-hand side of Eq. (2) can be obtained
(see Wiggins, 1992; Malhotra and Wiggins, 1998; Haller andis through observation. Modern remote sensing techniques
Poje, 1998). One aspect of our study is to consider the ef{such as high frequency radar arrays) have now been devel-
fect of different types of temporal variability on transport. In oped to the point where one can measure current fields at a
recent years the dynamical systems approach has been efairly high resolution in space and time.
tended to a number of geophysical fluid dynamics settings Whether one obtains the velocity field through numeri-
(see, for example, Pierrehumbert, 1991a, 1991b; Samelsoral simulation of a nonlinear partial differential equation or
1992; Duan and Wiggins, 1996). These early works mainlythrough observations, the resulting velocity field (i.e. dynam-
involved kinematically defined velocity fields. Some of the ical system) is given as a data file, with gaps in space and
first attempts to treat dynamically evolving velocity fields time. Moreover, it will only be known for a finite amount
were the works of del Castillo-Negrete and Morrison (1993) of time, which may be at odds with many notions from dy-
and Ngan and Shepherd (1997). They considered specialamical systems theory, since dynamical systems theory is
kinematic cases that could be argued to be dynamically coneften concerned with the asymptotic in time behaviour. Con-
sistent, and hence complication provided by dynamical con-sequently, the fact that the velocity field may only be known
sistency was not really present. The treatment of general dyfor a finite time causes major difficulties with the applica-
namically evolving velocity fields became possible with the tion of dynamical systems techniques. These difficulties are
development of computational techniques to treat velocitya central focus of this paper.
fields which only had a numerical representation, i.e. which The central concern of this paper is to develop the notion
were the output of the numerical solution of a partial differ- of hyperbolic trajectory in a way that it can be applied to
ential equation whose solution was a velocity field. Early finite time data sets, and then develop a numerical search
work along these lines can be seen in Shariff et al. (1992)algorithm to find such hyperbolic trajectories for the entire
Duan and Wiggins (1997), and Miller et al. (1997). Recenttemporal length of the data set. However, as we will see,
work of this type in a geophysical fluid dynamics setting is quite general flows may contain an uncountable infinity of
that of Rogerson et al. (1999), which is concerned with fluid hyperbolic trajectories. In order to clarify this situation, we
exchange across a barotropic meandering jet. Recent work aftroduce the notion of a distinguished hyperbolic trajectory
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Fig. 2. The instantaneous (or “frozen time”) velocity fieldrat *.
The DHT and the ISP are indicated by the diamond and the circle,
respectively.

Now let us return to the issue of a hyperbolic trajectory.

’ We will define this more formally at the end of this section.
L7 Now we will be content with a less mathematically formal

’ description in order to motivate the ideas. A trajectory is said

. to be hyperbolic if the associated linear equations (linearized

. about the trajectory in question) hawdinearly independent

’ exponentially growing and decaying solutions {as> oo),

L7 i.e. all solutions of the linearized equations exhibit exponen-

tial growth and decay. The linearization of Eq. (3) is given

by
Fig. 1. The trajectories of Eq. (3) plotted in— r space. The DHT 5 = —§, (6)

is given byx(¢) =t — 1 and the curve of ISPs is plotted as a dashed _ o ) _
line and given by = r. i.e. the linearization of Eq. (3) is the same for any trajectory.

Clearly, all trajectories of Eq. (3) are hyperbolic. This brings
us to the notion of a DHT. Despite the fact that all trajectories
(henceforth, DHT). Before going further, we want to con- of Eq. (3) are hyperbolic, upon examining the form of the
sider two examples that illustrate in a concrete manner theyeneral solution given in Eq. (4) we see that all trajectories
issues that we will face. These examples are one-(space) ddecay at an exponential rate to the trajectory
mensional. This may seem far removed from the fluid me-
chanical applications of interest. However, this is not thex(t) =r—1 (7)
case since in many applications the boundary conditions may his trajectory is our DHT. Note also that it is the only trajec-
be free slip and then the issue of saddle type trajectories otory that does not exhibit exponential growth or decay, which
one-dimensional boundaries becomes an area of interest. can be clearly seen for the repelling situatiorr as> —oo.
It remains for us to give it a precise mathematical definition
in such a way that it lends itself to numerical computation.

Example 1. Consider the following example from Szeri et

al. (1991): However, before doing that let’s return to the issue of ISPs
d and their relationship to DHTSs.
7R ) In Fig. 1 we plot some of the trajectories of Eq. (3). In

particular, we plot the DHT. We show some trajectories con-
verging to it, and we plot the curve of instantaneous stagna-
x()=t—1+e " (xo+1). (4)  tionpoints. , o

In Fig. 2 we plot the instantaneous velocity field at some
A typical way to visualize the trajectories of time-dependenttime r = *. In this figure we see something that seems
vector fields is to consider the instantaneous (or “frozensomewhat counterintuitive. Trajectories to the right of the
time”) setting, i.e. one fixes time and then considers the reDHT appear to be moving away from the DHT, towards the
sulting instantaneous direction field, instantaneous streamiSP. However, we know from Eg. (4) that all trajectories de-
line contours, instantaneous stagnation points (henceforthcay to the DHT at an exponential rate. What we are “seeing”
ISPs), etc. However, such information can be very mislead4n Fig. 2 is an artifact of drawing incorrect conclusions from
ing if one uses it to try to understand Lagrangian transportinstantaneous velocity fields. Trajectories to the immediate

The solution through the poing atz = 0 is given by

issues. right of the DHT are indeed moving to the right (i.e. away
Consider the ISPs for Eq. (3). These are given by from the DHT). However, the DHT is moving to the right at
a faster speed and it eventually overtakes these trajectories.
x =1 (%) Figure 2 might also lead us to believe that trajectories con-

verge to the ISP. But we know this is not true since we have

At afixedt, this is the unique point where the velocity is zero. )
the exact solutions.

However,x = ¢ is not a solution of Eq. (3). This is very
different from the case of a steady flow where a stagnatiorExample 2. The time-dependent inhomogeneous term (or
point is a solution of the velocity field. “forcing”) on the right-hand side of Eq. (3) is unbounded as
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t — oo. However, we give another example that shows that good guess for the “test regions” that somehow bracket
the phenomena described above is not a consequence of this  the hyperbolic trajectory, as discussed earlier. We have

unboundedness. seen that the instantaneous stagnation points do not nec-
Consider the equation essarily provide us with a good guess for the location of

J the hyperbolic trajectory.

—x = —x + sint. (8)

dt Motivated by the simple examples above, we define two

The general solution through any pointats = 0 is given  classes of DHTs. The first class considers a velocity field

by whose linear part is independent and constant so that it

closely relates to these examples. The second class considers
x(t) = % (sint — cost) + e~ <x0 + %) ) (9) a general velocity field as an extention of the first class.

Definition 1. Let us consider a velocity field which has the
As in the previous example, all solutions are hyperbolic andform:
any solution decays exponentially to the solution

1 %y =Dy + g™y, ), (10)
x(t) = = (sint — cost)

2 whereD € R"*" is a constant diagonal matrix for the time-
which is the DHT. One can also verify that the ISRs= independent linear part agd\Y (y, r) € R" is the nonlinear
sint, is not a solution of Eq. (8). time-dependent part. Let(z) be a trajectory of Eq. (10) that

To summarize, these simple examples illustrate the follow-remains in a bounded region for all time. Thef) is said to
ing points: be a distinguished hyperbolic trajectory if:

— A given velocity field can contain an uncountable infin- 1. it is hyperbolic,
ity of hyperbolic trajectories. Indeed, in these examples,

all trajectories are hyperbolic with the same decay rates. 2- there exists a neighborhogdn the flow domain having
the property that the DHT remains fhfor all time, and

— Despite this fact, we see that there may be certain distin-  all other trajectories starting I8 leaveB in finite time,
guished hyperbolic trajectories. In these examples, this  as time evolves in either a positive or negative sense,
was the one trajectory that all trajectories are attracted

to exponentially as — co. 3. itis not a hyperbolic trajectory contained in the chaotic

invariant set created by the intersection of the stable and
— Due to this abundance of hyperbolic trajectories, we see  unstable manifolds of another hyperbolic trajectory.

that a numerical method that is designed just to find hy-
perbolic trajectories may not be sufficiently refined for  If the data spans only a finite time interval, then the DHT
applications. For this reason one needs to precisely decannot be determined uniquely. Instead, there is a small
fine the notion of a DHT for an analytically given veloc- region in 8 where the DHT can exist. We will present a
ity filed. Then one needs to develop a methodology formethod to obtain an approximation to the DHT, assuming
numerical identification of the DHT, according to the thatthe time dependence of the velocity field persists outside
refined definition, when the velocity field is given as a the time-interval of the data set.

discrete data set, rather than an analytical function. The second part of this definition can also be stated in
terms of the stable and unstable manifolds of the DHT. Points

— ISPs are not necessarily trajectories of the velocity fieldon the stable manifold can leay®in negative time, points
and hence are frame dependent. Viewing them ininstanon the unstable manifold can leafin positive time, and
taneous velocity fields may lead to misleading informa- points on neither manifold leav# in both positive and neg-
tion about fluid particle trajectories. However, when we ztive time.
are looking for the DHT associated with a Lagrangian |n the case where the DHT does not remain in a bounded
structure with persistent movement, their paths in timeregion, the definition is more tricky. A definition for lin-
may be used as “markers”, i.e. regions of the flow which ear inhomogeneous systems can be given (provide one does
are good (but not certain) candidates for DHTSs to eXistnot allow exponential growth or decay in the inhomogeneous
(e.g. Example 2). term) as in Example 2. Moreover, the linear part of a gen-
eral velocity field is not necessarily independent or constant.

