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Abstract. Variations of the plasma pressure in a magnetic
flux tube can produce MHD waves evolving into shocks. In
the case of a low plasma beta, plasma pressure pulses in the
magnetic flux tube generate MHD slow shocks propagating
along the tube. For converging magnetic field lines, such
as in a dipole magnetic field, the cross section of the mag-
netic flux tube decreases enormously with increasing mag-
netic field strength. In such a case, the propagation of MHD
waves along magnetic flux tubes is rather different from that
in the case of uniform magnetic fields. In this paper, the
propagation of MHD slow shocks is studied numerically us-
ing the ideal MHD equations in an approximation suitable
for a thin magnetic flux tube with a low plasma beta. The
results obtained in the numerical study show that the jumps
in the plasma parameters at the MHD slow shock increase
greatly while the shock is propagating in the narrowing mag-
netic flux tube. The results are applied to the case of the
interaction between Jupiter and its satellite Io, the latter be-
ing considered as a source of plasma pressure pulses.

1 Introduction

Magnetohydrodynamics (MHD) has proved to be a useful
approach commonly used for modeling of space plasma be-
havior in many aspects. However, in gerneral, MHD’s prob-
lems are rather complicated to solve, in particular, in cases
of a nonsteady, three-dimensional plasma flow. A possible
way to simplify the problem is to use asymptotic methods
based on series expansion on small parameters. Models of
thin magnetic flux tubes are examples of such an approach,
where the thickness of the magnetic tube is considered to be
much smaller than the length scale of the tube (e.g. the cur-
vature radius). Different types of such models exist based on
a thin magnetic flux tube approximation. The first type is a
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model applicable for the Sun (Fisher et al., 2000), where the
magnetic field consists of separate, thin magnetic flux tubes
that accumulate magnetic energy generated by magnetic field
stretching. Inside such tubes, the plasma pressure is quite
small with respect to the magnetic pressure. Another type
is a model of magnetic flux tubes with an enhanced plasma
pressure. These models are relevant for cases of plasma per-
turbations in the magnetospheres of the Earth and other plan-
ets. For these models, the behavior of plasma and the shape
of the magnetic tube are strongly dependent on the ratio of
plasma and magnetic pressures, which is called the plasma
beta (β). In cases of large plasma beta (orβ ∼ 1), the shape
of the magnetic flux tube depends strongly on the distribu-
tion of plasma pressure inside the tube. The latter can be rel-
evant to magnetic tubes near a reconnecting magnetopause
or in the magnetotail plasma sheet (Chen and Wolf, 1999).
In the internal parts of the magnetosphere, the magnetic field
is quite strong and the plasma beta is likely to be small. This
plasma beta can be considered as an additional small param-
eter. In such a case, a small plasma pressure has no great
influence on the shape of the magnetic tube. This means that
a configuration of the magnetic flux tube can be considered
to be undisturbed. The latter is the case corresponding to the
problem studied in the present paper.

The aim of our paper is to model the propagation of MHD
slow waves which are produced by nonsteady plasma pres-
sure variations, along a dipole magnetic flux tube. The mag-
netic tube thickness, normalized to the curvature radius of the
tube, as well as the plasma beta are considered to be small
parameters.

It is important to note that a local pressure enhance-
ment produces mainly slow magnetosonic waves rather than
Alfv én waves due to of the low plasma beta (see Appendix).
Another consequence of the low plasma beta is that the local
disturbances of the shape of the magnetic tube can be con-
sidered to be very small, since the plasma pressure is much
less than the magnetic pressure.

It is an important fact that the slow mode wave propa-
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gates inside a dipole flux tube with a progressively decreas-
ing cross section. As a result, the wave amplitude (velocity
maximum) has to increase along the flux tube rather than de-
crease. For linear waves, this effect is qualitatively explained
in the Appendix. For nonlinear waves, this effect is studied
numerically in our calculations.

In principle, the proposed model can be used for the anal-
ysis of wave processes occurring inside the magnetospheres
of the Earth and other planets, where different reasons for the
initial pressure pulses might exist. These pressure pulses can
be related to the reconnection pulses occurring at the mag-
netopause or at the neutral sheet of the magnetotail. For ex-
ample, a pressure pulse in the Earth’s magnetosphere can be
produced by the deceleration of a fast plasma flow caused
by a reconnection pulse in the magnetotail. Plasma related to
the reconnected magnetic flux tube first starts to move rapidly
along the plasma sheet towards Earth, and then it is deceler-
ated in the increasing geomagnetic field.

