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Abstract. Results from an experimental study of vortices
in a rotating shear layer are presented. The data are in the
form of maps of the instantaneous horizontal velocity field
obtained by a particle tracking technique. Two fundamen-
tally different methods to analyse time series of these veloc-
ity fields are presented and compared. One technique is the
empirical orthogonal function (EOF) analysis, and the other
method describes the flow field in terms of a few individual
localised vortices.

The flows discussed here are time-dependent two-vortex
flows, which could either be described as a global mode 2
or as a collection of four unequal vortices. The results show
that, while EOF analysis is a very powerful tool to detect
fairly regular travelling modes or stationary features, it can-
not detect local dynamics. The vortex identification tech-
nique is very good at detecting local structures and events
but cannot put them into the context of a global flow struc-
ture. The comparison of the techniques shows indications
that the time-dependence found in the system for low mode
numbers could arise from an interaction of the large scale,
global-mode flow with a local mechanism of vortex genera-
tion and shedding at a solid boundary.

1 Introduction

The generation, evolution, and behaviour of coherent struc-
tures are fundamental problems in fluid mechanics. This pa-
per will present data from an experimental study of vortex
dynamics where the vortices originated from the instability
of a detached shear layer within a rotating fluid. The mech-
anism and conditions for the instability of the shear layer,
together with a detailed survey of flow regimes over a wide
range of forcing parameters, were reported by Früh and Read
(1999). Both, steady and time-dependent regular vortices
were observed. One of the measurement techniques used was
a particle tracking technique which resulted in sequences of
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horizontal velocity fields at regular time intervals. The aim of
this paper is to present a description and comparison of two
analysis techniques to describe the vortices most efficiently.

The remainder of this section is a short introduction to the
background which is followed by a description of the exper-
imental apparatus and the flow measuring technique. After
a brief introduction to the general results, two alternative or
complementary techniques will be presented. The first de-
scribes the flow in terms of individual vortices. After an
initial analysis step in which the vortices are identified, the
technique returns a typical vortex profile together with some
scalars containing information about the position, size, and
strength of the vortices. The second technique is the Empir-
ical Orthogonal Function (EOF) analysis which decomposes
the fields into empirical orthogonal functions (EOFs), each
weighted by their respective variance contained in the singu-
lar values,λ, and principal components (PCs) which capture
the time history of their associated EOFs. A variant in which
the EOF analysis is applied to the fields rotated with the main
flow feature, is also presented. While the standard EOF anal-
ysis does not require any pre-analysis, the variant EOF anal-
ysis and the vortex decomposition require a previous analysis
step to identify the “main flow feature(s)”.

1.1 Background

Rotating shear layers occur in a variety of situations, from
industrial to geophysical applications. An example of an in-
dustrial application is the design of computer hard disk drives
(Humphrey and Gor, 1993) where shear layers occur between
the rapidly rotating magnetic disc and the stationary housing.
It has been proposed that vortical features on the giant plan-
ets, such as the Great Red Spot on Jupiter, are a result of this
instability (e.g. Meyers et al., 1989).

Compared to shear layers in non-rotating fluids, the effects
of a background rotation are two-fold. For one, a strong Cori-
olis force inhibits motion aligned with the rotation axis and
the flow tends to be two-dimensional and perpendicular to
the rotation axis. The second effect is that a shear region, for



190 W.-G. Fr̈uh: Barotropic vortex descriptionFigures

6

AR

H

Ωω

Ω
Ω+ω

6

?

- -

Fig. 1. Schematic diagram of the apparatus.
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Fig. 2. Instantaneous velocity field and vorticity contour map of a distorted two-vortex flow at Re =

−80; E = 7.3 × 10−4.
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Fig. 1. Schematic diagram of the apparatus.

example due to an imposed velocity jump, is confined to a
shear layer which becomes thinner as the background rota-
tion becomes stronger. This scaling of the shear layer will
obviously affect the shear instability of a fluid since the def-
inition of the Reynolds number of the flow includes a length
scale such as the shear layer thickness. The exact nature of
the shear layer depends on the geometry of the domain and
the forcing. In the simplest case of a uniform layer of fluid
with horizontal boundaries and vertically uniform forcing of
the shear flow, Stewartson (1957) has shown that the thick-
ness of the shear layer is proportional to�−1/4, where� is
the mean rotation. The apparatus was designed to investi-
gate this basic case of a uniform layer of fluid with constant
depth, horizontal boundaries, a vertical rotation axis, and
uniform forcing. The first in-depth experimental studies of
this system was carried out by Hide and Titman (1967), with
a range of different realisations of such shear layers since
then (Holton, 1971; Niino and Misawa, 1984; Antipov et al.,
1986; Meyers et al., 1989; Solomon et al., 1993; Bergeron et
al., 2000).