— Numerical methods for locating hyperbolic trajectories These lead to the second class of DHTS.

that utilize the stretching and contraction properties to

allow for certain “test regions” to converge to the hy- Definition 2. Let us consider the general velocity field given
perbolic trajectory are not adequate for time-dependenby Eq. (1). Let us assume that there exists an invertible cood-
velocity fields that are only known for a finite interval inate change frome to y, i.e. from Eq. (1) to Eq. (10), which

of time. In the process of convergence, we “lose” muchis based on the movement of an Eulerian structune such

of the velocity field. Moreover, such methods require aas a path of an ISP. Let(z) be a solution that satisfies the
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three conditions given in Definition 1. Then the correspond-fixed region of space (as opposed to following fluid particle
ing x(¢) is said to be a distinguished hyperbolic trajectory of trajectories as they evolve in time), this is referred to as the
Eq. (1). Eulerian point of view of fluid mechanics, which is why we

If y(¢)is a DHT in they coordinates, then the correspond- refer to linearization about a specified point as Eulerian lin-
ing trajectoryx (¢) in the original velocity field is also a DHT, earization.
because DHTs are frame independent. We will discuss ap- It will also prove useful to linearize the velocity field about
propriate coordinate changes and frame independence intetie ISPxsp(¢). We will refer to this as instantaneous Eulerian
sively in Sect. 3 and the Appendices. However, the focus inlinearization, and the linearized equation in this case takes
this paper will be mainly on DHTs that remain in bounded the form:
regions. d Ju ]

Our task now will be to show that this definition does in- Eé = 3% (xsp(t), 1) & — Esp(0).
deed satisfy the requirement of picking out the important hy-
perbolic trajectories for the application of Lagrangian trans-
port theory using the method of lobe dynamics. This is the
motivation for the third part of Definition 1. If the stable
and unstable manifolds of a hyperbolic trajectory intersect

transversely, then there is an associated lobe dynamics th jven regiqn. I—_|oweyer,'hyperbolicity of a given t.rajectory Is
describes the motion of trajectories through the homoclinic? Lagrangian linearization property. Hence, the interplay be-

tangle. A consequence of the transverse intersection of th&ween Eulerian and Lagrangian Iinearization is a key element
stable and unstable manifold is the formation of an invariant"” 4" development of a constructive theory for DHTs.
Cantor set on which the dynamics is chaotic, with all tra- Finite Time Velocity Fields

jectories in the Cantor set being hyperbolic. However, for ere e want to re-emphasize that time-dependent veloc-
our purposes, we would not call the hyperbolic trajectories

in the C «distinauished” h tra ity fields that are only known for a finite time interval, which
In the Cantor set distinguished” as the transport o traject_o-we refer to as finite time velocity fields, are our main con-

ries through this Cantor set is governed by the lobe dynamicg.o ., * £o finite time velocity fields this method is simply
associated with the hyperbolic trajectory whose transversel;hOt adequate, since it requires certain regions to converge to

Intersecting stable and unstable manifolds give rise to the hyy, o hyperbolic trajectory in the appropriate direction of time.
perpollc F:an_tor ;et. . . .. This procedure can “eat up” much of the data set in the pro-

Linearization 'S.SUCh a basic analytlcal mgthod that it cess of converging to the hyperbolic trajectory. Moreover, it
would seem that little negds t(.) b? said about it. Howeve_r’requires the integration of many trajectories. Even if the ve-
there are two types of linearization used throughout thISIocity field is time-periodic, convergence of the method can

wo(:k, each Ptav"rg ta}[hdeflnl'ije fIE[udthdynat\nlwvlczt;\l mterr;rl_etano_n, require integration of many trajectories through many peri-
andwewant fo alert thé readerto these two types otlinearizag, s | the end, this can result in a very complicated geo-
tion that are interweaved throughout this paper.

metric object whose complexity may make it difficult to de-
Lagrangian versus Eulerian Linearization termine the hyperbolic trajectory. The method developed in
this paper eliminates these problems by providing an approx-
imation to the DHT for the entire length of the time interval
of the data set.

Both types of Eulerian linearization will be important
when we search the flow for DHTs, and it is the properties
of the inhomogeneous term of the associated linear equation
(i.e.u (x, 1)) that are crucial for the existence of a DHT in a

Consider the velocity field given by Eq. (1). Letr) be
a trajectory of this velocity field and letg be a specified
point in the domain. In order to check the stability of the
trajectoryx (t) we consider the velocity field linearized about The definition of Hyperbolic Trajectory

the trajectory, i.e. Consider a velocity field given by Eq. (1) over a finite time

ig _ 3_” (x(), 1) & intervalr € [0, 11]. Letx(¢) be a trajectory of this velocity
dt ox e field. Hyperbolicity is a “linear property” in the sense that the
Of course, this is standard in dynamical systems theoryhyperbolicity characteristics of a trajectory are determined
From the point of view of fluid mechanics we are looking from the linearization of the vector field about the trajectory.
at the linearized behaviour around a fluid particle trajectory. The velocity field linearized about the trajectory is given by:
This is the Lagrangian point of view in fluid mechanics, 4 Ju
which is the reason for the term Lagrangian linearization thatai =3 (x(@), 0§, te€lto, L] (11)
we apply in this case.

If instead we were to linearize the velocity field about the
specified poink, we would obtain a linear system having the
following form:

We letX (7, tg) denote the fundamental solution matrix of this
linear system, i.e. it is the matrix whose columns consist of
linearly independent solutions of the linear system.

In the ordinary differential equations community, a type
ig _ ou F 0 E+uE1). of finite time hyperbolicity has been known for some time
dt ox as “exponential dichotomy”. Roughly speaking, this means
This has the form of an inhomogeneous or “forced” linear that trajectories can “separate” at an exponential rate. The
system. When we consider fluid mechanical properties in gormulation seems to be due to Massera anca8eh(1966).
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Definition 3. (Exponential Dichotomy). Equation (11) is 2 Theory of distinguished hyperbolic trajectories

said to possess an exponential dichotomyjzgry, ] if there for forced linear systems
exists a projectiof® (i.e. P2 = P), and positive constants,
L, «, andg such that: 2.1 Motivation for the linear theory
X (2, 10)PX (s, t0)] < Ke™ ™, In this section, we develop a theory of distinguished hyper-
for t>s, t,5¢€/[n,1L], bolic trajectories for forced linear systems when the velocity
IX(t, 10)(1d — P)X (s, 10)| < Le P61, field is available only over a finite time interval. It may seem

rather trivial to study such linear systems. However, hyper-
bolicity is a property of linearized behaviour and, therefore,
Further references on exponential dichotomies are Coppeje feel it is important to understand it first in the purely lin-
(1978), Henry (1981), and Muldowney (1984). ear setting. In particular, the definition of a distinguished

If the matrix associated with the linearized VeIOCity field hyperbo"c trajectory' as well as finiteness of the time inter-
(11) is constant (such would be the case for a steady velocitya| of the velocity data set, should be first addressed in this
field linearized about a stagnation point), then an exponentiatontext. The linear theory will lead to an analytical formula
dichotomy would be equivalent to the property that none offor the DHT given a finite-time interval of velocity data. This
the eigenvalues of the matrix had zero real parts. formula will be used as the basis for our numerical method

Appendix A gives an equivalent definition of hyperbolic- developed in a later section, and it plays an important role in
ity that is more computationally oriented. In particular, we ynderstanding properties of DHTs in nonlinear systems.

represent the fundamental solution in the form of a singular e begin by considering a velocity field of the form
value decomposition:

for s>t, 1,5 €], 1L]. (12)

d
X(t, to) = B(t, 10) exp(Z(t, 10))R(z, 10) ", 5% = FOx + (), (13)
‘évge;e)gg : ;OiTaEd IE(EI ’tt(;)RZrG; )C)Trtflo?or;I g g?ft”tcﬁs' zla.e- wherex € R", F(¢) is an x n matrix, andh(¢) is an-vector
dias 0 i o= e O/ 8 ha »f0) forcing function. BothF(s) andh(¢) are available only for
lagona matr!x W!t (10, 10) = 0 so that expX. (1, 10)) is & t € [to,tL]. Applying the coordinate transformation con-
diagonal matrix with expX (7o, 10)) = |. We then show that structed in Appendix A to Eq. (13) gives
there exists a time-dependent, linear transformation:
d
y =A%, 7Y =Dy+g. (14)
where . . . .
. wherey € R", g(¢) is an-vector forcing function available
A(r) = exp((r — 10)D) Rz, 10)" R(, 10) only for s € [0, 2], andD € R"*" is a diagonal matrix:
-exp(—X(t, 10)) B(t, 10)", L tori
. . : . Dy =& O = (15)
which transforms (11) into the following form: ij 0, fori # j,
y=Dy. with reald; # 0. Diagonalization of(¢) to D decouples the
where generah-dimensional problem inte independent, constant-
D— S 1 coefficient one-dimensional problems. The general solution
= g L0 of Eq. (14) fory; with initial condition y;  at7o can be writ-

The equivalence of the two definitions of hyperbolicity is es- €N as:

tablished in Appendix C where it is shown that exponential

dichotomy is a frame invariant property. .
The outline of this paper is as as follows. In Sect. 2 we n — [5, Yii(t, T)gi(v)dx for d; > 0, (16)

develop a quantitative theory for DHTs for inhomogeneous f,§° Yii(t,t)gi(v)dr  ford; <O,

linear systems. The theory yields an analytical formula, and )

is the basis for the numerical method developed in Sect. 4VhereYi: (z, o) are the diagonal elements of the fundamental

It also gives insight into the behaviour of DHTs in nonlinear Solution matrix:

systems described in Sect. 3. In Sect. 3 we develop atheor¥‘ (1) = {exp[di (t — 1)}, fori = j,

ij\l, = 0,

Yi(t; i,0, to) = yi,dht(t) + Yii (2, t0)yi,0

for the existence of DHTs for one- and two-dimensional non- fori # j. (17)

linear velocity fields. The conditions for existence are based o )
on conditions for the instantaneous velocity field (i.e. proper-If We let7io — —ooandr, — oo, then itis straightforward to
ties of ISPs). In Sect. 4 we develop a numerical method thafoW (Henry,1981) that the unique solution that is bounded
can be applied to either flows defined as a data set, or flow0r all ime is given by:
fchat can be expressed_ in the form of a mathematical formula fioo Y;i (1, 7)gi()dx for d; > 0,
involving known functions or quadratures. The key aspectyi,dnt(t) = oS ' _ (18)
, X i ; — [ Yi(t, 1)gi(v)dr ford; <O.
of this numerical method is that it allows us to compute the !
DHT for the entire length of the data set. This solution satisfies Definition 1 in Sect. 1 and is the DHT.
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A difficulty arises in computingy; gnt(f) using Eq. (18)  straightforward approach to estimating the DHT may be to
when g; (¢) is available only over a finite time interval. A rewrite Eq. (18) into two parts:

L?xi(r Dgi(vdt + [P Yi(t, 1)gi(r)dt ford; > 0,
L

Yii(t, 1)gi(v)dt — f;zo Yii(t, 7)gi(rv)dt ford; <O, (19)

Yi,dht(t) = {

and use only the first term that can be computed from the2.2.1 Instantaneous Stagnation Point (ISP)
available data. However, shortcomings of this approach are
most apparent in two ways. One is the Systematic error in.AS discussed earlier, ISPs do not necessarily follow fluid par-
curred by neglecting the second term. This error correspond8cle trajectories. However, we now show that there is a quan-
to a loss of uniqueness caused by a lack of data outsidétative relationship between DHTs and ISPs that can be ex-
the time interval. The other is the unrealistic initial value Pressed by an analytical formula. This is significant because
yi.dht(fo) = O for d; > 0 and the final value; gni(rz) = 0O computation of ISPs is relatively straightforward, as we shall
for d; < 0. It suggests that such an estimate for the DHT see in Sect. 4.
critically depends on the length of the data set. By definition, the ISPs are given by
In this paper, we propose an alternate approach for ob-

taining analytical formulae for the DHT by expressiga¢) ysplt) = —D g (®). (23)
as Fourier representation or power series. This has two adfhe temporal mean of the ISP is given by
vantages. One is that it allows us to overcome the finiteness
of the data set since expressigg) as such a time seriesis —~ _ ~-1 1 /’L

