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Abstract. A higher-order extension of the familiar Korteweg-de Vries equation were compared with laboratory
Korteweg-de Vries equation is derived for internal solitary experiments of internal solitary waves. A more detailed anal-
waves in a density- and current-stratified shear flow withysis of the properties of the steady-state solitary waves in a
a free surface. All coefficients of this extended Korteweg- fluid with arbitrary density and current stratification, valid to
de Vries equation are expressed in terms of integrals of theéhe second order of an asymptotic expansion was reported by
modal function for the linear long-wave theory. An illus- Gear and Grimshaw (1983). They calculated the shape of the
trative example of a two-layer shear flow is considered, forinternal solitary wave and its speed for different models of
which we discuss the parameter dependence of the coeffithe fluid stratification.

cients in the extended Korteweg-de Vries equation. A lot of data of internal solitary waves has been obtained
in the last twenty years by remote sensing and in situ mea-
surements. The necessity to explain this data has induced an
interest in developing models for unsteady internal solitary
waves in an ocean with realistic stratification in both den-

The Korteweg-de Vries (KdV) equation is a well-known sity and current, Which may also vary horizqn_tally. The first
model for the description of nonlinear long internal waves in St€p was the introduction of a variable-coefficient Korteweg-
afluid stratified by both density and current. The steady-statéle Vries equation (Pelinovsky etal., 1994; Grimshaw, 1997).
version of this equation was produced by Long (1956), while Some calculations of the coefficients of this equation showed
Benney (1966) gave the integral expressions for the deter_t-hat the coeffic.:ient. of t.he guadratic nonlinear term yvill typ-
mination of the coefficients of the Korteweg-de Vries equa-iCally change its sign in the coastal zone (see, for instance,
tion for waves in a fluid with arbitrary density- and current- Holloway et al., 1997), and, therefore, the contribution of
stratification. The next step was due to Lee and Beardslejt'gher-order terms (in particluar, the cubic nonlinear term)
(1974) who indicated the asymptotic procedure needed t@h_ogld be important. General integral expressions for the co-
produce higher-order Korteweg-de Vries equations based offficients of these higher-order terms for the case of a con-
two small parameters representing dispersion and nonlineafinuous density-stratification (in the Boussinesq approxima-
ity. More detailed information has been obtained for inter- ion) were produced by Lamb and Yan (1996), and then by
facial waves in a two-layer fluid, and in particular, Kakutani Pelinovsky, Poloukhina, Lamb (2000) with the addition of a
and Yamasaki (1978) found the coefficient of the cubic non-Shear flow, (but also still in the Boussinesq approximation).
linear term in an implicit form, and showed its importance in TheSe expressions are quite complicated, and their signs are
certain special conditions (i.e. the pycnocline lies close to theOt evident without extensive calculation. Consequently, the
mid-depth of the fluid), in which case the quadratic and cu-SImpIer expressions for a two-layer fluid (Kakutani and Ya-
bic nonlinear terms are of the same order. Due to the negativE'@saki, 1978; Koop and Butler, 1981) have usually been
sign of the coefficient of the cubic nonlinear term, this situa- USed to estimate the signs and the value of the coefficients
tion implies that there is an upper limit for the solitary wave In the evolution equation. Grimshaw et al. (1997) and Tal-
amplitude. Then all nonlinear-dispersive coefficients for all iPOva etal. (1999) calculated the coefficient of the cubic non-
second-order terms were found for a two-layer fluid (Koop linear term for a three-layer fluid with a constant buoyancy

and Butler, 1981), and solutions of the resulting extendedT@duency in an each layer (but in the Boussinesq approxi-
mation) and showed that it may have either sign depending

Correspondence tdR. Grimshaw on the layer locations. Such an variation in the sign of the
(r.h.j.grimshaw@Iboro.ac.uk) coefficient of the cubic nonlinear term was also obtained for

1 Introduction
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the real stratification of a shelf zone (Holloway et al., 1999). whereo = Ngho/g. This parameter is small for oceanic
The goal of this paper is to obtain a higher-order conditions, andr — 0 defines the Boussinesq approxima-

Korteweg-de Vries equation for internal waves in an arbi- tion.

trary density- and current-stratified fluid, without using the  Thus, we shall use Egs. (1)—(4), the kinematic condi-

Boussinesq approximation, and also taking into account theion (7), and the boundary conditions (5) and (6) to study

free surface. An explicit example of a two-layer shear flow internal solitary waves.

will be considered to obtain the coefficients explicitly, so that

we are then able to analyse them for different parameter set- ) ) ) ]
3 Semi-Lagrangian form of the governing equations

tings.