In particular, we apply this model to the interaction be-
tween Jupiter and its satellite Io, which is considered to be a
source of pressure enhancements (Combi et al., 1998). There
exists a direct observation of the plasma pressure in the vicin-
ity of Io (Frank et al., 1996). According to this observation,
the pressure has two peaks with an enhancement factor of
∼ 3. However, between these peaks, the spacecraft seems
to cross the cold ionosphere of Io, and thus, the data points
are not valid for the warm plasma in the torus. Extrapolat-
ing the data points with a Gaussian function reveals that the
real enhancement of the plasma pressure must be even big-
ger,∼ 6. This is the reason why we use in our calculations
the initial pressure amplitudesP1/P0 = 3 andP1/P0=6 (P1
is the pressure maximum, andP0 is the background pressure
at the point of the pressure maximum).

In this case, the magnetic flux tube can be considered as
“thin”, since the cross size of the tube∼ Ri (Ri is the Io
radius) is much smaller than the curvature radius of the tube
∼ 5RJ (RJ is the Jupiter radius).

2 Basic equations

To describe nonsteady wave perturbations of magnetic field
and plasma parameters, we apply the system of ideal MHD
equations (Landau and Lifshitz, 1960)

ρ
∂V

∂t
+ ρ(V · ∇)V + ∇5−

1

µ0
(B · ∇)B = ρF , (1)

∂ρ

∂t
+ div (ρV ) = 0, (2)

∂

∂t
(
P

ρκ
)+ (V · ∇)(

P

ρκ
) = 0, (3)

∂B

∂t
− rot(V × B) = 0, div B = 0. (4)

Here,ρ, V , P , B are mass density, bulk velocity, plasma
pressure and magnetic field, respectively. The external force

r

Fig. 1. Schematic illustration of the development of a nonlinear
slow mode wave due to a pressure pulse. The parameterS is intro-
duced as the distance measured along the flux tube.

F is a sum of centrifugal and gravitation forces referred to a
mass unit

F = ∇

(
GM

r
+

1

2
ω2y2

)
,

whereG is the gravitational constant,M is the mass of
the planet,r is the radial distance from the center of the
planet, y is the distance to the rotational axis, andω is
the angular speed, respectively. Quantity5 denotes the to-
tal pressure (the sum of magnetic and plasma pressures),
5 = P + B2/(2µ0), andκ is the polytropic exponent.

From the mathematical point of view, we have a nonsteady
initial-boundary problem for the ideal MHD equations. The
geometrical situation of the problem is illustrated in Fig. 1.
The ionospheres of Io and Jupiter with non-ideal plasmas are
not included in our calculation domain. More specifically,
we consider the ideal MHD model to be suitable to describe
Alfv én as well as magnetosonic waves propagating in the re-
gion between the ionospheres of Io and Jupiter.

For computational convenience, we normalize the mag-
netic field and the respective plasma parameters as follows

R̃ = R/RJ , t̃ = tVA0/RJ , P̃ = P/(miNiV
2
A0),

ρ̃ = ρ/(miNi), B̃ = B/B0, Ṽ = V /VA0, (5)

whereRJ is the radius of the planet, subscript 0 denotes the
initial background parameters corresponding to the starting
point,VA0 is the Alfvén velocity,mi is the average ion mass,
Ni is the ion density, andB0 is the magnetic field induc-
tion. For our calculations, we take two values of the ini-
tial plasma beta (at the equator of the tube):β0 = 0.02 and
β0 = 0.04. The latter is relevant to the conditions at the Io
orbit (Neubauer, 1998; Combi et al., 1998).

