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Abstract

More than three years of measurements of aerosol size-distribution and different gas
and meteorological parameters made in Po Valley, Italy were analysed for this study
to examine which of the meteorological and trace gas variables effect on the emer-
gence of nucleation events. As the analysis method, we used discriminant analysis
with non-parametric Epanechnikov kernel, included in non-parametric density estima-
tion method. The best classification result in our data was reached with the combination
of relative humidity, ozone concentration and a third degree polynomial of radiation. RH
appeared to have a preventing effect on the new particle formation whereas the effects
of O3 and radiation were more conductive. The concentration of SO, and NO, also
appeared to have significant effect on the emergence of nucleation events but because
of the great amount of missing observations, we had to exclude them from the final
analysis.

1 Introduction

One of the central topics in atmospheric research is the effects of aerosols on climate
change. Aerosol particles influence cloud formation and absorb or scatter solar radia-
tion. It is well known that new particle formation can occur almost everywhere in the
atmosphere (Kulmala et al., 2004b) but despite of several years of investigation, many
of the processes and factors behind the new particle formation in the atmosphere re-
main unclear.

The use of statistical methods has been almost non-existent in the investigation of
nucleation events, although they are a powerful tool in the analysis of large measure-
ment datasets. Most studies on ambient nucleation events have investigated only phys-
ical or chemical mechanisms of nucleation (e.g. O’Dowd et al., 2002; Boy and Kulmala,
2002). Hyvonen et al. (2005) introduced some statistical data mining methods to ex-
plain new particle formation in Hyytiala station in Finland. However, their model is not
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as successful for our data, recorded in Po Valley, Italy (Hamed et al., 2006 ), which may
be due to different environmental factors and/or differences in the amount of pollution
between the measurement stations.

The aim of our study was to find a parameterization that is suitable for nucleation
event classification for more than three years of measurements made in highly polluted
Po Valley area in Italy. The measurements are discussed briefly in Sect. 2 but more
details can be found in Hamed et al. (2006)1. We constructed a statistical discriminant
analysis model with non-parametric kernel density estimate, described also in Sect. 2,
and tested the model with several different combinations of trace gas and meteorolog-
ical variables. The results of the model are introduced in Sect. 3 including the tests of
the accuracy of the classification and the comparison of final parameterization with the
parameterization from Hyvonen et al. (2005). The results are discussed in Sect. 4 and
finally, in Sect. 5, general conclusions of the paper are drawn.

2 Materials and methods

Our dataset consists of measurements made on 24 March 2002—-30 April 2005 at San
Piero Capofiume (SPC) station in the Po Valley area, ltaly. The event classification
was made from the particle size-distribution measurements, which were carried out
using a twin Differential Mobility Particle Sizer (DMPS) system. The DMPS system
was operational on 814 days during the time period, which included 293 event days
and 270 nonevent days, and 251 days that could not be classified. A day is considered
an event day if the formation of new aerosol particles starts in the nucleation mode
size range and the mode is observed over a period of several hours showing signs
of growth. The event days can be further classified into subgroups according to the

"Hamed, A., Joutsensaari, J., Mikkonen, S., Sogacheva, L., Dal Maso, M., Kulmala, M.,
Cavalli, F., Fuzzi, S., Facchini, M. C., Decesari, S., Mircea, M., and Laaksonen, A.: Nucleation
and growth of new particles in Po Valley, ltaly, Atmos. Chem. Phys. Discuss. submitted, 2006.

8487

ACPD
6, 8485-8510, 2006

Nucleation event
classification with
discriminant analysis

S. Mikkonen et al.

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/8485/2006/acpd-6-8485-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/8485/2006/acpd-6-8485-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

clarity degree of events. If no new particle formation has been observed, the day is
classified as a non-event day (NE). A large number of days did not fulfil the criteria to
be classified either clear event or NE day and they are considered as unclassified days
(NC).

As predictor variables we used several different gas and meteorological parameters
measured at SPC, including SO,, NO, NO,, NO,, O3, temperature, relative humidity
(RH), wind direction and speed, global radiation, precipitation, and atmospheric pres-
sure. During the measurement period, there were some missing data as well as some
bad quality data. Therefore, the actual number of days used in the analysis was de-
creased. More details of the measurements and event classification can be found in
Hamed et al. (2006)1. The daily averages used in this analysis are made from the
whole 24 h of each day because we did not want to lose any information about condi-
tions that might affect the occurrence of nucleation events by limiting the time span.