. . >0 iy Vsp = g(r)dr. (24)
equivalent to extending the time interval to infinity. The other tr — 1t J,
advantage is that it provides an analytical formula for the
DHT whose coefficients are determined by the data. How
ever, there is an additional error associated with the differ-
ence betweeg(z) and its series representation. This issue
is addressed later when we develop a numerical algorithmysp(r) = —D~ 1Z(g(5 Bty + g0 1)) (25)
based on the linear formula (Sect. 4.3.1) and validate it using k=0

a data set (Sect. 4.3.3). Yop = _D~1p0 (26)

0

For the bounded forcing in the form described above, the ISP
‘and its temporal mean take the explicit form:

2.2 Time-independent system matrix with bounded forcing Based on these expressions, we can make the following

. . . . observations:
We consider a-dimensional linear system Eq. (14) whose

velocity data set is available overe [rg, 7;]. In addition to — The ISP (as a function of time) and the forcing are pro-
the hyperbolicity ofD, we make the following assumptions portionally related in each variable with factord; for

on the forcingg (¢) Eq. (14). i =1,...,n. Accordingly, if ysp(?) is bounded, so is

g (). This fact implies that the ISP provides a measure

Assumption 2.1 Given the data over € lf, 7], £(1) is of the boundedness of forcing, when the forcing is un-

bounded and can be expressed in the following form:

known.
K

g)=Y g"Pw) + gL, (20) — From Eq. (24), we see that the time mean of the ISP is
directly related to the time mean of the forcing as well.

where

@) = b0 sinw®r, g0 (1) = p0 cosw®)r, Exgmplg 3. Con§ider the one-dimensional vector field with

o a sinusoidal forcing
= , w® = ko, (21) d
fL—1o —y =dy+bsinwt, (27)
and di

6B 1Eh 1 rt _ ® whered, b, andw are real numbers. It is a generalization

@7, b)) = Z,/ g@)(sinw™r, cosw ' n)dt.  (22)  of Example 2 in Sect. 1. The trajectory through an arbitrary
fo initial conditionx (0) atz = 0 is given by

Note that any bounded forcindig (t)|| < gmax for a time

interval t C [to,t2] can be expressed as a Fourier series. _ b ;

o . . . y() = sin(wt + a)
Moreover, this is equivalent to extending the forcing for an A d? + a)2
infinite time interval, therefore securing the uniqueness of the dt
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and one easily verifies that all trajectories are hyperbolic.
The distinguished hyperbolic trajectory is given by

b
dht(t) = ———=sin(wt + @), 29
Yo = 29
where the phase shidtis given by
w
t = —, 30
ano ¥ (30)

with wer > 0 (with respect to the general notatian® =
o = w)and—% < « < %. Similar results for the DHT
with a cosine forcing also hold.

2.2.2 The Distinguished Hyperbolic Trajectory and
its relation to the instantaneous stagnation points

repelling case (d>0)

(d,¥/d)=(1, 2)

o B N w » o

-

o B N w & @

. n
-2 1 0 1

i X
(d,0®/d)=(1, 0.5)

2
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attracting case (d<0)

(d,@®/d)=(-1,-2)

o B N w > o

X

(d,0%/d)=(-1,-1)

o B N w & «

Since the forcing Eqg. (14) is assumed to be represented as _|
a Fourier series (recall Eqg. (20)), the superposition principle -, |

for linear systems allows us to solve Eg. (18) analytically:

K
yan(®) = =D @V @) + 2P 1)

(31)
=0
where
(s k ek
@M, 8 M) =
K, (s.k k ok k
@ +af), g P + ), (32)
and
o = _r ,
! 0® 2
V1I+E)
(®)
tana ) = <, (33)
1
with w(">al.(k) >0and-% < al.(k) <Z.fori=1,...,nd

andw® are defined in Egs. (15) and (21), respectively.
We now make the following observations:

— We see from Eq. (31) that the DHT is given analytically
with well-known functions. This will also be very ad-
vantageous when we describe our numerical method fo
finding DHTs in data sets.

o kB N w & o«
A

o kN w & a
\

xo

o B N w &~ o
o B N w » o
/
/

> of

Fig. 3. Graphs of the DHT ¥gnt(#)) and the ISP ¥sp()) are
shown by solid and thin-dashed lines, respectively, in each panel
for various time-scale ratioso(*) /d) with a fixed forcing ampli-
tude ¢ = 1). The left and right columns correspond to repelling
(d > 0) and attractingd < 0) cases, respectively; the absolute
value of the time-scale ratios are in decreasing order from the top to
the bottom rows, i.ew® /d|=2, 1, 0.5 and 0.2.

Here we present two simple examples in the one- and two-
dimensional cases that will concretely demonstrate some ba-
sic geometrical relations between the DHT and the ISP. We
will see later that these relations also hold for nonlinear ve-
focity fields (Sect. 3) and lie at the foundation of our numer-
ical method (Sect. 4).

— By comparing Eq. (25) and Eq. (31), we see that thereExample 4.One Dimension: Time-scale dependence for the

is a direct relationship between the ISP and the DHT.
This relation between the DHT and ISP is described by

Repelling ¢ > 0) and Attracting{ < 0) Cases. Equation
(14) in one dimension is:

the time-scale ratio between the forced and the unforcedy

dynamicsw® /d;, which controls:

1. phase—shiftxi(k),
2. amplitude ratiol.(k).

We will see in the next section that when solving for
the DHT in a nonlinear system, we will choose one of
two localization procedures. The particular choice will
depend on the time-scale ratid® /d;.

T =dy+g(), (34a)
where
g(t) = bcosw®s. (34b)

The geometrical relation between the DHT and ISP, and
its dependence on parameters is illustrated in Fig. 3. Specific
parameter sets&d, X, b) are chosen for fixed|d|, b) =
(1, 1), but with four values of»®) so that the amplitude
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2 2
1k 1k
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i i Yant
ysp
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Fig. 4. DHT and path of ISP in time with the corresponding initial position indicated by the diamond (DHTYy &&P) for the two different
phase valuegu1, ap) = (0, 0) and(ay, ap) = (0, —0.25) for the left and right panel, respectively. Other parameter values for the saddle are
the same for the two panels with1, w1/d1, b1) = (1, 1, 1) for the repelling direction an@is, wy/d>, bo) = (—1, 1, 1) for the attracting
direction, and the trajectories move in a clockwise sense.

of the ISP is the same for all cases but the time-scale ra-

ing behaviour:

tio o® /d, which governs the relation between the DHT and

ISP,
We make the following observations:

— The amplitude factor® (< 1, always) has the follow-

— 1, for|w®/d| — OF (slow forcing)
— 0T, for |w®/d| — oo (fast forcing)

i (k) (9] i
(i.,er™ anda'®) varies. (35a)

M0 {

The slower the bounded forcing is, the wider the range
of DHT movement. The largest range of the movement
must lie within the range of ISP movement. When the
forcing is fast, the DHT hardly moves.

The DHT has the same harmonic functional form as the
ISP, but with an amplitude factor and a phase shift. Both
the DHT and the ISP have the same periodicity as the
original bounded forcing.

— The phase shift exhibits the following behaviour:

a®

— 1/2, forw® /d — oo (fast forcing; divergent dynamics)

= n/4, foro®/d =1,

— 0+,  forw® /d — Ot (slow forcing; divergent dynamics) (35b)
— 0, forw®/d — 0 (slow forcing; convergent dynamics)

—n/4, forw®/d = -1,
— —n/2, forw® /d — —o0 (fast forcing; convergent dynamics).

When the flow dynamics is divergent (convergent), the The results in Egs. (35a) and (35b) can be physically
DHT proceeds (follows) the ISP. This is a general phe-interpreted as an impedance factor between the ISP and
nomenon that will hold for all one-dimensional veloc- DHT. Haller and Poje (1998) observed that when the time-
ity fields under general assumptions, as we will showdependence of the velocity field is “slow enough” with re-
later. Furthermore, the slower the bounded forcing is,spect to the Lagrangian time-scale, the ISP stays near the
the lesser the phase shift; this is because the DHT haklyperbolic trajectory. This corresponds to a special case of
more time to adjust to the forcing with which the trace our theory, i.e. forwo® /d — 0F for a short time interval;

is in phase. As the forcing becomes faster, the DHT andsee Egs. (35a) and (35b) above and also the bottom two pan-
ISP become completely out of phase; the amplitude ofels of Fig. 3. However, as the forcing becomes faster, i.e.
the DHT oscillation is nearly zero. for |w® /d| — oo, the DHT no longer follows the ISP and
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becomes almost stationary. The distinguished hyperbolic trajectory is obtained by solv-
Accordingly, there are two approaches to obtain the DHTing Eq. (18) analytically:
in a nonlinear system given an ISP. One is to linearize around K
Fhe IS.ID by moving with it whgn the forc_mg_ is slow. Apother Yaht(t) = Zg(u,k) (t). (39)
is to linearize around a stationary point in space given by o
the time-averaged ISP when the forcing is fast. We will dis- h
cuss the nonlinear theory and conditions for the choice of "Nere
approach in the next section. ik r k k!
. =Y (0
Example 5. Two-Dimensional Saddle CaseEquation (14) m=04; (k —m)!

in two dimensions is: Example 6: Consider the general case of Example 1 dis-

d cussed in Sect. 1.
—y1 =d1y1+ g1(t)

‘g %y —dy + bt (41a)
priche —day2 + g2(1), (36) b

Y1) = —t (41b)
whereg; (t) = b; cos(w;t + ma;), andd; > 0fori = 1,2
where the subscriptrelate tox;. yc(Jlt?t(t) — _St _ % (41c)

Since this two-dimensional equation has been decoupled
into two one-dimensional equations, the same behaviouNote that the DHT is always a constant distarde'd? away
holds for each component as described in the previous onefrom the ISP, as illustrated in Fig. 1.
dimensional example. However, two-dimensional DHT tra-
jectories can be rather counterintuitive based on the ISP, and.4 Time-dependent system matrix

the difference may significantly depend on the phase differ- ) ]
ence in the forcing, as illustrated in Fig. 4. We now consider the more general case of a system with

time-dependent coefficients:

2.3 Time-independent system matrix with d
unbounded forcing 5= F(t)x + h(1), (42)

Now we will consider the case where the forcing can be un-WhereF () is the time-dependent Jacobian of the linear sys-
bounded. However, it will only be allowed to grow alge- tem, which is not necessarily diagonal. The ISP is given by:

braically in time. xspt) = —F(1)Lh(1). (43)

Assumption 2.2 where itis assumed th&i{r) is invertible over the time inter-
val of interesty € [rg, .].