For the rotating plasma in the magnetic tube, the back-
ground plasma parameters are assumed to satisfy the equi-
librium equation

∂P

∂S
=
P

kT

∂

∂S

(
GMm

r
+ 0.5my2ω2

)
. (6)
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Here,k is the Boltzmann constant,T is the temperature as-
sumed to be constant along the tube,m is the average mass
of particles. Eq. (6) describes a “hydrostatic” equilibrium
in a rotating tube versus the curvilinear coordinateS. This
behaviour of the background plasma density as it is used in
our model is in agreement with the empirical model based on
observations (Bagenal, 1994; Mei et al. 1995;)

We introduce the material coordinateα, which is propor-
tional to the mass of the plasma in the magnetic tube of the
lengthS

α =

∫ S

0
(ρ/B)dS′. (7)

This coordinate is a monotonic increasing function of the dis-
tanceS along the tube. In accordance with the mass conser-
vation law, the quantityα is constant along the trajectory of
a fluid element.

In addition toα, we introduce two other coordinates,φ and
ψ , which are the Euler potentials for the magnetic field

B = ∇φ × ∇ψ. (8)

It is evident from this equation that the coordinatesφ and
ψ are constant along magnetic filed lines. As it is shown in
the Appendix, the quantitiesα, φ, andψ are constant along
trajectories of the fluid particles, and thus they can be inter-
preted as material coordinates.

Ideal MHD equations in material coordinates, known
as “frozen-in”, were analyzed by Pudovkin and Semenov
(1977). Introducing the radius vectorr as a function ofα, φ,
andψ , we obtain the relations for the derivatives of the radius
vector (for details, see the Appendix)

∂r

∂α
=

B

ρ
,

∂r

∂t
= V . (9)

Using the material coordinatesα, φ, andψ , we transform
(see Appendix) the ideal MHD equations in the normalized
units into the following system

∂V

∂t
−
∂B

∂α
+

1

ρ
∇5 = F , (10)

P +
1

2
(B)2 = 5,

∂

∂t

(
B

ρ

)
−
∂V

∂α
= 0, (11)

∂

∂t

(
P

ρκ

)
= 0,

D(x, y, z)

D(α, φ,ψ)
=

1

ρ
. (12)

Here,D(. . .)/D(. . .) denotes the Jacobian of the transforma-
tion. The components of the velocity and magnetic field can
be obtained as derivatives of the radius vector with respect to
α andt , (see Eq. 9). Equation (10) is the transformed MHD
momentum equation, the two formulas in Eq. (11) are the
expressions for the total pressure5 and the transformed in-
duction equation, and the two formulas in Eq. (12) express
the polytropic law with exponentκ and the mass conserva-
tion.

If the total pressure is a known function of the Cartesian
coordinates, which does not depend explicitly on time, then
the following energy equation is valid (see Appendix)

∂

∂t

[
V 2/2 + B2/(2ρ)+ P/((κ − 1)ρ)+5/ρ +8

]
=

∂

∂α
(VB). (13)

Here,8 is the sum of gravitational and centrifugal poten-
tials. When the total pressure is a prescribed function of the
Cartesian coordinates, the Eqs. (10, 11) are very similar to
those for an elastic string, and Eq. (13) expresses the energy
conservation for a string. Similar string equations were used
by Erkaev and Mezentsev (1992) and Erkaev et al. (1996) for
the magnetosheath region.

The total pressure can be considered to be a known func-
tion of x, y, andz for thin layers or thin magnetic tubes due
to the pressure balance across the layer. The total pressure
inside the layer should be equal to the undisturbed total pres-
sure outside the layer.

Assuming the initial background plasma betaβ0 to be
small, we seek a solution as a series expansion with respect
to this parameter

V =
√
β0

(
V (0)(τ, α, φ,ψ)+O(β0)

)
,

B = B(0)(τ, α, φ,ψ)+O(β0) ,

ρ = ρ(0)(τ, α, φ,ψ)+O(β0) , (14)

P = β0P
(0)(τ, α, φ,ψ)+O(β2

0), t = τ/
√
β0. (15)

Using the expansion (14, 15) for the field-aligned veloc-
ity component, we obtain from system (9–12) the following
equations

∂V (0)

∂τ
+

1

B(0)

∂P (0)

∂α
= Fs, (16)

∂

∂τ

(
B(0)

ρ(0)

)
−
∂V (0)

∂α
= 0, (17)

∂S

∂τ
− V (0) = 0, (18)

∂

∂τ

(
P (0)

ρ(0)
κ

)
= 0. (19)

Here,Fs is the normalized force along the magnetic tube

Fs =
∂

∂S

(
GMρ0

2rP0
+
ω2y2ρ0

4P0

)
.