First we introduce (x, z, t) as the vertical displacement of a
2 Governing equations fluid particle from its rest position, so that
The governing equations are those for a two-dimensiona®’ = d¢/dt. (13)

flow in an inviscid, incompressible and density-stratified

. . . We suppose that the density of the fluid in the rest state is
fluid. In Eulerian coordinates they are, PP ty

given by po(z). Then in the disturbed state,(x, z,1) =
du 9 _ 4 (1)  Poz = £(x.z.1), so that Eq. (3) is now satisfied. Also, it

pE ax is convenient to express the pressure in the form,

dw dp
p—+-——+pg=0, ) ¢

dr 9z plx,z,1) = —/ po(2)dz +oq(x,z,1). (14)
b _ g 3) °
e Then we introduce the isopycnal (Lagrangian) coordinate,
uy +w, =0, 4)

where{u, w} is the fluid velocity,p is the fluid density,p y=z=8x20. (15)
is the pressurey is gravitational acceleratioix, z} are the  Thus, the density (x, z, t) = po(y) and is fixed in this repre-
spatial coordinates (horizontal and vertical) afydr is the  sentation. To determine how the equations transform, when
convective time derivative. we change thex z, ) coordinates tox(, y, 1), let

The fluid is bounded below by the rigid boundary —4
and above by the free surface whose equilibrium position isf (x. z, 1) = F(x, y, 1).

atz = 0. Thus, boundary conditions for Egs. (1)-(4) have Therefore, we have the relations,

the form,
af dF OF 3¢
=0 5 —_—=— - —— 16
v =—h ©) 9x  Ox  dy dx (16)
p=0 , 6 A _9F 93F (17)
z=£(x.1) ar  dt  dy ot
a ad
=S b G L F (18)
4 Xlz=¢ 0z ay 9z
whereg (x, t) is the vertical displacement of the free surface.
. . . . Consequently,
Let us express these equations in non-dimensional form
based on the dimensionless variables, df oF oF
(-xv Zst) = (h();, h()z, _t)v (8) . )
N In particular, if we let
(u, w) = hoNo(u, W), 9)
(0. p) = (57 FighoP), (o) ~ftemn=n 0.
wherehg is a typical length scaleyg is a typical value of the  then
buoyancy frequency, anglis typical density value; note that Ny Ny Ny
for a layered fluid No is interpreted as a measure of a typical 2 = 1 ' b = ' &= ’
+ 1y 1+n,y 1+n,

density jump, i.eN3 = gAp/ hop. o _ o _
After dropping the tilde superscripts Egs. (3) and (4) arewhere the indices denote pc'_;lrtlal derivatives. Then, using
unchanged, as are the boundary conditions, while Egs. (1FdS- (16)-(19), we can rewrite Egs. (11), (12), and (4), so

and (2) take the form, that, on omitting the formal distinction betwegnand F we
d 19 obtain,
d_L: _3_p =0, (11 u ou aq 1 9qadn
00X
dw 1 (dp po(y) <§+Ma>+a— 37 3y ox =0 (20)
p——+=|o-+p)=0 (12) 1+ =%
dt o \ 9z dy
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00(y) (a_w + ua_w> 18 dq 4 Derivation of the nonlinear evolution equation
ax n dy
14— . . .
+ dy We shall suppose that the waves are long, their amplitude is
1 small, but finite, and that the basic horizontal shear flow is
T [Po(y) = po(y +m] =0 (1) stable. We introduce the smal parameteo describe long
Ju dw 1 (;m an  dw 3,7) 22) waves, and, hence, define the slow variables,
+———————+—=—)=0 22
ax 9y 1+ 8_ dy dx = dy dy X =ex, T =et. (31)
y
) ) - Then we decompose the horizontal velocity field into the ba-
Also, the kinematic condition (7) becomes sic component and a perturbation,
w=T gl (23)  uCr.y.0)=UG) +u'(x. y.0. (32)
t X
uations (26) and (27) then transform to
In these new coordinates the boundary conditions (5) and (GFq (26) 27)
become, respectively, 0 ou’
o po) | 7= il W) +u )—
n=0 . (24)
——h an 0 0
. — POINA() o — € ﬁ{po(Y) ( -
/0 po(y)dy' = oq o’ (25)