1. The divergence rate of the forcing is slower than the This linear system has no analytical solution in general,
exponential so as to not conflict with the exponential di- /€N Whenk(z) can be expressed as a Fourier series or al-
chotomy around the DHT. In particular, we assume that gebraic function of. The difficulty in computing the DHT
given the data set over a finite time [#o, 7 ], the forc- arises from two main sources associated Fth), as we

ing g(¢) can be expressed in the following form: shall see in an example. One is dimensionality. Unlike the
case of a one-dimensional system, the stability type of a tra-

K K jectory can be not only hyperbolic or neutral, but also el-

g™ (1) = Zg(u,k) (t) = Zb(“’k)tk, (37) liptic. Another is time dependence. Unlike the case with a
=0 =0 time-independent coefficient matrix, the instantaneous eigen-

values ofF(¢), or the instantaneous geometry of the linear
whereb®b is the constant coefficient for polynomial Velocity field may no longer reflect the stability type over the
forcing. time intervalr € 1o, ¢, ].
To overcome the difficulty and compute the DR §ni(r)
2. Still, realistically speaking in geophysical flows, the of Eq. (42), we carry out the following steps:
fastest unbounded forcing is linear, ile= 1. It corre-
sponds to a translating coherent structure system wit

S . Etep 1. Seek atime-dependent coordinate transform:
quasi-uniform velocity.

) =A)x(1), 44
The ISPs are given by y(@) =An)x@) (44)
K so that the resulting linear system fpfr) is a de-
ysp(t) = —D7* Z bRk, (38) coupled, time-independent coefficient system as in

k=0 Eq (14)
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Step 2. Determine the stability type in the system system defined bl andg(z), given a time-dependent coef-
based on the time-independent Jacobian matrix ficient system defined bi(z) andh(¢). In Appendix B, we
prove thatA(¢) obtained in this way indeed takes a trajectory
y(¢) of Eq. (14) into a trajectory (¢) of Eq. (42); and hence
xdnt(¢) of EQ. (45) is indeed a DHT in the system. In other
words, DHTSs are frame-independent (Haller, 2001). On the
contrary, the ISPs are generally frame-dependent; and hence
Step 4. Invert the coordinate transformation given by xsp(?) and ysp(t) do not need to correspond to each other
Eq. (44) to obtain the DHX gni(¢) in thex system: under this transformation, i.e. they are frame-dependent:

Step 3. If the stability type is hyperbolic i then com-
pute the DHTygnt(r) for the y system using the
methodology described in Sects. 2.2 or 2.3. If the
stability type is elliptic, then our method fails.

xah() = A yam(t). (45) xsp(t) # A@) Lysp(t). (46)

We show in Appendix A how to accomplish Step 1, i.e. . o _
we develop a methodology to computér) and the resulting  Example 7: Consider the velocity field given by:

i x1\ _ [81+82c08Pt S2sin28r — B xy b1 coSwit + ai) (47a)

dt \x2 )~ \ 82sin28f + B 81 — 82 C0S Bt X2 bo coSwot + a)

whereF(¢) depends on the parameteds (81, 62) andh(t) Here the subscriptsare related to; fori = 1,2. We as-

depends on the parametdis;, wp), (a1, a2) and (b1, by). sume thaﬁf — 8% + B2 + 0 so that an ISP exists:

Yeoll) = — 1 b1(81 — §2cos PBt) codwit + ar) + ba(82sin 281 + B) coSwyt + ap) (47b)
splt) = 5% — 8% + p2 \ h1(52 sin 28t — B) coq w1t + a1) + b2(81 + 82 cos Br) coOLwot +a) |

The two instantaneous eigenvalu% of F(¢) are time-  without exponential deformation. The area of the circle re-

independent: mains constant if and only if the trace of the Jacoltér) is
zero.
A,it =81+ /5% — B2, (48) Here we consider the case = O, 8% < B? (Fig. 5a)

where the instantaneous velocity has an elliptic type struc-

and hence the instantaneous flow structure araupd) ap- ture aroundesp(z) at any timer. However, a unit circle put
pears to be hyperbolic faf; = 0, 3% > B2 and elliptic for aroundx = (0, 0) at timer = 0 undergoes a counterclock-
5, = 0’55 < B2 for anyt. wise rotation and it deforms at an exponential rate in time

The stability type of the trajectories over a time interval (Fig: 5b), suggesting that the trajectories are hyperbolic and
1 € [1o, 1] in a linear velocity field can be graphically exam- the DHT may hence exist. We therefore apply the 4-step pro-
ined by the evolution of a circle put into the velocity field. If cedure described above. .
the stability type is hyperbolic, then a circle will deform to ~ USing the methodology in Appendix A, we compute the
an ellipse at exponential rates, where exponential growth of0rdinate change (Step 1):
the semi-major axis and exponential decay of the semi-minor cosBt sinBr
axis correspond to twice the finite-time Lyapunov exponentsA () = (_ sin Bt COS,Bt) (49)
along the principle axis (Appendix A). If the stability type
is elliptic, then a circle will remain near a circle and rotate and the time-independent coefficient system:

d .
—y1 = d1y1 + b1 coOSw1t + ay) COSBt + by cOwat + ap) Sint ,

dt

d .

Eyz = doy2 + by cOwat + ap) COSPt — by cOS w1t + a1) Sinpt , (50)
where(dy, d2) = (81 + 82, 81 — 82). y system has a hyperbolic type structure, as shown in Fig. 6a

(compare with Fig. 5a). A unit circle put around= (0, 0)

Forsy = 0,82 < 63, the two eigenvalues for thesystem def i ] i 6b
are real and of opposite signs and the trajectories are hypeﬁ” = 0 deforms to an ellipse at an exponential rate (Fig. 6b).

bolic (Step 2). In fact, the instantaneous velocity field in the However, the semi-major and semi-minor axes of the ellipse
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Fig. 5. Time-dependent coefficient systemanfor a§; = 0, 8% < B2 case, with a parameter spt= 2.34, (61, §2) = (0.0, —0.4),

(w1, wp) = (3.23, 3), (a1, a2) = (0, 0), (b1, bp) = (0.8, 0.9) a) instantaneous velocity field mwith a red cross foxsp(0); b) evolution of

a set of trajectories starting at= 0 on a unit circle around the origin fere [0, 3], where the square on each ellipse is at the semi-major
axis.

are aligned with the axes of thesystem at any, and the  exponential behaviour to be uniform in time.

ellipse does not rotate (compare with Fig. 5b). This is one

of the two roles p|ayed by the coordinate transfdkii): to Using the methodology described in Sect. 2.2, we obtain
suppress the rotation of the principle axis, and to regulate théhe DHT ydnt(#) (Step 3):

Y1dnt(r) = —Tz{bl[rﬂ cosw; t + af; + a1) + r;; CoSwy 1 + apy +a1)]
+balr,sin(wyt + afy + az) — ri,sin(w, t + ap, +a2)l} (51a)
y2,dnt(t) = —2%2{/92[% COSwy 1 + oy + az) + 15, COSwy t + ayy + a)]
— bl[r;'l Sin(a)i’_t + O‘;—l +a1) —ry; Sin(wy t +ay; +a)l}, (51b)
where
+
a)jE =wjxp, ri = —l , otl.j; —tan ! % (51c)

Figure 7 shows the time evolution ®fin(r) andysp(?) for time evolution ofxgni(r) andxsp(r). In the time-dependent
t € [0, 3], whereygp(t) is the ISP of Eq. (50). As discussed coefficient systemygni(f) andxsp() no longer need to sat-
in Sect. 3.1 for the nonlinear case for eack 1, 2, y; dnt(?) isfy the relation discussed in Sect. 3.1 and hence it is quite
lies within the range defined by the minimum and maximum possible that gni() does not necessarily lie within the region
of y; sp(t). Also, y; dnt(t) changes direction only when it in-  wherexgp(¢) is observed over the time interval.
tersects withy; sp(?).

Finally, the DHT xgni(2) is obtained through the inverse 3 Nonlinear theory of DHTs and their relation to ISPs
coordinate transforni\(r)~1 (Step 4). A straightforward

substitution confirms thatgn(7) is a solution of Eq. (47a) In this section we will obtain some results for the existence
and hence the DHT is frame-independent. Figure 8 shows thef DHTSs for nonlinear velocity fields with emphasis on their
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Fig. 6. Time-independent coefficient systemyircorresponding to Fig. 5.

relation to ISPs. This is critical in the numerical identifi- Note that, in generaksy(r) is not a particle trajectory. In par-
cation of DHTSs, because ISPs are observable in the velocticular, if xsp(t) were a particle trajectory, then it must satisfy
ity field but DHTs are not. We will also show how these the equation

results are related to the linear results in the previous sec-

tion, so that these results can be used to develop a numeric xsp(t) = u(xsp(t), 1) = 0,

method based on there results in the next section. An im-t

portant theme of our approach is that we are able to deducg hich would imply thatrep(r) is constant in time. In the

information about time varying Lagrangian structures from applications that we will considexp(r) generally changes
a sequence of the instantaneous (or “frozen time”) Ve|°Cityposition ag varies.

field. This yviII be apparent in the a_ssumptions thqt we makelsolated ISP1 et
about the instantaneous velocity field. For one-dimensional
velocity fields th.ese assumptions will be manifested in the(xgg”, xgg)ax) = (minxsp(t), maXxSp(t)) ,
form of assumptions on the ISPs.
We will first treat one-dimensional velocity fields which where the maximum and minimum is taken over 7o, 7.],
is relevant for finding DHTs on the boundaries of two- and we assume thafy" andxg™ are bounded. We assume
dimensional flows with free-slip boundary conditions, and thatin the box in the: — ¢ plane defined by

then two-dimensional velocity fields. .
x;"p'” <x <x3® fo<t<ty, (54)

3.1 One-dimensional velocity fields there are no other ISPs.

Hyperbolicity of the box containing the ISIAe will assume
that thatdu /9x does not vanish in the whole box as defined
above.

Hence, there are two cases:

We consider a one-dimensional velocity field of the form
Eq. (1) defined for € [1;-, t;+], i.€e.

d

—x =u(x,t), x € R. (52)

dt . ou

repelling: —(x,t) > O,
X

The velocity field should be (at least) continuous in time, and _ p (55)
we will require it to be differentiable in space (so that lin- attracting:—(x, ) < 0.

. o . dx
earization makes sense). In addition, we make the following
assumptions on the ISPs. We remark that the assumption that the ISPs are isolated
Existence of an ISFFor¢ C [rg, 71.] there exists an ISP, de- and hyperbolic rule out the subject of bifurcation of ISPs and
noted byxsy(7), i.e. a function satisfying the consequences of this for DHTs. This is an important topic

for applications but is outside the scope of this work.
u(xsp(t), 1) = 0. (53) We are now ready to state and prove the theorem.
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Fig. 7. The DHT and ISP for € [0, 3] in x: (a) phase space plot where the initial locations are indicated by a squarg{®) and a cross
for xsp(0) (see Fig. 6a)(b) time series.

Theorem 3.1 1. Forf;, = oo there exists a DHTxghi(?), denotes the time evolution of the intervgl under the trajec-
having the same stability propertiesag(¢). This DHT  tories of Eq. (52).
satisfies the bounds Choose som& > 0 and consider the spatial intervals at
_ timer + jT
xgp" < Xdnt(t) < xgp,  f0 <1 <00,

Lpvjr =x(o+ jT, 10, Isp), j=0,1,2,...,

and is unique in the sense that it is the only DHT satis- ;g
fying these bounds.