After simplifications based on a series expansion onβ0,
the problem is reduced to that of one-dimensional, nonsteady
equations withV ‖ B, which are solved numerically.

In our calculations, the energy Eq. (13), together with
Eqs. (16) to (18) , are used only for the first stage of the
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Fig. 2. The initial stage of the slow mode generation. From top to
bottom, the distributions of the normalized velocity, plasma density
and pressure are shown for different times in unitsRJ /VA0. This
case corresponds to the parametersκ=2,P1/P0 =6,β0 =0.04.

formation of the slow shock, produced by the local enhance-
ment of the plasma pressure at the initial moment. After that,
when the shock front is formed, we calculate the propaga-
tion of the slow shock along the magnetic flux tube towards
the planet by separating the shock front and using system
(16–18) with the adiabatic Eq. (19) behind the shock. This
separation of the shock front allows us to obtain more ac-
curate results. When a nonlinear MHD slow wave is evolved
into a shock, the shock front must be separated with the jump
conditions for a slow shock.

To solve the problem, we use the conservative, two-step fi-
nite difference numerical scheme of Godunov (Godunov and
Ryabenkii, 1987) with a constant grid size forα, αi = i1α.
At the first step, the method of characteristics is used to cal-
culate the density, velocity, and magnetic field at intermedi-
ate grid points labeled by half-integer numbers. On the sec-
ond step, the plasma parameters and the magnetic field are
calculated at the main grid points labeled with integer num-
bers

V n+1
i = V ni −

1

Bi

1τ

1α

[
P
n+1/2
i+1/2 − P

n+1/2
i−1/2

]
+1τF ni ,(

B

ρ

)n+1

i

=

(
B

ρ

)n
i

+
1τ

1α

[
V
n+1/2
i+1/2 − V

n+1/2
i−1/2

]
.

Each time step is determined from the Courant-Friedrichs-
Lewy (CFL) condition which provides the stability of the nu-
merical scheme. Here, the CFL condition is determined by

Fig. 3. Propagation of the slow shock along the flux tube. Distri-
bution of the plasma velocity are shown as functions of the distance
along the magnetic tube for different times.

the characteristics for our equations in material coordinates

max
[
(Csρ/B)(1τ/1α)

]
≤ 1,

whereCs is a local sonic speed (Cs =
√
κP/ρ), 1α is the

grid size for theα coordinate, and1τ is the time step. For
1α = 5. 10−5, the time step is1τ = 8.48 10−5 at the ini-
tial moment, and it is equal to1τ = 3.52 10−4 at the final
moment.

The numerical procedure is stable, and we checked the
convergence of our numerical results by taking different grid
sizes. Changing the grid size by a factor of 2,1α = 2.5 10−5

and1α = 5. 10−5, we obtained a very small difference in the
numerical solutions. For these two steps, the velocity max-
ima areVmax= 0.8603 andVmax= 0.859, respectively.

3 Results of MHD simulations

Figure 2 shows the first stage of the slow-mode generation.
The initial pressure pulse decays into two nonlinear slow
waves propagating along the flux tube in opposite directions.
The amplitudes of these waves are decreasing in the course of
time, the leading fronts are becoming more and more steep,
and eventually, the slow waves are converted into shocks.
From top to bottom, the distributions of the normalized ve-
locity, density, and plasma pressure are shown for different
times in unitsRJ /VA0.

If the cross section of the magnetic flux tube would no
longer change, the process of wave propagation could be eas-
ily predicted: slow shocks would travel along the flux tube,



N. V. Erkaev et al.: Effects of MHD slow shocks 167

Fig. 4. Distributions of the plasma pressure as functions of the dis-
tance along the tube for different times.

thereby being gradually damped with decreasing flow veloc-
ity behind the shock front.

However, the flux tube cross section is inversely propor-
tional to the magnetic field strength and therefore, it has to
decrease asr3 decreases due to the dipole field configura-
tion. Hence, the plasma flow has to move into a flux tube
that becomes narrower and narrower.