2 The apparatus

The fluid was contained in a cylindrical perspex tank with a
radius of 300 mm as shown in Fig. 1. A vertical axis of radius
31.8 mm in the centre of the tank supported two circular disks
with a radius of 150 mm each (the dark sections in Fig. 1.
Two flat rings were placed in the tank flush with the circular
sheets to ensure a uniform fluid depth throughout the domain.
The height of the upper disk and ring above the lower surface
could be adjusted from 30 to 150 mm but was kept at 100 mm
for the experiments presented here. The working fluid in the
particle tracking experiments was a water-glycerol mixture
with a density ofρ = 1044 kg m−3 and a kinematic viscosity
of ν = 1.66× 10−6m2 s−1.

The inner axis with the disks was driven by a stepper mo-
tor at angular velocitiesω ranging from−0.7 to+0.7 rad s−1

(≈ ±0.1 Hz). The whole tank was mounted on a steel
turntable with a diameter of 1.2 m which rotated anticlock-
wise at angular velocities up to� = 4 rad s−1 (≈ 0.7 Hz).

The sign of the inner disk motion was taken as relative to
the turntable rotation. The turntable rotation rate,�, and the
inner disk rotation rate,ω, were controlled by a PC in such
a way that any one of the dynamically relevant nondimen-
sional parameters could be fixed while varying other param-
eters over time. The variation of a parameter could be any
temporal function. In these experiments, a series of constant
sections separated by linear changes was used.

2.1 Parameters

The main parameters in this system are the Ekman number
and either the Rossby number or the Reynolds number. The
Ekman number is a measure of the viscous dissipation com-
pared to the Coriolis term,

E ≡
ν

�H 2
(1)

whereν is the kinematic viscosity of the fluid,H the fluid
depth. The mean rotation of the fluid,�, is often described
in terms of the Coriolis parameter,f = 2�. The Rossby
number,

Ro ≡
U

f L
=

1

2

R

L

ω

�
, (2)

is a measure of the nonlinear advection compared to the Cori-
olis force, while the Reynolds number,Re, is a measure of the
advection terms compared to viscous dissipation. The scal-
ing velocity for Ro andRe is the velocity difference of the
boundaries at the gap,U = Rω. The definition ofRe in this
system varies from the usual definition,Re = UL/ν, due to
the fact that the length scaleL is not a fixed scale relating
to the apparatus but rather the shear layer thickness, which
depends on the mean rotation rate asL = (E/4)1/4 H ,

Re ≡
1

√
2

(
�H 2

ν

)3/4
R

H

ω

�
. (3)

It may be noted here, that the Rossby and Reynolds numbers
may be positive or negative. If the inner disk is rotating in
the same sense as the turntable,Re is positive, and negative
otherwise.

With a fluid depth ofH = 0.1 m and a kinematic viscos-
ity of ν = 1.66 × 10−6 m2s−1, the typical ranges of these

parameters were|Re|
<
∼ 3000 andE ≈ 10−5 . . . 10−2.

2.2 Particle Tracking experiments

During the Particle Tracking experiments, the horizontal ve-
locity field in the horizontal plane at mid-level was measured.
Pliolite particles suspended in the fluid were illuminated by
a horizontal sheet of light which was produced by three pro-
jector light bulbs and cylindrical lenses arranged around the
periphery of the tank. The horizontal flow field was then ob-
served with a monochrome CCD camera looking vertically
down on the tank. The camera was fixed to a superstructure
on the turntable, and all velocity measurements were taken
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Fig. 2. Instantaneous velocity field and vorticity contour map of a
distorted two-vortex flow atRe = −80 andE = 7.3 × 10−4.

relative to the tank. The size of the apparatus and the resolu-
tion of the camera required tracer particles with a diameter of
600 to 700µm. Due to the slow velocities and the long ob-
servation periods, care had to be taken to adjust the density of
the working fluid such that the particles were neutrally buoy-
ant, which determined the fluid properties mentioned above.

To obtain a representative sample of flow states, three-hour
periods were recorded onto S-VHS video tapes during which
one of the parameters was changed. Two methods of chang-
ing the parameter were used, one where it was gradually in-
creased or decreased linearly, the other where the parameter
was changed linearly by a prescribed increment over a short
time followed by a longer time where the parameters were
held constant. For the analysis described in the following the
piece-wise constant parameter setting was used.