2
an
4 — . —
The set of Egs. (20), (21) and (22) with the kinematic con- +UG) +u )ax) 77} <1+ ay)
dition (23) can be reduced to two equations fax, y, t),

n(x, y, t). The firstis 20 9
+€? 3y po(y) 3T
3 du L
75 1700 + uz— |1 = POIN“( == 3 \2 an
y x x HUM )5 ) 0t =0 33)
3 { 3 3\? an 90X ax
po(y)< +u—> n} <1+—) 3u' 2
Cox ox ay u 9°n du’ an
U ——=0. 34
) 8X+8T8 o (y)+”)axa X9y (34)
B B ) an
+ 3y ro(y) + “ox) Moax 0, (26) The boundary condition at the surface (29) becomes
dth di M o (2w + )
and the second is, X = T y) +u
ou 0 d 0 0 ) 2
L) + Gy =0, e +<u<y>+u>—)
where at y=0, (35)
N2(y) = 1 @ (28) while the bottom boundary condition at the bottom (30) re-
“opo(y) dy mains unchanged. We let the nonlinear parameter,
Y= i hanged. We let th l tend
- _ anticipate the KdV scaling = €. If ¢ is the speed of a lin-
The boundary conditions for these two equations are ear long wave (yet to be determined) we introduce the new
) ; ; ; ; N2 variables,
L T | 2
ox 0<8t+u8x) 8x(8t+uax) ! 0(29) E=X-cl, mu=uT, w=p>T, .. .(36)
y:
It follows that
n=20 . (30) p 3 8 , 0
y=—h ﬁ - g + ,u, 3_1'2 +.
Thus, the basic equations in this semi-Lagrangian formu- 9 9

lation are Egs. (26) and (27) with boundary conditions atthegx ~ 9&" (37)

surface (29) and bottom (30). We will use these to describe
internal solitary waves. Itis interesting to note that this semi- Then by substituting Eq. (37) into Egs. (33), (34), and (35)
Lagrangian approach leads to an increase in the order of non¥® find that

linearity to four, whereas the original governing equations 9 { au’} 201

had only second order nonlinearity. 3y = F, (38)
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2 "
3_”/ N Eq. (44) and the boundary conditions (30) and (46) and col-
+ U —o¢) =G, (39) ) ' ]
0 9&dy lecting terms of the same order jin we obtain at the lowest
an ou’ order the equation determining the modal functi¢y),
—+oU —c)— =
9 9 d ,d® )
. . . — | polc = U)*— | + poN°® =0 (50)
du > 0u ,0u an dy dy
-0 My-i-ll ¥+'.'+ME+M£H 40)
! 2 =0 ®=0 (51)
=h
where y Ao
d=o0(c—U>—| . 52
) T ou’ U5 (52)
F:—a— po| M-+ Ut o y
Y i 2 . It is well-known that this eigenvalue problem (50), (51) and
tu <1+ 8_”) i(,ooH) _ M%i(poH), (a1)  (52) has, in general, an infinite sequence of motlgswith
dy ) 9§ 9& dy corresponding speeds, forn =0, 1,2, ... . Here we con-
9%n ) 3% 9 o sider only stable waves, so thgt > Uy = max U(y) and
G=—n oo M oy +... - 9 ('4 5) . (42) ¢~ < U, = min U(y). Note that a sufficient condition to
3 5 5 exclude any unstable waves (Whdig, < Re(c) < Uy)
H= <(U —O)— +pu— + pP—+ ... is that the Richardson numb@i = N2/U2 > 1/4. The
9 IT1 a2 theory we shall develop is valid for any of these modes, but
, 0 2 usually it is relevant to consider only the first internal mode,
Tu @ - (43) which has the greatest phase speed of all the internal modes

and has just a single extremum for the modal function in the
Here the left-hand side of these equations, when equated titerior of the fluid. Also, it is important to note that each
zero, describe the linear long-wave theory, and thus, form thenode is determined only to within a multiplicative constant.

basis of our asymptotic expansion. We choose this constant in such a way that modal function is
Equations (38) and (39) can be reduced to one equatiomormalized at its extreme value, i.e.
containingn only,
0 2 9%n 201 This choice of modal function has an obvious physical sense
— U — N-°— =M, 44 . . . . . ’
dy i,oo( ) agay} + 0 & (44) in that at the first order of approximation, the function
A(&, 1) is the displacement of the isopycnal surface at the

P From Eqg. (39), substituting Eqgs. (48) and (49), at the low-
M = P {oo(U — )G} — F (45) est order we find

y

do

with the boundary conditions, uo(§,y, 7) = —AE, 1)U — C)E' (54)

2 Equation (44) can be written in operator form
an 5 097
—=0(U —-¢)—— —0(U —-c)G+0cH; (46) 3
0% &y y=0 L2~ m. (55)
9§
where

HereL is the linear operator,

/ / /
Hy = — <M8—u+u28l+...+u/8—u+ua—nH>. 47
aT1 aT2 o€ o0& 3y
Again Eq. (30) holds at the bottom. The compatibility condition, i.e. the condition for solvabil-
Next we assume that our internal wave field (i.e. the ver-jty of the inhomogeneous problem (55) with the boundary
tical displacement and the horizontal component of velocity)conditions (30) and (46), is
has the asymptotic expansion,

0 0
L=— [po(c - U)Za] + poN2.