Figure 1 illustrates the distributions of the predictor values. Radiation (W m_2)
(Fig. 1b) and ozone concentration (ug m‘3) (Fig. 1c) are clearly higher during event
days than during nonevent days, whereas relative humidity (Fig. 1a) is lower during
event days than during nonevent days. The difference between event and nonevent
days in the distribution of the logarithm of condensation sink (Fig. 1d) is not so clear,
which makes it an inadequate classification variable. The distribution of the concentra-
tion of SO, (ug m‘s) is also quite similar within different event classes (Fig. 1e) but the
number of observations is low especially in event days, which may cause some bias to
the distribution. The concentration of NO, (ug m'3) is clearly lower during event days
(Fig. 1f) but again it is questionable if the number of observations is sufficient.

Favourable conditions for nucleation events can be observed from Fig. 2. It is evident
that high relative humidity is a preventing factor for the events, whereas radiation seems
to have a clear positive effect on the emergence of nucleation events (Fig. 2a). Radi-
ation and relative humidity also have a significant negative correlation with each other
but the correlation is not strong enough to cause multicollinearity, so they can safely
be used in the same model. High concentration of O3 combined with low RH (Fig. 2b)
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and high radiation (Fig. 2c) seem also to have a positive effect on the emergence of the
events. Ozone and radiation are clearly correlated (Fig. 2c), which is no surprise as
O,;is formed photochemically, but as with the anticorrelation of Fig. 2a, simultaneous
use of the two variables in the model is not prevented by multicollinearity. As stated
earlier, the logarithm of the condensation sink seems to be an inadequate classifica-
tion variable for our data. Figure 3 illustrates the classification ability of the logarithm
of the condensation sink with different pairs. It can also be seen from Fig. 3c that the
condensation sink and O5 have a positive correlation, which is obvious because they
both are assumed to have high values on highly polluted days.

2.1 Discriminant analysis

Several applicable methods have been introduced for classifying quantitative variables.
In this paper, we used Discriminant Analysis (DA) with non-parametric Epanechnikov
kernel (Epanechnikov, 1969) to find factors that classify the days as nucleation event
days or nonevent days. The notation of this and the following section refers to SAS
Institute Inc. (1999). We used two different methods to test the goodness of fit of the
models: resubstitution, where the computed model is fitted to the same dataset from
which it was estimated, and cross-validation, where the model is fitted to a different
dataset than the one used in the estimation.

Discriminant analysis is a multivariate statistical analysis method, which is commonly
used to build a predictive or descriptive model of group discrimination based on ob-
served predictor variables and to classify observations into the groups. If the distribu-
tion within each group is multivariate normal, a parametric (linear or quadratic) method
can be used to develop a discriminant function. Non-parametric discriminant methods
are used when the normality assumption cannot be made. Non-parametric methods
are based on group-specific probability densities and they are used to produce a clas-
sification criterion based on those probabilities. In our case, when analysing aerosol
measurement data, the normality assumption is not realistic and we have to use a
non-parametric kernel method. The non-parametric method is also more robust for
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multicollinearity, which might occur in this kind of analysis, where some variables mea-
sure partly the same effect.

2.1.1 Kernel estimation

The purpose of kernel estimation is to estimate the density function of observations
without any distribution assumption. The proximity of observations is needed in kernel
estimation. The squared distance between two observation vectors, x and y, in group
t is given by

x,y)=(x-y)V (x - y),

where I is in our case the covariance matrix within the event classification group .

The classification of an observation vector x is based on the estimated group-specific
densities from the data. From these estimated densities, the posterior probabilities of
group membership at x are evaluated. An observation x is classified into group u if
setting t=u produces the largest value of conditional probability p(t|x).

The kernel method uses a fixed radius, r, and a specified kernel, K}, to estimate the
group ¢ density at each observation vector x. Let z be a p-dimensional vector. Then
the volume of a p-dimensional unit sphere bounded by z'z=1 is

NI

T
r(z+1)
where I represents the gamma function.

Thus, in group t, the volume of a p-dimensional ellipsoid bounded by {z|z’|/t‘1z=r2}
is

VO=

v () = rP V|2 vg.
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Several applicable functions for the kernel density have been defined. Out of these, the
one that has been tested the most in numerous different statistical applications is the
Epanechnikov kernel, given by

C1(t)(1-,l22’l/,"2> if z'l/t'1z < r?
K (z) = {
0 elsewhere

where

cq(t) =

v,1(t) (1 * g) '