The video tapes were then analysed using the particle
tracking option of the flow measurement packageDigImage
(Dalziel, 1992), which resulted in a file of up to 4096 simul-
taneous horizontal velocity vectors at the position of identi-
fied tracer particles. While the software allowed a calcula-
tion of the velocities or derived quantities on a regular grid,
the primary velocity data were used to minimize averaging
and fitting errors.

3 Results

As presented in Früh and Read, 1999, the shear layer became
unstable above a critical Reynolds number ofRec = 36± 3.
The flow then broke up into a string of regular vortices where
the size and number of vortices was mainly determined by
the thickness of the layer as measured by the Ekman number.

A small Ekman number resulted in a large number of small
vortices while a large Ekman number resulted in as few as
two vortices.

Increasing the Reynolds number gradually from the first
supercritical vortex flow resulted in a successive transition
to fewer and larger vortices along the shear layer. Reduc-
ing Re from a large value, produced a corresponding tran-
sition to more smaller vortices. The location of the transi-
tions between different vortex numbers, however, depended
on the direction of the change of the Reynolds number. This
hysteresis resulted in the co-existence of up to three pos-
sible vortex states for any given pair of parameter values
of E and Re. Which of the possible states was observed
depended on the initial conditions but, once the flow had
reached one of the states, it remained in that state for the
duration of the experiment. The lowest number of vortices
observed was two. All vortex flows with four or more vor-
tices were steady wave-like flows with the appropriate sym-
metry of the wave number. Only flows with three or two vor-
tices could show some time-dependence or deviations from
rotational symmetry. This has also been observed in exper-
iments in shallow-water experiments in rotating parabolic
vessels by Bergeron et al. (2000) and numerical studies of
those experiments by de Konijnenberg et al. (1999) where
the time-dependent three-vortex flow was a spatial modula-
tion of the basic three-vortex flow, and the time-dependent
two-vortex flow occurred as a result of vortex generation and
shedding at the inner boundary of the annular domain. In our
experiments, the flow which would be described as a time-
dependent three-vortex flow could have been an interference
of modes two and three but conclusive evidence cannot be
presented yet since the experiments gathering flow field data
concentrated on the steady flows and the two-vortex flows.
Two varieties of the two-vortex flow were found. One was a
symmetric flow with two vortices of equal size and strength,
equally spaced along the zonal direction. This flow was
found after a mode transitionm = 3 → 2. The other two-
vortex flow arose from a gradual distortion of them = 2
flow into two vortices of unequal strength and shifted vortex
positions. In a global mode description, this would be a su-
perposition of a mode 1 and a mode 2. A pure mode 1 was
never observed.

An example of a distorted two-vortex flow is shown in
Fig. 2. The arrows represent the horizontal velocity field
while the underlying contour map indicates the vorticity. The
deformation of the shear region is clearly visible together
with the two counter-rotating vortices along the outer edge of
the shear layer. The light areas in the superimposed vortic-
ity map indicate low-vorticity regions between the strongest
shear and the centre of each vortex.

Removing the mean azimuthal flow from the velocity field
in Fig. 2 results in pair of strong vortices next to each other
in a dipole arrangement as shown in Fig. 3. The secondary
vortex can still be seen, as well as another weak vortex pat-
tern. The relative strength of the dipole and the weaker vor-
tices varied not only for different experimental conditions,
but it was also the main characteristic of time-dependent
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Fig. 3. Instantaneous eddy velocity field of the distorted two-vortex flow in fig. 2.
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Fig. 3. Instantaneous eddy velocity field of the distorted two-vortex
flow in Fig. 2.

behaviour. It was common to find that in any one flow
field some of the vortices were almost circular while others
showed pronounced eccentricity. The vortices tend to show
less eccentricity at higher vortex numbers.

In the following section a sequence of velocity maps is
analysed which starts in the distorted vortex regime and
moves in steps towards lower Reynolds numbers and more
symmetric two-vortex regime. After equilibration, the pa-
rameters are held constant for 12 min followed by a linear
decrease ofRe over 3 min, after whichRe is held constant for
12 min once more, and so on. The Ekman number for these
flows isE = 7.3 × 10−4, and the Reynolds numbers for the
constant sections decrease fromRe = −167 to−96 as listed
in Table 1. To keep the amount of data at a manageable level,
velocity fields were calculated at 30 s intervals.

4 Local vortex description

4.1 Isolation of vortices

As presented by Früh (2002), the main features of the flow
field can be described as a superposition of a small num-
ber of coherent structures, or vortices. By normalising the
variables and separating the radial and azimuthal variation
of the scaled velocities, it is possible to find a generic, time-
independent description of each vortex. The evolution is then
expressed in time series of a small set of scalars and simple
shape functions.