0 dd
Mddy = U—c)222 (U - G—H] 56
N y.7) = RAE DOG) + p2niE. v, T) /_h Y “[”( Oy (U =G —H)| (56)

y=0
+ Gy, D+ (48)  or, using Eq. (45):
u/(s’ y’ T) = Muo(és ya T)+M2M1($, }’77) O 0 d(D
+/L3u2(§,y, ) +.... (49) /th)dy+fhpo(U—c)GEdy

Here T is a vector representing the multiple time scales _ a[

do
DAY S Bl —
(11, T2, ...). After substitution of Egs. (48) and (49) into polU = ©)"Ha ]v—o 0. (57)

dy
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It is useful to note that

where, from Eqgs. (41) and (47):

F1 = poHu, (59)
F> = upo <1+ g—Z) H (60)

Hence, the compatibility condition (57) now becomes:

0k, 0 do
—L®dy— | Fi—dy
—n 0§ —n dy
0
do
+/ po(U —c)G——dy =0, (61)
—h dy
and so it does not contain the boundary terms.
We'll consider the expression (61) at each order.ofAt
O (u?) we obtain:

9A 9%A 9A

— 48— +4aA— =0, 62
or Page T (62)
where

0
, / polc — UY2(dD/dy)3dy
== : (63)

2 0
/ (e = U)(a/dy)?dy

0
/ poc — U)?d2dy

1 J
:3 =35 0

.

. (64)
po(c — U)(d®/dy)?dy

225

Therefore,
2
8&2
where T,,(y) is the first nonlinear correction to the modal

structure of internal wave; it is the solution of

n= Ti(y) + A%T,(y), (67)

i e 1yd®
n dy L0 dy

3d , (dD\?
—— -U)“ | — 68
L34 {po(c )(dy)} (©8)
with boundary conditions
T,=0 .
y=—h
2 @
T, =0|(c—-U) U)_
dy dy
do
+5 (c - U>2< ) : (69)
dy o
y_

while T;(y) is the first dispersion correction to the modal
structure of internal wave; it is solution of

d do
LTy = =28— {polc = U)=— = polc — U)*®  (70)
dy dy
with boundary conditions
T; = O|y:_h’
drT, dd
Ti=o |:(c — U2l 4 28(c - U)—} (71)
dy dy y=0

It is important to note that solutions of the boundary-value
problems (68), (69) and (70), (71) are unique only up to ad-
ditive multiples of®. This problem was discussed in Lamb
and Yan (1996), Lamb (1999) and Holloway et al. (1999). It
is convenient to lef (&, t1) represent the isopycnal displace-

Equation (62) is the well-known KdV equation for internal ment at the leveymax Where there is a maximum in the linear
solitary waves. Note that Eq. (62) is expressed in a movingmode®(y). Hence, we choose the auxiliary conditions

coordinate system, and when Eq. (37) is used we obtain th

same equation but in the fixed coordinate system,

9A A 93%A A
—+c—+u<,3—+ozA—> =0. (65)

axs X
The coefficientsr and g of this KdV equation were first ob-

tained by Benney (1966).
Equation (44) aD (u?) is

oy _ 9%A { _U)dCD}
E 853 /3 po(c E

— po(c — U)Zd>}

0A 0 do
+A—| — 20— {po(c —U)—
ady dy

08
9 , (dD\?

T (yma) = 0,

Ty (ymax) = 0. (72)

In this case the series (48), using Eqgs. (67) and (53), at the
point ymax is

n(E, ymax 1) = RAE, T) + O (1),
Also, Egs. (39) aD (u?) and (67) give

3%A ’BdCD W )d ], a2
u — C
1= %e2 dy

1 do o (dD\? dT,

The compatibility condition (61) a® (.®) then generates the
equation,

(73)

A np 3°A LN A83A
a — —
1755 985 1 9% Y1 2E3
dA 92A
+ 2 (75)