The group ¢ density at x is estimated by
.1
i) = o D Kilx-y)
y

where n; is the number of observations in group ¢, the summation is over all observa-
tions y in group £, and K; is the specified kernel function. The posterior probability of
membership in group t is then given by

q:1; (X)
PN = =759
where f (x) = 3, q,f, (x) is the estimated unconditional density and g, is the prior prob-
ability of group t. If the closed ellipsoid centred at x does not include any training set
observations, f(x) is zero and x cannot be classified in any of the groups, otherwise x
is classified in the group that has the largest number of observations in the closed ellip-
soid. The principle of the Epanechnikov kernel in 1-dimensional situation is illustrated
in Fig. 4. The observation from the test set, marked with X, is classified in the group
that has most observations from the training set, marked with o, within the radius r.
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3 Results

In the first phase, we leave the unclassified days out of the analysis and try to separate
the event and nonevent days. Hyvonen et al. (2005) presented a two-variable model
for the data from Hyytiala, Finland. In their model, Relative Humidity and the logarithm
of the Condensation sink explained 88% of the nucleation events with a total classi-
fication error of 12%, but for our data, this model was too simplified. The model still
explained almost 88% of the events in resubstitution but it also gave a large number of
false events (i.e. predict a nonevent day to be an event day), which increased the total
classification error to 22% (Table 1).

Since this was the best two-variable model found, we had to increase the number of
predictors to get an applicable classification. With our model, we could explain almost
99% of the nucleation event days in resubstitution with the information from three dif-
ferent factors: relative humidity, which was the most significant variable, radiation, and
ozone concentration. The effect of radiation was estimated with a third degree polyno-
mial. The concentrations of SO, and NO, were also adequate predictors for the model
but because of a great number of missing observations, they could not be used. The
total classification error for the model was 3.36%.

Re-substitution is a good way to find the best model for the current data but if
one needs to know how the model performs with different datasets, a cross-validation
method should be used. For cross-validation, we constructed 1000 training sets and
1000 test sets from the original data with Bootstrap re-sampling method (Efron and
Tibshirani, 1993). We computed both models for all training sets and tried to pre-
dict the event distributions of the test sets with the results. We computed the mean,
standard deviation and 95% confidence interval from the total classification errors and
misclassification rates from the 1000 repeated estimations. The two-variable model
misclassifies on average 13.7% of the event days but it also predicts a great number of
false events, which increases the total classification error to 23.2% (Table 2).

The model with RH, radiation and O included missed a few more events than the
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two-variable model but it also produced fewer false events. The total mean classifica-
tion error from 1000 repeats is 17.6%, which is clearly better than in the two-variable
model, and we can say that the three-predictor model fits better to cross-validation
data.

The flaw in this approach is that we did not take into account the days that were
unclassified in the data. That kind of restriction would have lead to loss of almost
one third of our data. Since we are planning to use the classification information in
further analysis, we also needed to take into account the unclassified days. This is
done by using the discriminant analysis to a three-class event-variable, where classes
are event, nonevent and unclassified, instead of only two class variables, event and
nonevent days.

As the unclassified class is not exactly independent from the event and nonevent
classes, the discriminant analysis becomes slightly more unstable and the classifica-
tion is not as good as it was with the restricted data. The total classification error for
the three-predictor and three-class model was 13.5%, and the misclassification rate for
event days was 1.9% (Table 3). The model had some difficulties in separating non-
event days from unclassified days. This happens probably because a great number of
unclassified days are most likely nonevent days.

The performance of the two-variable model with three classes is also worse than
with two classes. The total classification error of the model is 43.2% even though it
predicts correctly 83.3% of the event days. The two-variable model cannot distinguish
unclassified days from event and non-event days in our data, as it classifies almost
half of the unclassified days into event days. It also classifies 10.8% of event days into
nonevent days and 31.2% of nonevent days into event days.

Cross-validation for the three-class data in Table 4 shows that adding the unclassified
days to the analysis makes the analysis slightly more unstable and the classification
errors increase. The three-predictor model misses again a few more events but most
of those missed events are classified into unclassified group, while the two-variable
model predicts most of the missed events into nonevents. In addition, the two-variable
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model produces a great number of false events.

It is also possible to force the model to re-classify all of the unclassified days into
either event or nonevent days. To do this, we have to assume that every day is either
an event day or nonevent day and the unclassified days in the data are only a result
of insufficient classification method. As a result of this assumption we could make a
resubstitution where event and nonevent days classified as they did when there were
only two classes in the analysis and 27.86% of the unclassified days classified into
event days (Table 5). The model fails to resubstitute 23 NC days; this is due to a tie
for the largest group-classification probability. Resubstitution failures could be avoided
by changing the width of the kernel, but for comparability we wanted to use the same
kernel in every model. As already seen in Table 3, the two-variable model assumes
that most of unclassified days (54.29%) are event days.