The flow was decomposed into four vortices, a primary
and secondary cyclone and anticyclone each. While there
were some differences between the four mean vortex fields,

Table 1. Physical and nondimensional parameters of experimental
sequence used for analysis

R = 150 mm E = 7.3 × 10−4

H = 100 mm � = 0.22 rad/s
A = 300 mm ν = 1.66× 10−6m2/s

Time (s) 0–720 900–1620 1800–2520 2700–3420
ω (rad/s) –0.159 –0.136 –0.114 –0.0914
� (rad/s) 0.599 0.576 0.554 0.531
Ro –0.7 –0.6 –0.5 –0.4
Re –167 –143 –120 –96

they all showed an approximate velocity profile consistent
with a

uξ ∝ ξ exp
(
−ξ2

)
(4)

behaviour whereξ ∈ (0, 1) is the scaled radial coordinate
from the vortex centre. The example shown in Fig. 4 is for
the primary anticyclone.

4.2 Time series of vortex characteristics

The main scalars obtained from the decomposition into vor-
tices are

– The coordinates of the vortex centre,
either as(x, y) or (r, θ),

– The maximum radius of the vortex,R, and

– The maximum velocity in a vortex,V .

As discussed by Früh (2002), this is just a small selection of
possible scalars, but these appear to show the most obvious
temporal variation in the set analysed here.

Time series of the four scalars are shown in Fig. 5, where
the position of the vortex is shown by their angle in the
cylindrical system of the tank and their radial position as
the distance of the core from the edge of the differentially
rotating disks,Y ≡ r − 150 mm. The main features are
that the four vortices drift on average at the same rate in
a retrograde direction at a drift frequency of approximately
1.2×10−2 rad s−1, which is about 10% of the angular veloc-
ity of the inner disk, but that the drift of the individual vor-
tices fluctuated, with very little fluctuation in the two primary
vortices but pronounced fluctuation in the two secondary vor-
tices. Similar variation is found in the radial position of the
vortex centres, which seems to be locked to the angle. Due
to the large difference in the amplitude of the variation inY ,
we can conclude that this variation is not an artifact of the
measuring system. It might still be a physical phenomenon
caused by imperfections in the apparatus.

In the plots of the maximum radius (“size”),R, and the
scaling velocity (“strength”),V , of the vortices it becomes
apparent that the system gradually moves from one distinct
dominant vortex to a state where the differences between the
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Fig. 4. Typical mean velocity profile. Superimposed is the function 0.8ξ exp(−ξ2).
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Fig. 5. Time series of the vortex characteristics:(a) Spatial phase of the vortex centres;(b) lateral distance of the vortex centre from the disk
edge;(c) major radius of the vortices; and(d) maximum circulation velocity in the vortex. The solid line is for the primary anticyclone, the
dotted line for the primary cyclone, the dashed line for the secondary anticyclone, and the dash-dotted line for the secondary cyclone.

two vortices of same sign gradually reduces. The average
spatial extent of the individual vortices appears less affected
than their strength as the forcing changes. One could con-

clude from this observation that the size of the vortices is
primarily determined by the size of the tank and the total
number of vortices present while the velocity scale depends
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on the forcing by the inner disk rotation as well as the vortex
size. As a result one might test the hypotheses that the vor-
tex interactions are mainly controlled by the relative velocity
scales,V , or by the relative vorticity scales,V/R. The time
scales of fluctuations ofR andV seem to be independent of
the spatial phase of the vortices thus giving evidence of some
“real” time-dependent behaviour due to vortex interactions,
where the fluctuations of the two quantities are highly corre-
lated with each other. Furthermore, the period of the fluctu-
ations changes visibly as the forcing changes throughout the
time series.

In summary, the decomposition into a set of vortices re-
sults in a mean vortex profile and time series of scalar vortex
characteristics. It appears from the time series that the main
temporal fluctuations are captured by the radial position and
the vortex strength. While the dominant vortices move lit-
tle from the zone of the shear forcing, the secondary vortices
show large excursions relative to that zone. Other temporal
behaviour is found in the vortex strength which appears to be
linked with the mean vortex strength and the forcing. Using
the mean profiles, one could develop some low-order models
of this flow in terms of the position, size, and strength of the
vortices, where the vortex interactions are primarily commu-
nicated by the relative vortex strengths.