3 952~ °
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where general, and in particular, also includes the case of a surface
0 wave, in which case one should choosgx = 0. Further,
do he procedure described here allows us, in principle, to obtain
Pr=17 | pdy (c = U)?oTy — p* | — the procedt us, in principle,
IJ- dy the extension of the Korteweg-de Vries equation to any or-
der. However, as shown by Prasad and Akylas (1997) for the
+2B(c —U) [CDZ _ <_> <_d)] } (76) case when the upper boundary is rigid and there is no basic
d shear flow, we would expect the generation of both upstream
0 2 and downstream shelves@tu*), which are associated with
1 5| . (dT, dd ; ) :
a1 = — / pdyi3(c—U)°|3 -2 — the necessity for the total asymptotic expansion to conserve
rJ- d dy mass.
do do
(%) () ree-v
Y Y 5 Interfacial waves in a two-layer shear flow
5 % AdT,/d % 77
’ dy ) (dTn/dy) dy ) |’ 77) Consider a two-layer system, bounded below by a rigid flat
) bottom and above by a free surface. The lower and upper
_ 1 /O dyl20p AN 2(c — U)d2 layer densities arp1 andpz (o1 > p2), and the correspond-
= 1J_ pay ing layer depths aré and H — £, i.e. H is the undisturbed
AP fluid depth; note the change of notation from the general the-
+ (¢ — U)%d? (—) —(c— U)Z[ZTncD ory of the preceding sections. This case was analyzed by
dy Koop and Butler (1981) without any shear flow. Here we in-
dTy\ (dd dTy clude a shear flow by including a constant velodityin the
(@) (@) ol (F) i

The parameter (Boussinesq parameter) for this two-

3
+ Zﬁ(dTn/dy)} <d£> —48(c —U) (d—q)) } (78) layer case is
dy dy

p1L— P2
1 [0 o\ 3 oc=2—". (82)
V2=7/ ,Ody{(c—U) [Zﬁ (2—) +6ocd>2j| p1+ P2
h Y The vertical structure of the modal function corresponding
do o o (dP to the internal mode can be found from the eigenvalue prob-
—3op ( ) —2c-U) [q’ (dy ) - 3an>] lem (50), (51) and (52), and has the form
dT, do
_6oe(c—U)< ")( ) o = |V 0<y<h, (©3)
dy / \dy YZlo+m—hym. h<y<H,
T, o}
+ 3(c — U)? (d d) <d ) } (79)  where
d dy
0 m=o(c—U)?>+h—H. (84)
[ = 2/ o (c—U)@dd/dy)>dy. (80)
—h Note that the fluid domain is now given by y < H, but

Then, again using Eq. (37), and the KdV equation (62), an Oall the formulae of the preceding sections are readily altered
neglecting terms ob (%) we obtain the second-order KdV accordingly. The linear long-wave phase speé&sa solution
equation, or extended KdV equation, f

a4 9A 334 A 54 —c?(c = Up)’0(2+0) + 22+ 0)(H — h) +
ﬁ+ ﬁ‘i‘ll(ﬂm +O{Aﬁ> (ﬂlm +(C—U0)2h(2+0)—2h(H—h)=O. (85)
9A 934 JA 524 The phase speed can be expressed in semi-explicit form
taaA’ =ty A—+p——| =0 (81)
dX X X 90X 2 2+0)(H —h+ @1 —u)?h)—/D

: (86)
This equation was produced by Koop and Butler (1981) 21-u?o(2+0)
for a two-layer system, and then by Lamb and Yan (1996)where
for a continuous density stratification, but in the Boussinesq
approximation, with no free surface and without a basic shea®® = 2+ 0)[(2+ 0)(H — h + (1 — u)?h)?

flow. Recently, this last result was extended by Pelinovsky, — _ g1 — )25 (H — m],

Poloukhina, Lamb (2000) to include a basic shear flow, but

again in the Boussinesq approximation and with no free surandu = Up/c is the relative shear flow velocity. An increase

face. Itis important to note that our derivation is completely in o causes a decrease in the phase speed
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From Egs. (68)—(72) we can find the nonlinear and disper-no influence on the cubic nonlinear coefficient, but when the
sion corrections to the modal function (83). The nonlinearthickness of the lower layer is not so small, we obtain larger
correction is given by, absolute values af; for larger values of.