. . I_i=1ixp0€ l;|x(to+ jT, to, x0) € L1y iT N 11} .
2. For 1, finite, essentially the same result as 1 holds. ’ 1xo € I [x(to + T, 10,.x0) € Ty j7 O L}

However, in this case, uniqueness of the DHT does noSince the points of,,, ;7 intersecting the left and right ver-

necessarily hold. Rather, there exists an interval of ini- tical boundaries of the box for a fixed leave the box and

tial conditions,Z, satisfying move to the left and right, respectively, ass increased, we
have:

min _ T < xymax

Xs sp
P P IoDI_1D12D---.

such that trajectories in this interval a§ satisfy these
bounds for € [#, t1] and have the same stability prop-
erties asysp(?).

All the trajectories whose initial condition is im;?‘;o I_;
stay in the box for both positive and negative time. We now
want to prove that there is only one trajectory staying in this

Proof of 1: We prove 1 for the repelling case. The proof for box, or equivalently that

the attracting case is similar. 00 _
Sincexsp(?) is assumed to be isolated in the box defined ﬂ I_j = apoint. (56)

by {(x, t) | x;“p'” <x < xgg,aX, fo <t < oo}, we can choose /=0
ane > 0 such thatesp(t) is isolated in the box defined by

min max
o) | xgp” —€ = x < xgp" + € fo =t < 00}, SBE 5 noiny pyt an interval. First, we note that every trajectory
Fig. 9. Moreover, sincesp(r) is repelling and there are no i, injtial condition in this interval must be hyperbolic and
other ISPs to reverse the direction of the instantaneous Veloq"epelling This is seen as follows. Latr) denote a trajectory
ity than xsp() itself, points on the left vertical boundary of with initial condition in lim;_.o /_;. Then stability of this

the box move off the boundary to the left and points on theypia ctory is determined by the Lyapunov exponent, which is
right vertical boundary move off the boundary to the right. given by

Let x (¢, t9, xo) denote the solution of Eq. (52) through the

The proof is by contradiction. Suppose lim., I_; is not

pointx = xp att = to. Let I;, denote the spatial interval im 1 (" 0u, J
xP"—e < x < xJ¥+e. Thenl, = x(t, 10, Iyy), t > 1o, 100 t o a(x(r),r) T,
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a) b)
4 4
= ; — Xian
3 | - T T 7 Xz,dh:
2 — 2 - Xl,sp
| 2,sp
B 1
N X
< OfF X 0
1F
21 2k
« i
3r X 3r
_ 1 1 1 ] 1 ] 1 _ 1 1
443 2 10 1 2 3 4 40 1 2 3
X, t
Fig. 8. Similar to Fig. 7, except for the system.
which must be positive since we have assurgfged> 0. Our goal here is to provide a theoretical background for

Returning to our proof by contradiction, if lim, o, 7_; is the two classes of definitions for the DHT (Definitions 1 and
not a point, but an interval, then the endpoints of the interval2 in Sect. 1), and to develop a numerical algorithm for com-
are the initial conditions for trajectories that stay in the box puting the DHT. We accomplish this goal by taking a series
for all t > 9. These trajectories are repelling by the argu- of coordinate changes as follows: (1) framto x’, which
ment given above. Then there must be an initial conditionlocalizes the velocity field near the ISP; (2) frat to w,
between these two endpoints corresponding to an attracting’hich results in a velocity field with an orthogonal, time-
trajectory. However, this is impossible since we are assumingndependent linear part, so that the linear results developed
thatg—f( > 0 everywhere in the box, and as we argued abovejn Sect. 2 can be applied to the corresponding linearized ve-
all trajectories with initial conditions in this interval must be locity field; (3) fromw to y for additional localization, so that
repelling. Hence, our assumption that fim,, /_; isanin-  the existence can be proven for the nonlinear velocity field;
terval gives rise to a contradiction. As a result we must haveand then analytically identify the DHT im by (4) reversing

Eq. (56). these coordinate changes fram(or y) to x.

This point is the initial condition at = o for a hyper- In the one-dimensional case, three assumptions are made
bolic, repelling trajectory that is our DHT. By construction it concerning the ISPs of the instantaneous velocity field, i.e.
satisfies the bounds of the theorem. existence Eq. (53), uniqueness Eq. (54), and hyperbolicity

Proof of 2: Choosg andT suchthatg+ jT =t;.. Thenwe  EQq. (55) in thex — ¢ box. In the two-dimensional case, we
can takel_; = 7 since, by the construction abovke,; = 7 first assume only the existence of ISPscinAdditional as-
is the (unique) set of initial conditions that remain in the box sumptions will be made later in the and y coordinates as
until time ;.. O necessary.

. . . . Existence of an ISPFort € [t;-, t;+], there exists an ISP,
Therefore, the one-dimensional nonlinear provides us th%enoted bycsp(t) = (x5p1(t) xspz(t)) ie

geometrical relation between the ISP and DHT. Accordingly,
the ISPs can be used as a marker for DHT identification.  wu(xsp(¢), ) = 0. (58)

3.2 Two-dimensional velocity fields Note that the same argument as in the one-dimensional case
applies to show thatsp(r) is a particle trajectory only if it is

Now we develop the theory for the existence of DHTs in constant in time.

two-dimensional velocity field of the form Eq. (1) defined Once such a&sp(r) is observed in the velocity field, we

fortr e [1-,1.+], 1.€e. use it as a marker to begin a series of coordinate changes as
carried out below.

d

—x=u(x,1), x=(x1x)ecR (57) .

dt 1. Localization near the ISP (from x to x”)

By takingt;- — —oo and/ort;+ — oo, the results below In order to prove the existence of a DHT, we must first

can be applied to the bi- or semi-infinite time interval. transform to a coordinate system that is localized about
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4 Xg® L.

«~1— —>
«~1— —>
1:0 - X
min - 1-) max
Xep — &€ < I, *Xop + €

Fig. 9. Graph of the one-dimensional ISRp(r) and initial time
interval Ir,.

an appropriate structure in the instantaneous velocity
field:

x =x"+xgp (59a)

The resulting velocity field fox” can be represented as
a sum of linear, forcing (i.e. purely time-dependent) and
nonlinear terms:

%x’ = F(n)x' + hFORB (1) (59b)

+hMNO (x4 xsp, 1) (59¢)

by substituting Eq. (59a) to Eq. (57) and separating
the linear part. Note that the superscript “(NL)" de-
notes nonlinearity in th&’ variable. There are two ap-
proaches forsp that we will pursue below. The choice
between the two will be discussed later, and is based on
the linear theory such that the next coordinate change
from x’ tow results in the most suitable system for DHT
identification.

(i) Transformation to a Coordinate System Localized
about the Mean Stagnation Point: Eulerian Local-
ization

We localize the velocity field about the mean stag-
nation point:

— 1 L+

Xsp=Xsp= —— / xsp(r)dr. (60a)
i+ — 11— 1 -

The three terms in the right-hand side of velocity

field Eq. (59b) are:

duy duy
F(O) = Jlu, Xl = | §33 §2 (60b)
_— (Xsp,?)
0x1 0x2
hFORCB (1) = u(xsp. 1), (60c)
D (2" + Xsp, 1) = u(x' + Xop, 1)
—F)x' —uxsp, 1). (60d)

(ii) Transformation to a Coordinate System Localized
about the Curve of Instantaneous Stagnation
Points: Instantaneous Eulerian Localization

We localize by moving with the ISP
xSp = xSp(t) (61a)
The three terms of the velocity field are:

F@) = Jlu, x]lxsp0).0)
duy dup

_ | axy axz
- Bué Bug ’ (61b)
_— (xsp(t),1)
dx1 Jdx2
RFORCB (1) = —sgp(1), (61c)
END (" + xsp(0), 1) = u(x’ + x5p(2), 1)

— F()x'. (61d)

. Transformation to a system with constant (in time)

linear part (from x’ to w)

Once the appropriate type of the localization has been
carried out, then we perform a coordinate transforma-
tion to make the coefficients of the linear part of the
equation constant in time. We now apply the coordinate
transformation defined by:

w(r) = A@)x' (1), (62)

whereA(r) is valid forr € [1,-, 1;+] as it is derived in
Appendix A to Eg. (59b). Note that this transformation
is applicable to Eqg. (59b), independent of the choice for
xsp given by Eq. (60a) and Eq. (61a). After this coor-
dinate transformation, the velocity field then takes the
form:

d
—w =Dw+ gPORCB (1) 4 gL (1), (63a)

whereD is a constant matrix and
g(FORCE}(t) — AR(FORCB () (63b)
e™O (w, 1) = ARND (A—lw, z) . (63c)
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Neglecting the nonlinear terms of Eq. (63a) gives the
associated linear, inhomogeneous system:

d
Jw=Duw+ gFORCB (1),

We now impose the second assumption on hyperbolicity
so that the corresponding DHT is saddle-type in stabil-
ity for both nonlinear Eq. (63a) and linearized Eq. (64)
systems.

Hyperbolicity: We assume that the matfixhas the fol-
lowing form:

(AT 0\ _(di0
o= (0 22)=(54)

where

(64)

(65)

do=2"<-1<0<i<d ="

The system Eg. (64) consists of two independent lin-
ear inhomogeneous systems. Therefore, we can imme-
diately write down a formula for the associated linear
DHT for each system using the theory from Sect. 2,
without the third assumption concerning the uniqueness
of the ISP. We will denote such a DHT hypt.

Moreover, there are two approaches to the coordinate
transformation fromx to x’ effected by localization
about: (i) the mean ISRsp Eq. (60a), or (ii) the ISP
xsp(t) EQ. (61a). The results from the linear theory pro-
vide a criterion for the choice between the two as we
now describe.

The time-scale ratio and the choice of Eulerian local-
ization: Let us denote the most dominant character-
istic time scale of the forcing FORCB (1) by the fre-
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Theorem 3.2 (Existence and Uniqueness of DHT)

NL
Suppose that g™Y) [, | g o< 00 and

1 1
(NL) _ 1
[ 8y lo (dl dZ) < 1

(L)
whereg "™ = 28—

Then Eg. (66) has a unique bounded DHT, denoted by
Yaht(?)-

€ RY*" js the Jacobian matrix

Proof: This proof of this theorem can be obtained
through standard iteration or fixed point methods, but
it is a bit cumbersome and lengthy to set up and carry
out (see Ju et al., 2002).

. DHT in the original coordinate x

Tracing back through the original coordinates, the DHT
is given by:

xXan(t) = xsp+ A (wand®) + yan(®) . (67)
wherexgp is either i) xsp for fast forcing or ii) xsp(t)
for slow forcing. Using Theorem 3.2 along with Ap-

pendix C, suchregni(z) is indeed the DHT of Defini-
tion 2.