This resubstitution gives an estimate for the numbers of unclassified days, which
should actually be classified into event and nonevent days. It is commonly assumed
that most of the unclassified days are nonevent days, as the three-predictor model
suggests. The two-variable model tends to overestimate the number of event days and
classifies more than half of the unclassified days to event days.

4 Discussion

The best classification result in our data was attained with the combination of RH,
O3 and a third degree polynomial of radiation. Relative humidity was found to be a
preventing factor for nucleation events, which has also been suggested in previous
studies (e.g. Birmili et al., 2003; Boy and Kulmala, 2002). On the other hand, radiation
and ozone concentration were found to have a positive effect on the new formation of
particles. Radiation is known to be an essential factor in nucleation events (e.g. Birmili
et al., 2003; Woo et al., 2001) and several previous studies support our finding that
ozone also has a positive effect on new particle formation (e.g. Rodriguez et al., 2005).

Our parameterization differs greatly from the results of Hyvonen et al. (2005), who
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obtained the best results by using RH and condensation sink, both factors tending to
prevent nucleation. The data used in their analysis had been collected from Hyytiala,
Finland, where the air is rather clean. The model with RH and condensation sink as
its predictors was far too simple for our data. It appears that in highly polluted areas,
like Po Valley, different predictors are needed to make an applicable classification. The
concentrations of SO, and NO,, also appeared to have a significant effect on the emer-
gence of nucleation events, but because of the great number of missing observations,
we had to exclude them from the final analysis. In the models where SO, or NO, was
included, the significance of O; was reduced. Particularly NO, and O; measure the
effect of pollution in nucleation and particle growth processes. It is also known that the
concentration of SO, affects the nucleation of new particles as it is a precursor for sul-
phuric acid, whilst O is assumed to have greater effect on the growth of new particles
as it is an oxidising agent for VOC’s, affecting thus the production of condensable or-
ganic species (Kulmala et al., 2004a). When comparing the significance of these three
variables, SO,, NO, and Og, it was seen that Oj is clearly the most significant predictor
of these three in our data, and SO,, NO, have almost equal classification ability.

The three-predictor model gives an adequate resubstitution to the data; it misses
only three events from the three-class data. Figure 5 shows that missed events, marked
with solid red dots, are produced in a situation where relative humidity is high, while
radiation and the ozone concentration are low, which is the exact opposite of the usual
favourable conditions for an event day. (It appears that in two out of three of these
events, the radiation levels peaked strongly just before event start. Remember, that
we use 24 h averages in our modelling.) The distributions of predictor variables were
illustrated in Figs. 1 and 2. Nonevent days classified as event days, marked with red
circles, do not show as clear pattern even though relative humidity is lower than on
average nonevent day in all cases and radiation is higher than on average nonevent
days in six days out of seven. In addition, no clear pattern was detected with false
events and false nonevents produced from the unclassified days. It is notable that all
missed events were observed in December 2002 and they were all classified as weak
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events on the scale of Hamed et al. (2006)1.

For the two-variable model, the proportion of missed events increases when the rela-
tive humidity increases (Fig. 6a), whilst radiation and concentration of ozone decreases
(Fig. 6¢), just as in the three-predictor model, though the pattern is not as clear. The
logarithm of condensation sink, which was used as a predictor in two-variable model,
seems not to have any effect on the occurrence of the prediction errors (Fig. 6d). As
we saw from Figs. 1 and 3, the classification ability of the condensation sink in our data
is questionable.

To demonstrate the performance of the discriminant function, we used two-
dimensional grids, where the third predictor was set to constant, as test sets in the
analysis. Figure 7a illustrates a situation where the ozone concentration is fixed to
60 ug m‘s, in Fig. 7b RH is set to 80%, and in Fig. 7c radiation is set to 150Wm™2, It
can be seen that in these cross-sections the areas where grid points are classified into
event or nonevent are not continuous, however, in a three-dimensional grid they form a
continuous volume when all variables are let to vary freely.

5 Conclusions

We analyzed a dataset collected from Po Valley, Italy during a period 24 March 2002—
30 April 2005. Our findings show that in polluted areas, like Po Valley, more compli-
cated processes control the emergence of the nucleation events than in clean areas.
Our findings show, that high relative humidity has a preventing effect on the occurrence
of new particle formation, while high radiation and high ozone concentration have a
positive effect on the probability of nucleation events and help the particles grow to
detectable sizes.

As the analysis method of our study, we used discriminant analysis with Epanech-
nikov kernel, included in non-parametric density estimation method, to examine which
of the meteorological and trace gas variables effect on the emergence of nucleation
events. The best classification result in our data was reached with the combination
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of RH, O3 and a third degree polynomial of radiation. The concentrations of SO, and
NO, also appeared to have significant effects on the emergence of nucleation events
but because of great amount of missing observations, we had to exclude them from
the analysis.