The coefficients of the first-order dispersion term is zero

T,(y) = {0’ O<y<h (87) at/ = 0 and/ = 1 and positive for any other layer depth
ar(h=y). h=y=H ratio, and, hence, it has a maximum value whose magnitude
where and location depend on the values of the parametexsd
mH—h 3(c — Up) r. W_hen there_ is no shear f!ovu = 0), ﬁ(l_) is symmetric
ar=—5——- <a — ——) , function, and its maximum is dt = 1/2 (i.e. equal layer
m*(c — Uo) 2 m depths), while the effect of increasingis to decrease the
while the dispersion correction has the form, maximum of 8. The presence of a shear flow destroys the
3 symmetry of8(/), and the position of its maximum moves to
-5+ h—ﬁy, O<y<h larger! with an increase im.
Ti(y) = _% +ax(y — h)+ (88) The coefficient8; of the second order dispersion term has
4 m? h<y<H a behaviour similar to that o# for r close to 1. However,
6° - T when the difference in layer densities is significghit,can
where take negative values if the upper layer is thinner than the
2Bm+H—h) (m+H—m3 m lower. The qualitative behaviour of the coefficiems, of
ap = — + —. the nonlinear dispersion terms is similar to thatxplexcept

(c = Uoym? 3m? 6 when the pycnocline is near to the bottom (wherand y»
Next, from Eqgs. (63), (64), (76), (77), (78), and (79) we take finite positive values), or when the pycnocline is near to
can evaluate the coefficients of the extended Korteweg - dehe surface (whem, has finite negative values, and has
Vries Eq. (81) written here for the interfacial vertical dis- infinite positive values for > 1 and finite negative values
placement. Formulas for these quantities are complicatedor r = 1).
and, hence, are given in Appendix A. First, we note that in  Since the basic state considered here has a jump in the ba-
the case of the Boussinesq approximation, when the densitgic current field across the density-interface, this model is,
jump is small (i,eo ~ 0, or p1 & p2), so that the influence in principle, subject to high-wave number Kelvin-Helmholtz
of the free surface is then also small and upper boundary isnstability. However, because we are dealing here with long
effectively rigid , all coefficients coincide with those calcu- waves, this issue need not necessarily cause too much con-
lated by Pelinovsky, Poloukhina, Lamb (2000). Hence, ourcern, and indeed, it is quite common to regard such layered
emphasis here is to exploieter alia, how these coefficients models as valid approximations to continuous basic density
may vary witho, given here by Eq. (82). and current profiles when, as here, one is considering long
In Figs. 1-3 we display graphs of the non-dimensionalisedwaves. In order to demonstrate this explicitly in the present
quantitiesa, 8, a1, B1, y1, ¥2 as functions of = h/H for context, we replaced the two-layer model considered here
different values of the relative shear flow veloaity= Up/c, with a three-layer model, in which the lower layer has a con-
and the relative density= p1/02. Note that ag andr vary, stant densityp;, and the upper layer has a constant density
so does: and, hence, so doé® when we keep fixed. p2 and a constant currebly. The middle layer is thin, with a
First, we note that the nonlinear coefficieatandas have  thicknesss, and has a constant bouyancy frequeNgyand a
infinite values wheri = 0,1 = 1, i.e. when the thickness constant current sheéiy/§, both constructed to ensure that
of either the lower layer, or that of the upper layer, tends tothe basic density and current profiles are everywhere contin-
zero. The coefficient, of the nonlinear dispersion term also uous. The details are given in Appendix B. For this case the
has an infinite value dt= 1, whenr > 1. Of course, our coefficientse, 8, a1, 81, y1 and y, were evaluated numeri-
results are not valid in the vicinity of the such points. cally. A particular case whed = H/100 and when the
The coefficientx of the quadratic nonlinear term is posi- Richardson number in the thin shear layer w&b(so that
tive when the pycnocline near the bottom and negative wherthis basic profile is linearly stable) is shown in Fig. 4, and
pycnocline is near to the surface. Ror= 0 ande — O compared with the corresponding results for the two-layer
a > 0(< 0) according as < (>)H/2. The effect of in- model considered above. For all coefficients there is good
creasing the shear flow velocity is to put nearer to the surfacagreement.
the location wherex is equal to zero. Varying the relative Although our primary purpose here is to consider inter-
densityr has a very weak effect in the region of positive  nal solitary waves, we recall that all the formulas obtained in
but its effect is more noticeable in the region whers neg-  Sect. 4 are also valid for the surface wave mode. Hence,
ative; increasing: causes an increase in the absolute valuein Appendix C, we present the results for the coefficients
of a. a, B, a1, B1, y1 andy, for the surface wave mode of the two-
The coefficienix1 of the cubic nonlinear term is negative layer model introduced at the beginning of this section. In
for any layer depth ratio, and takes smaller (in modulus) val-particular, we can the verify that these expressions reduce
ues as the relative shear flow velocityincreases. When to the well-known ones for surface solitary waves when the
the lower layer is thin enough, the density ratibas almost  two-layer model is collapsed into a single layer.
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Fig. 1. Coefficients of the extended Korteweg-de Vries equation for a two-layer fluid with no current.