5 Global field decomposition

5.1 Standard EOF analysis

Empirical Orthogonal Function (EOF) analysis, also known
as Singular Systems Analysis (SSA) or Principal Compo-
nent Analysis (PCA) is a standard statistical technique (e.g.
Everitt and Dunn, 2001), which has been used extensively in
many disciplines including Oceanography and Atmospheric
Sciences (Brunet, 1994). It is based on the singular value de-
composition of a suitable matrix of the ensemble of measure-
ments. Numerically more reliable is the equivalent eigen-
value decomposition of the covariance matrix of the mea-
surements. In the present case, each vector used to construct
the measurement matrix contained the two horizontal veloc-
ity components interpolated onto a regular grid. In contrast to
Particle Image Velocimetry (PIV) the raw data from particle
tracking are not gridded, but depend on the actual location of
identified particles.

Figure 6 shows the singular values for the EOF analysis
of the full velocity field data sorted according to the relative
contribution of each EOF to the observed variance between
the velocity fields. The leading singular value is about three
times larger than the second and third singular values which
appear to form a pair. These are followed by two singular
values of similar size and a ‘shelf’ before the values form
a gradually decreasing tail. The tail indicates that a large
number of EOFs represent noise of some form, presumably a
combination of dynamical (red) noise and instrumental white
noise. Pairing of two singular values frequently indicates
a travelling mode which could be regarded as the empirical

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

i

λ

Mean Flow 

pair ∼ retrograde m=2 

pair ∼ prograde m=1 

pair ∼ m=3 

Fig. 6. Singular values for the EOF analysis of the set of full field
data.
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data.

equivalent of a sine and cosine mode of a Fourier expansion.
As one might expect from this system in which a mean flow
is forced by the inner disk which then results in drifting vor-
tices, the EOF analysis yields a decomposition into the mean
flow, a set of modes, and noisy fields, where the dominant
mode is the azimuthal mean field. The other modes each con-
sist of a pair of modes in quadrature, as is indicated by the
pairing of singular values, e.g.λ2 andλ3, in Fig. 6. One has
to keep in mind, however, that such pairing is only an indi-
cation and not firm evidence. The two EOFs corresponding
to the first pair of singular values, EOF2 and EOF3, depict
a mode 2 flow with two cyclonic and anticyclonic vortices
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each, evenly spaced around the tank as illustrated by EOF2
in Fig. 7. The pair of EOFs following in the ranking are simi-
lar to a mode 1. As Fig. 8 shows, these EOFs are not equal to
a harmonic mode 1 because the position of the centres of the
cyclone and anticyclone are not evenly spaced but form an
angle of about 53◦ with respect to the origin. The third pair
of EOFs, almost indistinguishable from the noise-dominated
tail, represents a mode 3. The mean flow and modes one and
two contributed 44% to the total variance. While there is no
clear signal-to-noise threshold, intuition allows to conclude
that the flow is certainly dominated by the mean flow and two
travelling wave modes. There may be further dynamically
important modes just at the noise level, such as the mode 3,
but any conclusion from this could not be supported as hard
evidence.

The temporal evolution of the EOF contributions to the
observed fields is captured by their corresponding principal
components (PC). Since EOF1 appears to represent the az-
imuthally averaged “mean flow” velocity field, the mean flow
field at time ti could be constructed as the product of the
first Empirical Orthogonal Function (EOF1), its correspond-
ing first singular value (λ1), and theith entry in the first Prin-
cipal Component which corresponds to timeti (PCi

1):

uj (ti) = PCi
1 λ1 EOF1

j ,

where the superscriptj is the index of the gridpoint. Since
the grid had to be converted to vector for the decomposition,
field j refers to a node in the two-dimensional grid with co-
ordinates(xj , yj ).

The solid line in Fig. 9a shows the first principal compo-
nent vector, scaled byλ1 as a time series. Since EOF1 repre-
sents the azimuthal mean flow, the figure therefore shows the

time series of the strength of the mean flow. The magnitude
of that quantity is related to a velocity scale but it cannot be
easily converted into standard units as the EOF analysis nor-
malises its results. The mean flow in the sequence analysed
here reveals some fluctuations around a mean value which
decreases from 110 atRe = −76 to 80 atRe = −96. The
following four PCs exhibit at first glance only a simple os-
cillation which reflects the drift of the mode in the frame of
reference (not shown). It is more revealing to treat a pair of
EOFs as modes and represent their behaviour in an ampli-
tude, e.g. for mode 2,

A2(ti) =

((
λ2PCi

2

)2
+

(
λ3PCi

3

)2
)1/2

,

and a spatial phase with respect to the tank, e.g.

φ2(ti) = arctan

(
λ3PCi

3

λ2PCi
2

)
.