In the next section we present a numerical method that
gives an approximation of the DHT for the entire length
of the data set. In particular, it provides an expression
for:

Xaht(t) = Xsp+ A() Lwane(r). (68)

quency vectorFORCP and the eigenvector of the lin- 4 A numerical algorithm for computing Distinguished

ear dynamics byl = (di,d2). From the linear the-
ory (Sect. 2.2), the time-scale ratieFORCB|/|d| de-

Hyperbolic Trajectories in two-dimensional flow

termines whether the DHT is (i) nearly stationary near In this section we describe a numerical algorithm for com-

Xgspor (i) moves closely with the ISEsg(t). Therefore,
we localize about (i} s, when|oFORCE|/|d| > 1, and
(if) xsp(t) when|oFORCB| /14| < 1.

puting DHTs in flows defined by data sets. The algorithm is
based on the linear theory of DHTs developed in the previous
section. We consider a flow field defined on a Cartesian co-

ordinate grid{x; ;} = (x;,y;) fori =1,... , Ny andj =
1,...,N;, and at a sequence of timeg,/ = 1,..., N;.

_ _ The “discrete” velocity field has the fornm(x; ;, #;). Note

To prove the existence of the corresponding DHT for- that spatial and temporal interpolation provides a “smooth”
mally in the nonlinear velocity field, we introduce a fi- yelocity field,u(x, #). For convenience in a two-dimensional
nal coordinate transformation. Let flow, we use(x, y) instead of(x1, x») in this section.

. Localization of the velocity field aboutwgni(z)
(from w to y)

w = wdnt(r) + Y. 4.1 Outline of the numerical approach for finding and

Then the nonlinear velocity field Eq. (63a) takes the tracking DHTs

form: In order to apply the theory developed in Sect. 2 to a ve-

locity field defined by a data set, we must construct a time-
dependent linear approximation to the velocity field. For this

linear model to calculate the DHT we must linearize about a
good estimate for the DHT. As discussed in Sect. 3.2 there
are two approaches:

d

)= Dy + g™ (wane) + y.1).
This is equivalent to the velocity field Eqg. (10) for Def-
inition 1. Therefore, we have the following theorem for
the DHT of the first class.

(66)
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(i) For “fast” forcing, the DHT remains near the time aver- 4.2 Construction of the instantaneous linear model from
aged position of the ISP. the data

(i) For “slow”forcing, the DHT follows the path of the ISP. | order to find the ISPs of the flow, we must consider the

The difference between these approaches given b%nt:ariz?r':ioq 9f thetflovz VelOCiti?S <within<a C?"' F_et< us
Eq. (60) and Eq. (61) is only apparent in the forcing term efine thed, j) rectangie agxly; = o= XAl Yjo=
h(FORCB (1) We therefore use the same notation for both? = yj+1}, defined by the four adjacent grid points

cases in order to simplify the discussion. Lej, be the  ¥ijs ¥i+Ljs ¥ij+L ¥it1j+1) It x lies within the @, /)
(possibly time-dependent) path of our a priori estimate of thece"’ then we app_roxmate_the velocity within this cell by
eans of bilinear interpolation

DHT path (see Sect. 3.2). We seek to linearize the velocit)/“

field around this path and solve the resulting system for the 1

DHT. u(x,t) = Ax-Ay-{(Axi — &) (Ayj —n) u (1)
We thus take the following steps: '_ ! o o o

Step 1: Search for a DHT candidate and its neighborhood: + By =m i1 (0 + (Axi = §) wij41 (1)

Since the pathsp is based on the behaviour of an ISP, we +énuiy j1(0)}, (71a)

first look for persistent and bounded ISPs in the entire data .

set so as to find neighborhoods where DHTs may exist. Deyvhere we have used the notation

tails of each procedure will be discussed in Sect. 4.2. wi j (1) = u(x;j, 1), (71b)
a. At each time slicg; for I = 1,..., N;, examine the  (Axi, Ay;) = (Xit1 — Xi, Yj+1 = Yj), (71c)

velocity field and identify all ISPs (an efficient method ¢ = (¢, ) = (x — x;, y — y)). (71d)

will discussed in Sect. 4.2.1).

. . . . 4.2.1 Efficient search for ISPs
b. Identify each ISP that persists continuously in a

bounded area isolated from any other ISPs throughoulzn efficient search for ISPs is conducted by first looking for

the entire time series. any(i, j) rectangle which satisfies a necessary condition, and
then examining a sufficient condition only for thoge j)

prectangles that satisfy the necessary condition. By definition,
bilinear velocity in any(i, j) rectangle velocity satisfies the
relation:

c. Define a pathxsp, around which to linearize. As dis-
cussed above, this may either be the path of an IS
xsp(t), or the time-averaged path of an ISP, The local
coordinate systema’ has its origin afrsp:

* = xept ¥ (69) Ui () = ux.m) <ulw).

v @) < v(x, n) < oK@, (72a)

Step 2: Construction of a time-dependent linear mo&eich

of the possible linearization strategies discussed above dé/yhere

fines for each time slice &, j) cell which we may use to (u;n,i-n(tz), u,’»“f"(tz)) = (min, max){u; ; (1),

develop a linear local velocity field:
P y wid, j (), ui j+1(n), uivy j+1(0)}, (72b)

FORC .
u(x, ) = ux(xsp, t])x/ + uy(xsp, [l)y/ + h( B([), (70) (U?;n(tl)’ UTJ-&X(H)) = (min, max){v,-,j(t[),

whereu, (xsp, ;) andu,, (xsp, #;) are to be determined later. Vi1, j (1) Vi, j41(0), Vit j+1(1)) (72¢)
Step 3: Application of the Fourier (linear) DHT theor¥his

is accomplished in the following steps according to Sect. 2. Necessary conditionif there exists an ISP in a@, ) rect-

angle at time;, then the following condition must hold:
a. Construct the coordinate changesw(r) = A(t)x' (1), , )
so that the resulting systeminhas a time-independent  #;'j (1) <0 <u"@), — v}"(1) <0< v"P@). (73)
system matrixD (this procedure is discussed in Ap-

pendix A). Sufficient conditionThe bilinear system given by Eq. (71a)

leads to a quadratic equation f&y(#;) that can be solved
b. Examine the eigenvalues Dffor hyperbolicity. analytically. A sufficient condition is, therefore, that the so-

. . lution indeed lies ir(i, j) rectangle, i.e.
c. Solve for the DHT in thav system,wgni(¢), according

to the procedure discussed in Sect. 2.2, which immedi-0 < &g5(17) < Ax;, 0 < nsp(t1) < Ayj. (74)
ately leads to the DHT in the’ coordinatesy (1) =
A Lwgni(d). 4.2.2 Optimal linear model within a cell

d. Convert the result into the originalcoordinates At each time slice;, we construct a linear model by opti-

. mally eliminating the nonlinear term from the bilinear model
Xdht(r) = Xsp+ Xgpe(7)- Eq. (71a) which can be rewritten as follows:
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w(x, 1) = g (tr) Aig + up () g (1) —y] +ua(n), (75a)
where
uo(t) =  w;j(t) + wiv1j+1(0) —uiva i () — wij+1(f),
up(ty) = —u; (1) +uiy1 @),

’ g 75b
uc(ty) =—u; j(t) +ui j1(t), (75b)
ug(t) = u;j(@1).

Hence for this model to be linear, the following condition 4.3 Numerical reconstruction of DHTs

must hold:
4.3.1 One-dimensional case

u,(y) =0. (76) ] ] ) )
Step 3 of the algorithm described in Sect. 4.1 requires solv-

If the local flow is truly linear, then this condition is automat- ing for the DHT in thew system. In practice this gives rise to
ically satisfied. Therefore, condition Eq. (76) can be used a§ choice of methods; we may either use a frequency-domain
the linearity test of the local flow, so as to apply the Fourier OF @ time-domain solution. This section outlines both meth-
(linear) DHT theory developed in Sect. 2. ods in the context of a one-dimensional problem and the next

We may develop the optimal linear model of Eq. (75) by discusses the choice between them. We begin by considering
eliminating the velocity at the grid point furthest away from the one-dimensional problem
xsp, Using the condition Eq. (76). The resulting linear model dy it
leads to Eq. (70), whose time-dependent coefficient vectorsy, — dy = be'™. (80)
u, (1), uy(t;) anduo(z;) are given in Table 1. Note that the

use of this linear model implies that the Jacobian of the ve- This can readily be rewritten as

locity field is constant everywhere within the cell, so that we dtﬂ ( —dt ) — pei! (81)
can construct the coefficients in Table 1 without using the™ dr V)= '
local coordinates afsp within the (i, j) cell. A particular integral (which has no exponential behaviour
] and is therefore the DHT) for this equation is

4.2.3 The forcing term b

_ _ _ y=——0e (82)
In developing a linear model we seek an equation of the form —d+iw
I So, if we represent a forcing function by its Fourier de-
ax F()x'(t) + h(r). 77) composition
dt ~

_— . 1) = F(w)e' dt
For the case where our initial estimatgy(¢) of the loca- F® /,Oo (@)e

tion of the DHT is constgnt, then we may Ilne'arlze aroundthen the DHT is determined by
the lower left-hand coordinate of the cell containityy, us-

ing the cell coordinates = (&, n). The forcing termugis ., _ 1 /Oo Flw)el® d 83
that given in Table 1: 8@ Q)F(w)e™ do, (83)
h
ig _ (ux(t) uy(t)> £+ (uo(t)> 78) where
dt Ux (1) vy (1) vo(r) ) - 0w)= ———
—d+iw

Whenxsp(t) is the path of the ISP, we must linearize in  The multiplication in the frequency domain in Eq. (83) is
terms ofx’, giving: equivalent to a convolution in the time domain, so we can
4 © 1(0) 4 rewrite this as
d o _(us®uy0) 4 29 ~
ar <vx(t) vy (1) ) S T ) s = [ F()q(t — 1) dx, (84)

where the coefficients of the Jacobian are deduced from Tawhereq(t) is the transform of
ble 1, which are valid throughout the cell, and the velocity of
the ISP path must be calculated numerically. O(w) = ;
Finally, a linear, time-dependent systeméiror x’ is ob- —d—iw
tained by temporal interpolation of each coefficient. the complex conjugate @b (w).
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Table 1. Linear model on(i, j) grid from data. Nearest grid is one of the four edge point& of) base-grid which is nearest to the ISP.
Time variable is omitted for simplicity

| nearest grid | Axj uy \ Ayjuy \ ug \
()] —Uuj j +uiq, ) Ui, j +uijy1 uj j
G+1) —uj,j tuit,j Uitl,j tuiL1, 41 | Ui
(i, j+D —ujj+1 UL 1| Ui +ujj4+1 uj
(+L/j+D | —uijn tui1 41| Uit U141 | Wigd,) +up j+1 —Ui41j+1

In order to proceed we need a functional representatiom.3.3 Applying the method
for ¢(¢). In fact, two such representations are needed; one . _ . o
for each possible sign af, so that the integrals involved in In this section we consider the application of the above

calculating the Fourier transform gfr) converge. method.
Ford > 0 we have Example 8: The rotating Duffing equation can be written as:
0 fort > 0, d sin28t B+ cos Bt
q(t) = { edt fort <0, ®)  5*= (—ﬂ+cosa8t —sin2pt ) ¥
. 3 : sinprt
while ford < 0 we have + [—(cosBt x — sinBt y)° + e sinwt] cospr ) (87)
et forr > 0, Using a system given by an explicit formula, but applying
q(1) = 0 forr<o0 (86) methods which use only a discrete data set derived from it,

allows us to assess the accuracy (and validity) of our numer-
Oical methods.