6 Conclusion tions.

The special case of a two-layer fluid with a shear flow due

We have presented an evolution equation, the extended Kao a constant velocity in the upper layer is discussed in detail.
rteweg de-Vries equation, to describe solitary waves in an arfor this special case the coefficients are obtained explicitly in
bitrary density- and current-stratified flow, without using the terms of the parameters of the model (layer depths, density
Boussinesq approximation and with a free surface, valid toratio and the relative shear flow velocity), and are analysed as
the second order of perturbation theory. All the coefficientsfunctions of these parameters. It is shown that the influence
of this equation are given explicitly as integrals of the modal of the density ratio, and the shear flow velocity, is signifi-

function, together with its nonlinear and dispersion correc-cant for all the coefficients, and should not be neglected in
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Fig. 2. Coefficients of the extended Korteweg-de Vries equation for a two-layer fluid with a current in upperdayetf/c = 0.25).

general. it may be useful to use Eqg. (81) as the model equation even
whenu is not small.
Next, we must point out again that the higher-order
Korteweg-de Vries equation (81) is, strictly speaking, an In conclusion, we note that although the higher-order
asymptotic result valid whem is sufficiently small, and Korteweg-de Vries equation (81), and the expressions defin-
is most likely to be useful when the coefficientof the ing the associated nonlinear and dispersion corrections (68)
quadratic nonlinear term is small (e.g.(¢) where we re- and (70) to the modal functions, are all uniquely defined with
call that = €2). However, because observed internal soli- our choice of normalisation (see Egs. 53 and 72), a differ-
tary waves are often quite large, we suggest that in practicent choice for the normalisation would produce a different
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set of coefficients. In particular, we recall that the nonlinearcan now be readily verified that substitution of Eq. (89)
and dispersion corrections to the modal functidyyy) and into Eqg. (81) allows us to generate asymptotically a higher-
T (y), respectively, are only defined by Eqgs. (68) and (70) order Korteweg-de Vries equation frof the same form as
to within an arbitrary multiple of the modal functiof(y) Eqg. (81), but with the coefficien8, a1, y1 andy» replaced
itself; it is only the normalisation conditions (72) which then by 81, a1 —aa/2, y1 andy> — 3aB + 2ba, respectively. Note
uniquely determine them. Omitting these normalisation con-that the coefficienta, g in the first-order Korteweg-de Vries
ditions has the effect of allowing us to make a near-identityequation are not changed, nor are the coefficigntand 1

transformation of the higher-order dispersive term. Indeed, it is easily seen
1, from the integral expressions (76) and (78) ferandy,, re-
B=A+ “{ E“A + bAXX}’ (89) spectively, that adding a multiple ¢fto 7, and/orT,, leaves

where a specific choice of the coefficientsh represents A1 @ndy1 unchanged.
a specific normalisation of},(y), T,(y), respectively. It In particular, we can now choose so that the higher-
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order Korteweg-de Vries equation féris Hamiltonian. For  where the Hamiltoniaf has the density

Eq. (81) to be exactly Hamiltonian (as opposed to being only 1 1
asymptotically Hamiltonian), it is necessary that= 2y, ZcA’+ (——ﬂA§( + —(xA3>

which is generally not the case (see Egs. 78 and 79). How- 2 6

ever, the near-identity transformation (89) with the choice o1, 1 s 1 )

3aB = y» — 2y1 andb = 0 will produce a Hamiltonian form. tut| SAAxx + A" — Sr1AAY . (91)

With y» = 2y1 the Hamiltonian form for Eq. (81) is
When Eg. (81) is Hamiltonian then it conserves not only the

9 8H ©0)

"7 Tax A
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mass (i.e. the integral of), but also the momentum whose the resulting equation foB is just the Korteweg-de Vries
density isA2, as well as the Hamiltonian itself, whose den- equation (i.e. has the form (62), or alternatively, the coeffi-
sity is H. For numerical purposes it is perhaps desirable thatientsgs, a1, y1, y2 in Eq. (81) are all zero) with an error of
the evolution Eq. (81) should be Hamiltonian, and, hence,0 (1) (see, e.g. Kodama, 1985; Fokas and Liu, 1996; Fokas
the renormalisation implied by Eq. (89) is generally recom- et al., 1996). Thus, in general, the Eq. (62) is asymptoti-

mended. cally reducible to the integrable Korteweg-de Vries equation.
Further, more is possible when the near-identity transfor-However, we hasten to point out that although this is an in-
mation (89) is enhanced to triguing result, its use in practice in this context may well be
1 X very limited because the amplitude parametés not neces-
B=A+p{=aA2+bAxx +d Ax / AdX sarily so small that the transformation (92) is applicable, and
2 also there are circumstances when the coeffiaieist zero,
+b XAr}. (92)  inwhich case this reduction is not possible.