The amplitude and phase for the first pair,PC2 andPC3,
representing a mode 2, are shown as the dash-dotted line
in Figs. 9a and b, respectively. The phase shows an almost
steady retrograde drift (i.e. in the same sense as the forcing)
at a mean angular drift velocity ofω2 = −2.37×10−2rad s−1

(≈ 20% of the inner disk’s angular velocity), while the am-
plitude shows, besides a general trend with the change of
the forcing, an oscillation in the strength of the mode 2 with
an approximate period ofT ≈ 500 s, or an angular fre-
quency of around 1.2 × 10−2 rad s−1. Since this frequency
is half the drift frequency (within the current experimental
uncertainties) it is possible that this oscillation could be ei-
ther a real perturbation caused by imperfections in the ap-
paratus, or even an artifact of the measuring system. The
quantities for the second pair (the dotted lines in Figs. 9a
and b, which represents a mode 1, show a prograde drift at
ω1 = 1.23 × 10−2rad/s together with an oscillation of the
amplitude similar to that of the mode 2 but in antiphase. The
general trend is also present. The amplitude of the third pair
(“mode 3”) was much more erratic and, instead of a general
drift, the phase vacillated around a constant value ofφ3 ∼ π

for Re = −176 and−143 andφ3 ∼ 0 for the rest of the set.
In terms of wave interactions, this phase relationship is con-
sistent with a resonant triad between those modes, satisfying
the resonance condition,∑ ωm

m
= ω2/2 + ω1 + ω3/3 = 0.

Comparing the drift frequencies of the modes with the drift
frequency of the vortices as obtained from the direct identi-
fication of the vortices, as shown in Fig. figure 5, shows that
the mode 2 drifts in the same direction as the vortices, but at
twice the phase speed. However, its group velocity,ω2/2, is
the same as the vortex drift frequency.

In summary, the standard EOF analysis confirms the initial
impression obtained by pure inspection of the fields, namely
that the flow is dominated on a large scale by a superposition
of the mean flow and two travelling waves of wave numbers



196 W.-G. Fr̈uh: Barotropic vortex description

(a)

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

t (s)

A
m

pl
itu

de

Mean Flow 

Mode m=1 

Mode m=2 

(b)

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

t (s)

θ 
(r

ad
)
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Fig. 9. Time series of the Principal Components from the EOF analysis of the set of full field data. All PCs are scaled with their singular
value.(a) Amplitude of the first principal component (solid line) and “mode amplitudes” of the two successive pairs of principal components,
PC2 andPC3 as the dash-dotted line, andPC4 andPC5 as the dotted line.(b) Phase of the pairPC2 andPC3 (dash-dotted line) andPC4
andPC5 (dotted line).

one and two. The principal component analysis shows that a
time dependence initially observed as a vacillation between
a strongly and a weakly distorted two-vortex flow can be de-
scribed as a vacillation of the two modes in antiphase. In
this framework of global modes, the two dominant modes
travel in the opposite direction through the tank. Finally, one
can observe in the relative contributions of modes one and
two that the average distortion of the field at weaker forcing

(smaller|Re|) is less than for stronger forcing.

5.2 EOF analysis of rotated eddy field

Several variants of the standard EOF analysis were tested to
explore how information could be extracted in a more infor-
mative product. Removing the mean flow before applying the
analysis returned results which were indistinguishable from
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Fig. 11. First EOF from the EOF analysis of the set of rotated eddy
fields.

the previous set with the exception that the mean flow was
absent from the set of EOFs, i.e. the mode 2 was now de-
scribed by the leading pair of EOFs, and so on.

Rotating the eddy field such that the phase of the dominant
mode was subtracted simply changed the drift frequency of
the modes, but not in a meaningful way. Instead one should
better subtractφm(t)/m, if m is the dominant wave num-
ber. In this section, however, we have used the angle of the
main flow feature to rotate the coordinate system. This angle
was obtained from the identification of the vortices described
above in Sect. 4 and illustrated in Fig. 5a.

By using the eddy field only, the mean flow has been re-
moved and does not show up in the EOFs. The singular value

spectrum in Fig. 10 is dominated by a single singular value,
although two more singular values seem to be paired. These
three singular values contribute 24% to the total variance.

Due to the exploratory nature of EOF analysis, no state-
ment can be made about their statistical significance. In this
context, apparently irregular fluctuations of the correspond-
ing PCs were taken as an indication that the structure in the
respective EOF was noise-dominated and not “significant”
in the description of the large-scale flow structures. Slow
and distinct variability, on the other hand, was taken as an
indication that it might be instructive to consider its corre-
sponding EOF. Some extensions of EOF analysis include in-
formation about statistical significance, e.g. Allen and Smith
(1994, 1997). The leading EOF, shown in Fig. 11, shows
the two dominant vortices, now fixed in the rotating frame
of reference. Two very weak vortices centred at(−200, 100)
and (−50, −50), respectively, can just about be identified.
This flow field is very similar to the instantaneous eddy field
shown earlier in Fig. 3.