Equation (87) was discretized on a 40-by-40 grid spatially,
with eachx andy ranging from -3 to 3. The time discretiza-
tion used 100 points ranging from 0 to 10.

The implementation closely followed the description in

The numerical implementation of the DHT algorithm re- Sect. 4.1;_only differences between the code and that section
are described here.

quires us to choose between the use of Eg. (83), Whlc%tep 1:Instantaneous stagnation points which were not hy-

we call the frequency-domain reconstruction, and that of C . . e
g 4 perbolic in character in the instantaneous velocity field were

Eqg. (84), which w Il the time-domain reconstruction. . . . .
a- (84), . ¢ _eca t et. e-doma e_co structio . discarded. This left no more than one ISP for each time slice.
In practice the time-domain reconstruction has the consid- or values of of 0.3 or greater in Eq. (87), it was common

erable advantage of being less affected by the time intervar

. . . . or there to be no hyperbolic ISP for some time slices. In
over Whlc.h data |s.avallalgle. Itis clgar Irom Eq. (83) that these cases the method was considered to have failed.
the DHT is essentially a “low-pass filter” on the spectrum

. . . o Step 3a In solving the differential equations Eq. (B4) a
O;th? dfolrcmg f””C_“%r.‘f (3 A )_fltshpermfmg, t?e_rg(t )t fourth order Runge-Kutta solver was used, with 20 time-steps
i ould also ?fﬁ“othlc'lz OWeVer, IT the perio fc'f )t'ls no between the time slices of the discretized field. Linear inter-
nown a priori, then the Founer senes representa |0f_‘1(®f_ polation was used to estimate the velocity field between time
will have high-frequency components (arising from aliasing).

Applying Eq. (83) will filter these components out, so that slices.

SR Step 3c: The convolution-in-time method described in
the reconstructed DHT cannot capture the periodicity(ef Sec?. 4.3.1 was used to calculate the DHT, icoordinates.

since this would require that the high-frequency components The quadrature in Eq. (84) may be written as
are preserved.

Essentially the frequency-domain reconstruction uses th%(t) _ /
FFT to represent the functiofi(r) as a Fourier series over an —
arbitrary interval, which may require high-frequency compo-
nents, while simultaneously using it as an approximation toUsing the change of variable, = —¢~97/d, this may be
the Fourier transform of (¢), from which the high-frequency ~ Written
components are an undesirable artifact. Using Eq. (84) as 51
the basis for a numerical implementation of the DHT recon-/ (1) = e_dt/
struction allows us to avoid the numerical problems associ- 50
ated with this ambiguity of the FFT, and accordingly gives The integrals of this form were evaluated using the trapezium
significantly better results. rule.

This representation of the DHT corresponds to Eq. (17) an
Eq. (18) using Fourier decomposition.

4.3.2 A choice of methods

n
0 £(1) dr.

0

g(s)ds.
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0.06 - T - T T
Time-domain reconstruction —+—

In the convolution at each time in the discretized system
the range of integration was truncated to the time domain of .. Analytical solution -
available data; attempts to “wrap around” from the end to the /iw\\ pathorisE
beginning showed the same problems that arose from using F %
the frequency-domain form of the convolution. ' ﬁ/ +

e

4.3.4 Validation of the method

~
SR
f

Clearly it is desirable to have some way of validating the 0.02 |-
method described here for calculating DHTs. The rotating
Duffing system with8 = 0, ® = 1 and smalk makes this
possible; it is straightforward to check that

€ sint
2 \ cost

is a trajectory, to first order ia. Since this trajectory is peri-

odic it must be the DHT. -0.02 |-
Figure 10 shows the first-order analytical DHT and the re- 9

sults of the numerical DHT reconstruction using both time- \

domain and frequency-domain methods. It is clear that the %

time-domain method is more faithful to the known behaviour ~ -0.04 %

at the end-points of the trajectory, although the inaccuracy ‘\\ A

here is still greater than elsewhere. This end-point effect is ol

clearly due to the finiteness of the data set, as discussed in

Sect. 2.1. 008 T .05 o 0.05 0.1
Behavior of ISP and DHT resembles that observed in x

Fig. 4a. While a path of persistent ISP can be used to identify

the region where a DHT may exist, ISP at any given instance~ig. 10. A comparison of the DHT reconstruction algorithms for

i
Sy
1

-

G
ST | S S

A

E=

does not offer any direct information concerning DHT. a rotating Duffing system wite = 0.1, 8 = 0 andw = 1. Itis
clear that the time-domain algorithm gives better results than the
4.3.5 Blob tracking and non-periodic systems frequency-domain algorithm. The analytical solution is the first-

order solution ire.

The method described in this paper was developed specifi-
cally to compute DHTSs for non-periodic systems. However, Animations for the cases= 0.1, 8 = 0.1, » = 1.0 and
such cases are more difficult to validate since neither analyte = 0.2, 8 = 0.3, » = 0.1 are available on the World Wide
ical solutions nor Poincérmap techniques are available. In Web at http://lacms.maths.bris.ac.uk. In these animations the
this case we rely on the circle method; a ring of particles isblobs evolving “backwards in time” from a circle at the end
placed around the position of the candidate DHT and trackedf the time interval are shown in black, the circle evolving
through the time interval. Another ring of particles is placed forward is in cyan, and the numerically reconstructed DHT
around the candidate DHT at the end of the time interval ands in magenta. It may be seen from these animations that
tracked backwards to the beginning of the time interval. If there is good agreement between the numerical reconstruc-
the DHT is within the circles at either end of the time in- tion of the DHT and the real DHT, defined by the intersec-
terval, then it will remain within the (increasingly distorted) tion of the evolving circles. The circles used are relatively
ring as it evolves. We can thus deduce that the DHT lieslarge compared to the region through which the DHT moves,
within the intersection of the two curves at all times. If the since they evolve from the ends of the time interval where
DHT is of saddle-type in stability, then a circle placed aroundthe accuracy of the reconstruction is lowest.
it and evolving forwards in time will contract in the direction ~ Figures 11 and 12 show the forwards and backwards blobs
of the stable manifold and elongate in the direction of the un-at the beginning and end of the time interval for the case
stable manifold; the opposite will happen to a circle evolving with w = 1, 8 = 0, ¢ = 0.1. The forward blob begins (at
backward in time. This provides an additional confirmation: = 0) as a circle of radius.Q around the position of the
that the DHT is located inside the evolving blobs. computed DHT at time = 0 and evolves forward in time;

Animations of this process have been developed for thehe backwards blob begins (at= 10) as a circle of radius
rotating Duffing system. The patrticle trajectories were com-0.1 around the position of the computed DHT at time 10
puted using a fourth-order Runge-Kutta scheme with adapand evolves backwards in time. Figures 13 and 14 show the
tive step doubling, using the explicit formula for the rotating two blobs at the middle of the time interval, together with
Duffing velocity field. To maintain resolution as the contour the analytically derived DHT for this case. Figure 14 shows
deforms additional points were inserted half-way betweenclearly that the DHT passes through the intersection of the
neighboring points when they moved too far apart. blobs.
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Fig. 11 The forward and backward blobs superimposed at Fig. 12 The forward and backwards blobs superimposed at
timet = 0, for the rotating Duffing problem wit = 1, timer = 10, for the same case as Fig. 11.
B=0,e=01.
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Fig. 13 The forward and backwards blobs superimposed at Fig. 14 An expanded version of Fig. 13 showing the DHT
time+ = 5.05, for the same case as Fig. 11, together with and the intersection of the blobs.
the analytical DHT for this case.
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Appendix A Derivation of the transformation time-independent coefficient system definedbyand g (¢)
to a linear system with constant coefficients in Eq. (14), so that these two linear systems have the same

hyperbolicity over a time interval € [ro, 7.].
The goal of this Appendix is to construct the coordinate

transformationA (1) of Eq. (44) from a time-dependent co- _ Differentiating Eq. (44) with respect to, substituting
efficient system defined b(r) and h(r) in Eq. (42) to a  EQ. (14) and comparing with Eq. (42) gives:

dy=(LAD)x + A Lx = (LAG) + AWF®) x + A1)

=Dy +g() = DA()x + g (@),
from which it follows that: for anyxg. Hence, we have
diA(t) = DA() — A@)F() , (Ala) A0 =Y, 10)AM)X(, o). (A7)
t
Ah(t) =g(1t) . (Alb) Equation (A7) provides a relation between the transforma-

tion A(¢z) and the fundamental solution matrices, provided
The problem therefore reduces to determiriingndA (¢) for we specifyA (fo).
timer € [1, 1. ]. Evaluating Eq. (A7) at = f;, and rearranging terms,
Atfirst glance it may appear that this problem is not solve- gives:
able since Eqg. (Ala) is four equations in six unknowns. How- 3
ever, knowledge ob clearly requires information from the X (L. f0) = A(rL)""Y (L, 10)A(t0). (A8)

homogeneous dynamics basedFn). Therefore, we must It is convenient to choosA (o) So that theX andY sys-
also consider the fundamental solution matrices of the two,, 1,5 gre aligned at = 7; (we cannot align the systems at

systems: t = to a priori, sinceX (o, to) = |, and this has no “natural”

d alignment). This motivates choosing
5, Xt 10) = F(®) X(t. 10) , (A2a)
df Al(to) = R(tr, to)", (A9)
EY(I’ to) =D Y. 10) . (A2D) o6 that we have
with initial condition X (70, o) = Y (f0,70) = |. The funda-  A(z;) = B(z., 10)” . (A10)
mental solution matrix(z, ro) can be represented by a sin-
gular value decomposition as follows: Then Eq. (A8) becomes:
T
X(t, 10) = B(t, 10) eXp((t. 10)) R(t. 10) (A3)  XUr.10) =B, 10)Y (L, 0)R(IL, 10)

o = B(1L. 10) eXp((1. — 10)D) R(1L., o). (A11)
where B(z, tp) and R(z, tg) are orthogonal matrices, i.e.