Figures 3, 4, and 5 show distributions of the plasma veloc-
ity, pressure and density as functions of the distance along the
magnetic flux tube for different cases. From top to bottom,
we use

β0 = 0.04, P1/P0 = 6, κ = 2;

β0 = 0.02, P1/P0 = 6, κ = 2;

β0 = 0.04, P1/P0 = 3, κ = 2;

β0 = 0.04, P1/P0 = 6, κ = 5/3.

Here,P1 is the amplitude of the initial pressure pulse.
The different shock positions correspond to the different

times scaled toRJ /VA0. Comparing the first and the second
panel (from top to bottom), one can see the effect of the vari-
ation of the initial background beta parameters (β0 = 0.04,
andβ0 = 0.02) for a fixed amplitude of the pressure pulse
(P1/P0=6). An increase in the initial plasma beta brings
about an enhancement of the velocity maximum with respect
to the initial Alfvén speed.

Comparing the first and the third panels, one can see the
effect of the variation in the pressure pulse amplitude. An
increase in the pressure pulse amplitude leads to an enhance-
ment of the velocity maximum. The ratio of the velocity

Fig. 5. Distributions of the plasma density as functions of the dis-
tance along the tube for different times.

maxima is a bit less than the square root of the ratio of the
pressure pulse amplitudes.

Comparing panels 1 and 4, one can see that the variation of
the polytropic exponent has no great influence on the results
of the calculations.

The different behaviours of plasma pressure and density
as shown in Figs. 4 and 5, can be explained as follows: a
decrease in the density calculated just behind the shock is
related to the fall in the background density caused by the
centrifugal force. However, an increase in the shock intensity
plays no crucial rule, because the density jump at the shock
is limited by a constant value depending on the polytropic
exponent.

At the initial stage of the wave propagation, the plasma
pressure decreases for the same reason as for the density (de-
crease in the background pressure). However, for a suffi-
ciently larget , the pressure has a well pronounced enhance-
ment, due to the pressure jump at the shock being much
larger than the density jump. Concerning the background
parameters, plasma pressure and density are proportional to
each other because the undisturbed temperature is assumed
to be constant.

Figure 6 represents the quantities calculated just after the
shock front as functions of the distance traveled by the shock.
From top to bottom, the first three panels of Fig. 6 show ve-
locity, density, and plasma pressure just behind the shock as
functions of the travel distance of the shock for different in-
put parameters. The lowest curve corresponds to the small-
est initial beta. The bottom panel shows the distance to the
dipole center and the travel time of the shock as functions of
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Fig. 6. The first three panels correspond to velocity, density and
plasma pressure just behind the shock as functions of the travel
distance of the shock for the different input parameters: (1)β0 =

0.04, P1/P0 = 6, κ = 2 ; (2) β0 = 0.02, P1/P0 = 6, κ = 2; (3)
β0 = 0.04, P1/P0 = 3, κ = 2; (4) β0 = 0.04, P1/P0 = 6, κ =

5/3. Bottom panel: Distance to the dipole center and travel time of
the shock as functions of the travel distance.

the travel distance.
This figure indicates clearly the different stages of the

wave propagation. At the first stage (S < 0.5RJ ), the non-
linear MHD slow wave produced by the pressure pulse is
evolved into the shock. At the second stage (0.5RJ < S <

2RJ ), the wave amplitude characterized by the plasma ve-
locity behind the shock is nearly constant. At this stage, a
shock damping is compensated by two factors: the decrease
in the background density due to the centrifugal effect, and
the gradual decrease in the magnetic tube cross section. Dur-
ing this period, the plasma pressure behind the shock de-
creases due to the fall into the background pressure caused
by the centrifugal force. At the third stage (S > 2RJ ), the
wave amplitude starts to enhance due to a rapid increase in
the magnetic field strength and a corresponding decrease in
the magnetic tube cross section. The velocity reaches its
maximum value by the arrival at the point (S ∼ 6.4±0.1RJ )
for all cases. After this maximum point, the velocity starts
to decrease as a result of the enhancement of the background
pressure due to the gravitational force.