The second and third EOF are, despite the pairing in the
singular values, not a pair of travelling waves. Instead, EOF2,
shown in Fig. 12, is dominated by a spatially extended but
only moderately strong cyclonic feature located between the
two dominant vortices in EOF1 and a strong anticyclone lo-
cated between the dominant cyclone and the weak anticy-
clone from EOF1. In addition, a distinct cyclone is located
in the lower half of the domain, centred at(0, −150). This
EOF2 appears to be mainly a modulation of the main flow
features with the same number of vortices but shifted around
the tank. The third EOF, in Fig. 13, shows a different flow
field, which is dominated by four vortices arranged in a sin-
gle cyclone in the lower right quadrant and a tripolar struc-
ture in the upper left quadrant. The fact that the singular
values,λ2 andλ3, are very similar gives rise to uncertainty
as to how information is distributed among the two EOFs.
The only constraints are that they are mutually orthogonal
orthogonal and orthogonal to all other EOFs in the set. In
principle, it would be possible to construct an infinite set of
pairs of EOFs which all satisfy this condition but may appear
to show very different spatial structures from those shown in
Figs. 12 and 13.

Figure 14 shows time series of the first three principal
components. The dotted line isPC1 which is the amplitude
of the dominant flow structure. This amplitude shows weak
fluctuations and a non-zero mean which gradually reduces
with the Reynolds number. The fluctuations do not show a
clear periodicity but are in a well-defined range of periods
of around 200 s to 250 s, which is between 4 and 5 times the
inner disk’s rotation period. This range of periods is in the
same range as that of the retrograde drift of mode 2 in the
standard EOF analysis as seen in Fig. 9.PC2 andPC3, the
solid and dash-dotted lines respectively, show strong fluctu-
ations which appear to be a superposition of a slow, large-
amplitude oscillation and a weaker and faster oscillation. The
faster oscillation is at a time scale of 100 s to 150 s, about half
of the inner disk period, while the slow variations are on the
order of 10 inner disk rotations.
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Fig. 12. Second EOF from the EOF analysis of the set of rotated
eddy fields.
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Fig. 13.Third EOF from the EOF analysis of the set of rotated eddy
fields.

As the Reynolds number is decreased,PC1 andPC2 show
a marked decrease (by about a factor of three) whilePC3 is
less affected. The shift of the relative contributions of the
separate EOFs to the flow field over the change of the forc-
ing parameter captures a systematic drift in the flow struc-
tures. Since the shift is a gradual one, it appears that the
change in the flow structures may be due to a supercritical
bifurcation as opposed to a sudden mode transition. The
oscillation of these two principal components appears to be
mainly in phase towards the beginning of the total time se-
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Fig. 14. Principal Components from the EOF analysis of the set of
rotated eddy fields. All PCs are scaled by their singular values.

ries, and slightly shifted in the latter part of the time series.
The absence of pairing of EOFs into travelling modes shows
that the drift of the modes in opposite directions is an arti-
fact of the rotation of the coordinate system with respect to
the coherent structures. If the coordinate system rotates with
the dominant coherent structure all other modulations of the
field appear to be co-rotating with that structure. This can be
compared with the R̈ossler-type attractor reconstructed for a
single-point time series from a similar flow type in the exper-
iment, as shown in Fig. 7 in Read and Früh (1999).

In summary, the rotated EOF analysis shows that all dy-
namics and gradual changes in dynamics, as the forcing
changes, can be described by stationary flow structures. The
dominant flow structure is clearly that of a dipole extending
over just under half of the domain. The temporal fluctuations
of the flow are best described by two stationary modulations,
one of another mainly dipolar structure and one of a combi-
nation of a monopole and a tripole. It is likely that the modu-
lation of the dominant dipole with the secondary dipole leads
to a weakening of the overall dipole while the latter modu-
lation then moves the flow field towards a more symmetric
global wave-like structure of mode two.

6 Conclusions

Two methods for analysing sets or time series of velocity
fields have been discussed. One method assumes that the
fields can be characterised by global structures or modes and
yields a set of empirical orthogonal eigenfunctions (EOFs)
which characterise the full flow field together with their re-
spective contribution. The standard version of the EOF anal-
ysis returned sets of travelling modes. The time series of
the amplitudes and phases showed that the bifurcation fol-
lowing from the mode 2 flow was through a gradual increase
of its spatial subharmonic, a mode 1, travelling at the same
group velocity but in the opposite direction. The amplitudes
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indicate that the mechanism is that of a mode competition
since they were anticorrelated.