It is somewhat surprising that both radiation and ozone concentration belong to the
set of the three variables that give the best statistical explanation of nucleation event oc-
currence, as ozone is generated in photochemical reactions. However, ozone concen-
trations obviously are dependent also on other factors than radiation, and may therefore
yield extra information to the statistical model, which is likely related to concentrations
of oxidized organics able to participate in fresh particle growth.

The model is easy to implement into an atmospheric model, which can be used to
investigate the effect of nucleation events on the local aerosol budget, and therefore
it is also important to have the unclassified days included in the analysis. However,
even though this parameterization is the best possible in our data it may not be the
best everywhere (and might not be for our dataset if additional gas-phase parameters
were available). It has already been shown that in clean boreal forest area only two
parameters, RH and condensation sink, are needed for adequate classification so it is
clear that additional work will be required before more general model can be presented.
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Table 1. Resubstitution table for two different models.
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Resubstitution
predictors Classification error Missed events False events
RH, O3, Radiation 3.36% 1.27% 5.67%
RH, log(CS) 22.82% 12.1% 34.7%
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Table 2. Total classification errors in cross-validation and misclassification rates for the models.
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discriminant analysis

S. Mikkonen et al.

Cross-validation, 1000 simulations

predictors Mean Std Dev Lower 95% Upper 95%
CL for Mean CL for Mean
Total error 17.63% 0.0277 17.46 17.80
RH, O3, Radiation Missed events 15.24% 0.0436 14.97 15.52
false events 20.29% 0.0531 19.96 20.62
Total error 23.21% 0.0249 23.05 23.36
RH, log(CS) missed events 13.67% 0.0395 13.42 13.91
false events 33.83% 0.0495 33.52 34.14
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Table 3. Resubstitution table for the models for three-class data.
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Resubstitution, three-class data

predictors Classification error Missed nonevent to event NC to event NC to nonevent
events

RH, O, 13.47% 1.91% 4.96% 714% 2.86%

Radiation

RH, log(CS)  43.15% 16.56% 31.21% 46.43% 29.29%

8501

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/8485/2006/acpd-6-8485-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/8485/2006/acpd-6-8485-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

Table 4. Total classification errors in cross-validation and misclassification rates for the models
for the three-class data.
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Cross-validation, 1000 simulations, three-class data

predictors Mean  Std Dev Lower 95% Upper 95%
CL for Mean CL for Mean

Total error 31.78% 0.0276 31.61 31.95
missed events 24.56% 0.0473 24.26 24.85

RH, O3, Radiation event to nonevent 6.61% 0.0269 6.44 6.78
nonevent to event 717% 0.0293 6.99 7.35
Total error 45.08% 0.0242 44.93 45.23
missed events 19.83% 0.0506 19.51 20.14

RH, 1og(CS) event to nonevent 11.88% 0.0391 11.64 12.12
nonevent to event 29.16% 0.0501 28.85 29.48
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Table 5. Resubstitution table for model 1 for three-class data where all days are classified as
event or non-event days.
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Resubstitution, NC days re-classified with the model

predictors Missed  nonevent to event NC NC NC classification
events to event to nonevent Failed

RH, O3, 1.27% 5.67% 27.86% 55.71% 16.43%

Radiation

RH, log(CS) 121% 33.33% 54.29% 44.29 % 1.43 %
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Fig. 1. Distributions of the predictor variables in event, nonevent and unclassified (NC) days.
The length of the box represents the difference between the 25th and 75th percentiles, the
horizontal line inside the box represents the median, the lengths of the dashed lines correspond
to the largest and smallest values that are not outliers, and the outliers, labelled with o, are
cases with the values more than 1.5 box-lengths from the 75th percentile or 25th percentile.
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Fig. 4. Epanechnikov kernel in 1-dimensional case. The observation from the test set, marked
with x, is classified in the group that has most observations from the training set, marked with

o, within the radius r.
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Fig. 5. The success of the Three-predictor model in comparison to the daily means of different
predictor variables: green indicates correct prediction, solid red indicates missed event, red
circle indicates nonevent day classified to event, solid blue indicates NC day classified to event,
blue circle indicates NC day classified to nonevent.
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Fig. 6. The success of the two-variable model in comparison to the daily means of different
predictor variables: green indicates correct prediction, solid red indicates missed event, red
circle indicates nonevent day classified to event, solid blue indicates NC day classified to event,

blue circle indicates NC day classified to nonevent.
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