Figure 7 shows the comparison of velocities calculated just
behind the shock for rotating and nonrotating magnetic flux
tubes. One can see that the velocity enhancement is much
more pronounced in the case of a rotating magnetic tube, in

Fig. 7. Comparison of the velocities just behind the shock calcu-
lated for rotating (1, 2) and nonrotating (3, 4) tubes for the different
initial betas. Curves 1, 3 correspond toβ0=0.04, and curves 2, 4 cor-
respond toβ=0.02. The velocity is normalized to the background
sonic speedCs .

which the centrifugal potential affects substantially the distri-
bution of the background plasma pressure and density along
the tube.

As it was shown, the slow wave propagation in a flux tube
with an increasing magnetic field and correspondingly de-
creasing tube cross section is considerably different from that
for a homogeneous magnetic field. The narrow channel ef-
fect leads to an intensification of the propagating wave rather
than to damping due to its expansion. This effect might be
important for the Sun or other planets where pressure pulses
can be produced inside thin flux tubes.

4 Discussion and conclusions

In the case of converging magnetic field lines, such as in a
dipole magnetic field, the propagation of MHD slow shocks
is studied numerically using the ideal MHD equations in an
approximation suitable for a thin magnetic flux tube with
low plasma beta. The result obtained in the numerical study
shows that the intensity of the MHD slow shock increases
greatly while the shock is propagating along the narrowing
magnetic flux tube.

This effect has a simple physical explanation in the case of
linear wave perturbations. Let us consider a pressure pulse
of duration1t . For simplicity, we consider a linear mag-
netosonic wave perturbations generated by the pulse. This
pressure pulse produces a wave packet of duration1t propa-
gating along the magnetic flux tube. The energy of this wave
perturbation can be estimated as

W =
1

2
6ρ0v

2Cs1t. (20)

Here,6 is the cross section of the magnetic flux tube.
Taking into account the behaviour of the cross section

along the tube, e.g.

6 =
60B0

B
,
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we find a relation between the wave amplitude and the mag-
netic field strength

v =

√
2BW

60B0ρ0Cs1t
. (21)

The wave energy is proportional to the amplitude of the
pressure pulse, and thus the wave amplitude is proportional
to the square root of the pressure pulse. One can also see
that in the narrowing magnetic flux tube, a linear wave am-
plitude should increase proportionally to the square root of
the magnetic field strength. However, in the nonlinear case,
this effect is less pronounced due to plasma heating at the
shock front.

The centrifugal force caused by the rotation of the mag-
netic flux tube plays an important role in the process of slow
wave evolution. In the rotating magnetic tube, the back-
ground density and plasma pressure increase along the tube
towards the equator. In such a case, a slow wave propagating
from the equator with decreasing density and plasma pres-
sure is evolving into the shock much faster than that in the
case of a nonrotating tube with constant background param-
eters.

The model is applied to the case of the interaction between
Jupiter and Io. The latter is considered as a source of plasma
pressure pulses. One aspect of the Io-Jupiter interaction is
that of Alfvén waves, generated by Io moving in a magne-
tized plasma (Bagenal, 1983; Menietti and Curran, 1990).
Our study focuses on an additional mechanism of the inter-
action between Io and Jupiter based on MHD slow shocks
propagating from Io towards Jupiter along a magnetic flux
tube. We believe that the slow mode waves are not only
important in the course of the torus plasma flow around Io
(Kopp, 1996; Linker et al., 1991), but they can also be re-
sponsible for specific phenomena, such as aurora or DAM
radiation, together with Alfv́en waves.

As far as the aurora is concerned, we suggest the following
interpretation of the slow wave input which is considered to
be complementary to the Alfvén mechanism. Direct obser-
vations of the Io footprint aurora show that there is a bright
leading point corresponding to the projection of Io. In addi-
tion, a diffuse fainter emission is observed, which is extended
in longitude with several bright spots in the tail (Connerney
et al., 1999). The leader is certainly connected with the first
Alfv én wave arrival at the Jovian ionosphere. The trailing
spots have been interpreted as arrivals of the reflected Alfvén
waves (Connerney et al., 1999). It is our point that one of
these bright spots in the tail might be connected with the ar-
rival of a slow shock.