It can then be shown that assumiagp are not zero, itis  AcknowledgementEP and OP were supported from INTAS (99—
possible to choose the available constants, a , b so that 1068, 99-1637) and RFBR (00-05-64223, 01-05-06208).

Appendix A Coefficients of the extended Korteweg-de Vries equation for internal waves in a two-layer shear flow
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where
2
_ . piem® + pa(c — Uo)h(H — h) _ ) y/h, O<y<h,

I=2 hm? ’ q)(y)_b{(y+m—h)/m, h<y<H, (€1)

H—-h
a=a——. (A7) where

_ m
m+H-—nh

Appendix B Numerical calculations for a three-layer
profile and

_ _ 2 _
As discussed at the end of Sect. 5 we replaced the two-laydft = (¢ ~ V0" +h —H

the lower layer has a constant dengity and the upper layer  The phase speed for surface mode can be expressed in the
has a constant densify, and a constant currerifo. The  semj-explicit form

middle layer is thin, with a thicknesy and has a constant

bouyancy frequencywo and a constant current sheldg/s, > @Q+o0)H—h+1—uw?h)++D c2
both constructed to ensure that the basic density and cur — 2(1—u)20(2+ o) ’ (€2)
rent profiles are everywhere continuous. Thus, in the middle
layer, we put where
2,2

p(y) = poexp(—o N3y) By P=@t NN+ H —h+A-w)h)

— 81— w)?oh(H — )],
so that

andu = Up/c is the relative shear flow velocity.
N(y) = No In the limiting cases, when the thickness of one layer tends
to zero thus reducing the model to a one-layer unstratified

where fluid, the phase speedbecomes
NE = L I
o8 p2 cth— H) — [ — (C3)
o
and H
c(h— 0) LN (c4)
o

1)
PO = ,ozexp In— <h + 2)
P2 In dimensional variables (using Egs. 8 and 9) these formu-

_Uo s las transform to the usual expressions for the linear long-

v = 5 <y —ht E) ' (82) wave phase speed of a surface wave on an unstratified fluid
of depthH, i.e. /gH and/gH + Uy, respectively. Note

thate, or ¢ — Up scale witho ~1/2, and keeping this in mind
§ = H/100 = 05 m, Up = c¢/4, andNo = 142 0 see that it is then permissible to take the limit> 0 to
1/s. The Richardson numbezr in the middle layer is givengpain the surface wave mode in an unstratified fluid.
by Ri = {3In(p1/p2)}/o U0, which varies withh/H, Next we use Egs. (68), (69), (70), (71), and (72) to find the
sincec then varies and so correspondingly ddés We nonlinear and dispersion corrections to the modal function

took maxc) = 3.84 m/s, and therRi = 0.55. For this ¢, this syrface wave mode. The nonlinear correction has the
case the coefficients, 8, a1, 81, y1 andy» of the extended

Korteweg-de Vries equation were evaluated numerically, and
the results are shown in Fig. 4. ay, O<y<h
Tu(y) = (% —az) (y +m —h) (C5)
+ aom, h<y<H

The parameters of this three-layer model grgo, = 1.5,

Appendix C Coefficients of the extended Korteweg-de
Vries equation for surface waves on a two-layer shear

flow _H-h 1 3 1
R E 20 (c — Ug)

where

Here we consider the surface wave mode for the two-layer

shear flow, described at the beginning of Sect. 5. The proceand

dure is similar to that for the internal wave mode, one impor- b
tant difference being that there is a different normalisation.az = po(c — Uo) 5 (
The modal function is again found from Egs. (50), (51), and

(52), and is now given by The dispersion correction has the form

3 —U)b
-3 Oa)'
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3
- +a1y, O<y<h
T, = Gh C6
2 { Pobm?® 4 iy — h) +arh + ™52 h<y<H (€0
where
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m 2 6m m m
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h\6 m m 2

Next, from Eqgs. (63), (64), (76), (77), (78), and (79) we can evaluate the coefficients of the extended Korteweg-de Vries
equation (81) and find that here,

3 b prc®m® + pac — Uo)*h®(H — h)

-7 , c7
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2 Korteweg-de Vries equation in the theory of the large amplitude

] — gpRlrcm + p2(c — Ug)h(H — h). (C13) internal waves, Non. Proc. Geophys., 4, 237—250, 1997.
hm? Holloway, P., Pelinovsky, E., Talipova, T., and Barnes, B.: A nonlin-

. . - ear model of internal tide transformation on the Australian North-
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