Rotating the frame of reference with the dominant flow
feature did not result in a set of harmonic modes. Instead
a large dipole emerged as the dominant feature, together
with two stationary spatial modulations. The two modula-
tion patterns worked in phase to effect a regular weakening
of the dipolar structure and a corresponding strengthening of
a mode 2 structure. The change of behaviour as a result of
changing the forcing appeared to be related to a change in the
relative weighting of the two modulation patterns.

A different approach regarded the vortices as separate but
interacting localised coherent structures. The slow regular
variations of the relative vortex locations corresponds di-
rectly to the mode competition observed in the framework
of global structures. Additional fluctuations at shorter time
scales, not resolved in the standard EOF analysis but also
captured by the rotated EOF analysis, could also be identi-
fied in the strength and size of the vortices. The indications
are that the strength of the vortices, as measured by their ve-
locity scale, controls the dynamics of the flow and may be a
cause of the observed fluctuations at both time scales.

Due to the vortex-wave ambiguity of the flows in the sys-
tem, it appears to be most useful to use complementary tech-
niques based in both frameworks, that of global modes and
that of localised vortices, together. The standard EOF anal-
ysis as a technique, which requires little prior knowledge of
the flow structures, is a powerful technique to extract domi-
nant features but this strength comes at the price that it tends
to seek sinusoidal normal mode patterns in a flow with drift-
ing coherent structures. On the other hand, a description of
the flow as individual features does not impose a global struc-
ture on the flow. This technique, however, requires consid-
erable amounts of prior knowledge and processing. It is in
the judgment of the user to choose the appropriate number of
features in a flow field, and it is expected that the technique
might be difficult to apply if structures appear and disappear
at frequent intervals.

As an illustration of the relative merits, it is worth com-
paring our findings to discussions of time-dependent flows
in the parabolic annular vessel with a differentially rotating
split lower boundary of Bergeron et al. (2000). The authors
observed that a modulation of a two-vortex flow arose from
vortices generated at vortices at the inner core of the system,
which then moved outwards to interact with the vortices cen-
tred near the split of the base. The standard EOF analysis
would not be able to capture such a localised vorticity gen-
eration unless it always occurred at the same location. The
technique would attempt to describe the variability by a su-
perposition of other modes to the flow. The rotated EOF anal-
ysis would have similar difficulties, except that it would only
reliably pick up vortex generation if it occurred at a fixed ori-
entation to the dominant vortex. If the vortex generation were
reproduced in the rotated EOF analysis, one could conclude
that the generation arises from an interaction of the dominant
vortex with the solid boundary. Finally, the vortex identifica-
tion would easily pick up a new vortex. In the present imple-

mentation where a fixed number of vortices were chosen, the
vortex tracking would might show a vacillation of the posi-
tion of a chosen vortex. This is indeed observed in the lateral
position of the secondary cyclone, which is the weaker struc-
ture of opposite vorticity compared to the strongest vortex.
The longitudinal position, however, does not seem to show
such a strong vacillation. From this discussion it appears that
the flows discussed in this paper are equivalent to those ob-
served in experiment and numerical simulation by Bergeron
et al. (2000) and de Konijnenberg et al. (1999). While stan-
dard EOF gave a very clear answer about the global struc-
tures and the existence of time variability, it could not iden-
tify the origin and mechanism of the time-dependence. The
rotated EOF might contain more information to the vortex
generation at the inner shaft, but it is again somewhat ob-
scured by the technique’s attempt to find global modes. The
structure of the second and third EOF, however, might con-
tain the information in the form of radial modes where the
beginning of a phase would locate a vortex near the shaft.
The motion of that vortex would then be parameterised by a
radial drift through part of a cycle until the vortex disappears
into the structure of the first EOF. An indication to this rep-
resentation might be seen in the slight shift in phase between
the two principal components shown in Fig. 14. If further
analysis of those EOFs supports this idea then this, together
with the fact that the longitudinal position of the secondary
cyclone in the vortex identification does not vacillate much,
would support a mechanism of vortex generation in the frame
of the drifting dominant vortices. In other words, vorticity is
generated at the inner shaft by the flow of the dominant vor-
tices.

To test and explore the vortex identification technique fur-
ther it is recommended to apply it to other simple systems,
such as vortex experiments in shallow layers or stratified flu-
ids, and to results from numerical simulations of such fields.
A prime candidate at present would be a numerical model of
the detached shear layer in an annular gap by, e.g. Bergeron
et al. (2000). A useful extension of the vortex identification
would be to allow vortex generation and destruction, and vor-
tex merging. Ultimately, one should explore its usefulness
for field data, such as satellite data.
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