With regard to DAM observations, Genova and Aubier
(1985) found the lag in the range of 50◦–80◦ between the
instantaneous position of the Io flux tube and the source re-
gion of decametric radio emissions. The observational es-
timations of the lag were diminished in recent studies by
Queinnec and Zarka (1998). They showed that some parts
of the DAM emission have 30◦–50◦ lag. The lag calculated
in our model for the MHD slow shocks is about 45◦.
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Appendix A Introduction of a mass variable and Euler
potentials as material coordinates

In this subsection, we prove that the mass coordinate and Eu-
ler potentials used in our solution are constant along trajecto-
ries of fluid particles, and thus they are material coordinates.

We introduce the Euler potentials,φ andψ , determined by
the equation

B = ∇φ × ∇ψ . (A1)

These potentials are constant along a magnetic field line and
satisfy the equations

B · ∇φ = 0, B · ∇ψ = 0 . (A2)

Using these equations, we can determine the potentials for
all magnetic field lines. Near the planet, these potentialsφ

andψ can be considered to be equal to the magnetic latitude
and longitude, respectively.

For each magnetic field line characterized by two constant
parametersφ andψ , we define a functionα(S, φ,ψ) de-
pending on the distanceS along the magnetic field line as
follows

α =

∫ S

0
ρ/BdS′ . (A3)

From this definition it follows that

B · ∇α = ρ . (A4)

In our definition, the quantityα and distanceS are equal to
zero at the equator.

Finally, we have three quantitiesα, φ, andψ which can be
used as independent coordinates. Now we have to prove that
these quantities are material coordinates.

We consider Eqs. (A2, A4) as a linear algebraic system
with respect to the three unknown quantitiesBx, By, Bz. A
solution of this algebraic system is

Bx =
ρ

J

D(φ,ψ)

D(y, z)
, By =

1

J

D(φ,ψ)

D(z, x)
,

Bz =
1

J

D(φ,ψ)

D(x, y)
, (A5)

whereJ is a Jacobian

J =
D(α, φ,ψ)

D(x, y, z)
. (A6)
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In vector form, Eqs. (A5) can be written as follows

B =
ρ

J
∇φ × ∇ψ. (A7)

Comparing (A7) and (A1), we find the JacobianJ = ρ.
Using the standard technique of Jacobian transformations,
we find that

Bx =
ρ

J

D(φ,ψ)

D(y, z)
=
ρ

J

D(x, φ,ψ)

D(x, y, z)

= ρ
D(x, y, z)

D(α, φ,ψ)

D(x, φ,ψ)

D(x, y, z)

= ρ
D(x, φ,ψ)

D(α, φ,ψ)
= ρ

∂x

∂α
. (A8)

Using similar transformations for the other components,
we obtain

By = ρ
∂y

∂α
, Bz = ρ

∂z

∂α
. (A9)

The last three equations can be written in a vector form

B = ρ
∂r

∂α
. (A10)

Furthermore, we use the induction equation for the frozen-
in magnetic field, which can be written in the form

d

dt

(
B

ρ

)
=

(
B

ρ
· ∇

)
V . (A11)

Hered()/dt is the derivative along the trajectory of a fluid
particle defined as

d()

dt
=
∂()

∂t x,y,z
+ V · ∇() =

∂()

∂t α,φ,ψ
+
dα

dt

∂()

∂α
+
dφ

dt

∂()

∂φ
+
dψ

dt

∂()

∂ψ
. (A12)

Using (A10), (A2), (A4) and (A11), and consideringB and
ρ to be functions of (α, φ,ψ, t) , we get the equation

d

dt

(
∂r

∂α

)
=
∂V

∂α
. (A13)

Taking into account a kinematic relation between the velocity
and radius vector as given in relation (A12), we get

V =
dr

dt
=
∂r

∂t α,φ,ψ
+
dα

dt

∂r

∂α
+
dφ

dt

∂r

∂φ
+
dψ

dt

∂r

∂ψ
. (A14)

Substituting (A10) and (A14) into Eq. (A13) and using
(A12), we finally obtain

∂2r

∂α∂t
+
dα

dt

∂

∂α

(
∂r

∂α

)
+
dφ

dt

∂

∂φ

(
∂r

∂α

)
+
dψ

dt

∂

∂ψ

(
∂r

∂α

)
=

∂2r

∂t∂α
+

∂

∂α

(
dα

dt

∂r

∂α

)
+
∂

∂α

(
dφ

dt

∂r

∂φ

)
+

∂

∂α

(
dψ

dt

∂r

∂ψ

)
. (A15)

The last equation can be simplified to

∂r

∂α

∂α̇

∂α
+
∂r

∂φ

∂φ̇

∂α
+
∂r

∂ψ

∂ψ̇

∂α
= 0. (A16)

Here

α̇ =
dα

dt
, φ̇ =

dφ

dt
, ψ̇ =

dψ

dt
.