B(t, 10)B(t, t0)T = R(r,10)R(t,10)7 =1, andX(r,70) isa  Now evaluating Eq. (A3) at= 1, gives:

csgonal A o 0 =SS0 TR0V (1) <80 B0 ) R (A1)
SinceD will be chosen to be a constant matrix the funda- |t now follows by comparing Eq. (A11) and Eq. (A12) that:

mental solution matrix of Eq. (A2b) can be given analytically

by Eq. (17). D=
We leave the choice db for the moment, and derive a L —1o

relationship betweeA(r) and the fundamental solution ma- This defines the diagonal matrix Furthermore, by substi-

trices. Given initial conditions related by, = A(fo)xo, the  tuting Eq. (A9), Eq. (A3), and Eq. (17) into Eq. (A7) gives

%(1L, 10). (A13)

solutions of the homogeneous equations satisfy: the following formula forA(¢):

x(t; x9, tg) = X(t, to)x0 , (Ada) A(r) = exp((r — t0)D) R(zz, 10) T R(z, 10)

y(; yo.t0) =Y, 10)yo (A4b) -exp(—X(t, 10)) B(t, t0) . (A14)

with Hence, we see th& andA(r) are completely determined by
the singular value decomposition of the fundamental solution

y(t; Yo, tO) = A(t)x(t; X0, tO) (AS) matrixX(t’ [0)_

from the definition ofA(z). Using Eq. (A4) and the initial In theory, ifX(z, 7o) can be computed from Eq. (A2a), then

we can take the singular value decompositionXdf; , ro)
once to obtaim(7g) from Eqg. (A9) andD from Eq. (A13).
LY (2, to)A(tg) — A()X(¢, t9)]xo =0, (A6) The coordinate changA(t) follows from Eq. (A7) with

condition relation leads to:



260

Eqg. (17). However, a naive numerical integration of
Eq. (A2a) in order to comput¥(z, 7o) generally leads to an
exponential blowup of the solution. In order to avoid this nu-
merical problem, we computg(z, 7o), R(¢, to) and X (¢, ro)
using the algorithm presented in the following Appendix.
Hence, the algorithm for transforming the linear time-

dependent system to a linear time-independent system prod .

ceeds as follows.

Step 1. Comput8(z, tp), R(¢, t0) and X (z, 7o) using the
algorithm described in Appendix B.

Step 2. Comput® using Eq. (A13).
Step 3. Computé(r) using Eq. (A14).
Step 4. Computg(r) using Eq. (Alb).

B An alternative dynamical system for X

For simplicity, we drop the arguments, #o) from the ma-
trices and usd-} for the time derivative in this Appendix.
We wish to solve Eq. (A2a) faX numerically. However, so-
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C Some relations between patrticle trajectories,
instantaneous stagnation points, and
coordinate transformations

Consider the following time-dependent velocity field:

=u(x,t), xcR". (C1)

dt

We consider a time-dependent transformation of coordinates
of the following form:

x=b(y,1), yeR" (C2a)
which can be nonlinear iy and/orz. We will assume that
for each fixed, this coordinate transformation is invertible.
In particular, for each, and for ally, we assume that

det(b,(y,1)) #0,

ab

whereb, e R™" denotes the Jacobian matrix bf
with respect to the spatial coordinage We define the in-

lutions of this equation may experience exponential growthVerse of Eq. (C2a) as

and a naive implementation risks overflowing machine arith-

metic. In order to avoid this we solve Eq. (A2a) in terms of
the singular value decomposition given by Eq. (A3). Substi-
tuting these relations into Eq. (A2a) gives
Bexp(Z)R? + BX expX)R’ + Bexp(®)R’
= FBexp(X). (B1)
Pre-multiplying byB” and post-multiplying byR exp(X)
we have
B'B + X + exp(X)RTRexp(—%) = H, (B2)

whereH = BTFB. SinceB andR are orthogonal we may
parameterise them as

cosf sind
B= (— sing cos@) (B3a)
[ cosgp sing
- (— sing cos¢) ’ (B3b)
This parameterisation leads to the system
o1=Hn (B4a)
o2 = Ho» (B4b)
.1 1
0= E(le — Hy) + 5 coth(oz — o1) (B4c)
. 1
¢ = > coseclior — 01), (B4d)

where H;; represents, the componentstbf andoy ando?
are the diagonal elements Bt
A singularity for6 and¢ occurs ato; = o». This is an

artifact of the coordinate transform and may be dealt with bylemma

using the original Eq. (A2a) for a short time interval initially.
Once they grow apart to becomg # o2, Eq. (B4) can be
used.

y=ax,1)=b"t(x1), (C2b)
then it follows that:
ba(x, 1), 1) =x . (C2c)

A special case of Eq. (C2a) is given by the linear
time-dependent coordinate transformation in Eq. (44) with
b(y,t) A()~ly, with Eq. (C2b) corresponding to
a(x,t) =A@)x.

Now we transform Eq. (C1) into the coordinates using
Eqg. (C2a). Towards this end, we have:

x=b (C3)

d
dt t(y’[)‘i‘by(yst)ay:u(b(y»t)’t) >

whereb, € R" denotes the partial differentiation éfwith
respect to time, and hence the corresponding velocity field
in the y coordinates is

(by(y,0) " (B(y, 1), 1) — by (y, 1)) . (C4)

d —_—
ar’”

Now we can ask and answer the first question.

Question C.1 Suppose(¢) is a trajectory of Eq. (C1). Is
y() = a(x (1), r) atrajectory of Eq. (C4)?

The answer is “yes”, as we now show. First, we need a

Lemma C.1 a,(x,1) = — (by(y, t))_lbz(y, 1)
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Proof: Nowx = b(y,t) by definition Eq. (C2a). Differ-
entiating this expression with respect aaives Eq. (C3).
Also, y = a(x, t) by definition Eq. (C2b). Differentiating
this equation with respect togives:

d d
_y:a[(x,[)‘kax(x,[)ax, (C5)

dt
wherea, € R" denotes a differentiation af with respect
tor anda, = 3—)‘? € R™" denotes the Jacobian matrix @f
with respect toe. Substituting Eq. (C5) into Eq. (C3) gives:

d
—-—X =bt(Yat)+by(Yat) at(x’t)

T (C6)

d
+by(y, 1) ac(x, 1) Ex . (C7)
Finally, b(a(x, t),t) = x by Eq. (C2c). Differentiating this
expression with respect oand using the chain rule gives:

by(y,t)ax(x,t) =1d , (C8)

whereld denotes the identity matrix. Substituting Eq. (C8)
into Eqg. (C7) gives the result after cancelling tg;ec terms
on both sides.

Now we return to our original Question C.1. Suppsse
is a trajectory of Eq. (C1). To prove thatr) = a(x(¢), 1)

is a trajectory of Eq. (C4), it suffices to show that Eq. (C5) 9
represents the same velocity field as Eq. (C4). Rewriting

Eqg. (C5) using the fact that(r) is the trajectory of Eq. (C1)
leads to:

iy:a,(x,t)+ax(x,t)u(b(y,t),t) . (C9)

dt
If we apply Lemma C.1, along withy (x, 1) = by(y, 11
from Eq. (C8), Eq. (C9) becomes Eq. (C4). $¢) =
a(x (1), 1) is a trajectory of Eq. (C4) when(z) is a trajec-
tory of Eqg. (C1).

Next we consider the question concerning the behaviour,

of ISPs under time-dependent coordinate transformations.

Question C.2 Supposexsgy(?) is a curve of ISPs of
Eq. (C1). Is y(r) = a(xsp(?),t) a curve of ISPs of
Eq. (C4)?

Substitutingy (1) = a(xsp(?), 1) into Eq. (C4) gives:
d

dty

y=a(xsp(t),?)
— by(a(xsp(t), 1) " b (a(xsp(r), 1), 7).

In order for the right-hand side to be zebp(a(xsp(1), 1), 1)

(C10)
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Question C.3 Supposexgni(t) is a DHT of Eq. (C1). Is
y(1) = a(xgnt(r), t) a DHT of Eq. (C4)?

By knowing thaty(t) = a(xgnt(?), t) is a trajectory from
Question C.1, we now show that sugftir) indeed satis-
fies the definition of a DHT. To do so, we have to consider
Eqg. (C1) linearized aboutgni(z) and Eq. (C4) linearized
abouty = a(xgni(t), t). These equations are given by:

d 3
Eé = %(xdht(f)a N, (C11)
and
d 9 _1
1= 5y (bs00) T @b 0.0
_bt(yvt))) "7 (C12)
y=a(xdnt(t),t)

respectively. LetX(z, 7o) denote the fundamental solution
matrix of Eq. (C11) and (¢, ro) denotes the fundamental so-
lution matrix of Eq. (C12).

First we must derive a relationship between the fundamen-
tal solution matrices of these two linear systems. We evalu-
ate (C2a) on trajectories(t; ro, xo), y(t; to, yo), and then
differentiate with respect tgg to obtain:

Jdx 0xg _ d

9
b(y,1) = by(y,t)a—y, (C13)
Yo

dyo dx0dyo 9Iyo
where we leave out the arguments of the trajectories for no-
tational simplicity. Now, using (C2a) and evaluating the ar-
guments of the trajectories at g gives:

0xo

(C14)
dyo

= byo (y07 to)'
Now for x (¢; 19, xo) a trajectory of (C1) ang(z; to, yo) a

trajectory of (C4),§Tx0 (t; 1o, x0) = X(t, to) is the fundamen-

tal solution matrix of (C11) ang%(r; to, yo) = Y(t,1p) is
the fundamental solution matrix of (C12). Combining these
relations with (C14), (C13) becomes:

x(ta lo)byo(y07 IO) = by(yv I)Y(tv tO),

and from this equation we easily obtain the following rela-
tions:

Y (t,10) = (by(y, 1)) X(t, 10)by, (o, 0),
Y, 10) = (Byo(y0. 10)) " XX, 10)by (p, 1).

First we describe the general idea why this result should
be true; then we provide the rigorous argument. We know

(C15)

(C16)

must be zero. Therefore, we conclude that ISPs are not prethat X(z, 19) has an exponential dichotomy sinegni(¢) is a
served under time-dependent coordinate transformation ilDHT. Therefore, since Eq. (C15) is an equalltyz, 7o) must
general. However, note that if the coordinate transforma-have an exponential dichotomy sinkg(y, ¢) is bounded in
tion is independent of time, ISPs are preserved under timey and exhibits no exponential growth or decayrinThere-
independent coordinate transformations. fore, y = a(xgni(t), t) is hyperbolic.

Finally, we consider the question of the behaviour of We can make this argument rigorous as followsk dfi(7)
DHTs under time-dependent coordinate transformations. is hyperbolic, then Eq. (C11) has an exponential dichotomy,
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i.e. there exists a projection operafr(i.e. P> = P), and By construction, the determinant éf(r) > 0 is bounded
positive constant& x, Ly, ax andBx such that: over the time interval € [1g, ;] of the coordinate change.

X 10)PX-1(s )] < K ye—ex =) Therefore, if we define

for 1>, (C17a)  detAmax = max {detA(r)} > O,
IX(t, 10)(1d — PYX" (s, 10)| < Lye Xt defmin = min {detA(1)}) > O,
for s>1¢t. (C17b)

~ overr € [1y, 1], then a postive constaf’ can be chosen
Now we argue that Eq. (C12) also has an exponential di-g;,ch that

chotomy by showing that there exists a projection operfator
(i.e.P?2 = P) and positive constant&y, Ly, ay andBy such P detAmax

. c24
that: det min (C24)
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