We consider the vector Eq. (A16) as three scalar homo-
geneous algebraic equations with regard to the quantities
∂(α̇)/∂α, ∂(φ̇)/∂α, ∂(ψ̇)/∂α.

The determinant of this system is the JacobianJ that is not
equal zero (see above,J = ρ). For a nonzero determinant,
this system has only the trivial solution if

∂α̇

∂α
= 0,

∂φ̇

∂α
= 0,

∂ψ̇

∂α
= 0. (A17)

According to our definition, for each magnetic field line,
quantityα is equal to zero at the equator. This condition
and Eq. (A17) bring abouṫα = 0 everywhere.

The Euler potentials are equal to latitude and longitude of
the magnetic field line near the planet, whereφ̇ = 0 andψ̇ =

0. These boundary conditions for Euler potentials together
with equations (A17) lead to the equationsφ̇ = 0 andψ̇ = 0
everywhere.

The proved statement is

dα

dt
= 0,

dφ

dt
= 0,

dψ

dt
= 0. (A18)

Therefore, the introduced independent variablesα, φ,ψ are
material coordinates.

From Eqs. (A14) and (A18) we obtain a simple relation
between velocity and radius vector:

V =
∂r

∂t α,φ,ψ
. (A19)

Using Eqs. (A2), (A4) and (A18), the dimensionless mo-
mentum equation can be transformed as follows

dV

dt
+

1

ρ
∇5−

1

ρ
(B · ∇)B − F

=
∂V

∂t
+

1

ρ
∇5−

1

ρ

∂B

∂α
(B · ∇α)

−
1

ρ

∂B

∂φ
(B · ∇φ)−

1

ρ

∂B

∂ψ
(B · ∇ψ)− F

=
∂V

∂t
+

1

ρ
∇5−

∂B

∂α
− F = 0. (A20)

Using Eqs. (A2), (A4), and (A18), we transform the in-
duction Eq. (A11)

d

dt

(
B

ρ

)
−

(
B

ρ
· ∇

)
V

=
∂

∂t

(
B

ρ

)
−
∂V

∂α
= 0. (A21)

The MHD system is closed by the adiabatic equation

d

dt

(
P/ρκ

)
=
∂

∂t

(
P/ρκ

)
= 0. (A22)
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Appendix B Energy equation

Equation (A20) multiplied by the vectorV yields a scalar
equation

∂V 2/2

∂t
− V ·

∂B

∂α
+

1

ρ
∇5 · V = F · V . (B1)

Using equations

V =
∂r

∂t
,

∂V

∂α
=
∂

∂t

(
B

ρ

)
,

P = 5− B2/2,
∂

∂t

(
P

ρκ

)
= 0, (B2)

and assuming that

5 = 5(x, y, z), (B3)

and using the relations

∂5

∂t
= ∇5 ·

∂r

∂t
, F = −∇8, (B4)

we transform Eq. (B1) as follows

∂V 2/2

∂t
− V ·

∂B

∂α
+

1

ρ
∇5 ·

∂r

∂t
+ ∇8 ·

∂r

∂t

=
∂V 2/2

∂t
−
∂(B · V )

∂α
+ B ·

∂

∂t

(
B

ρ

)
+

1

ρ

∂5

∂t
+
∂8

∂t

=
∂

∂t

(
V 2

2
+
B2

2ρ
+
5

ρ
+8

)
−
∂(B · V )

∂α

+

(
5−

B2

2

)
1

ρ2

∂ρ

∂t

=
∂

∂t

(
V 2

2
+
B2

2ρ
+

P

(κ − 1)ρ
+
5

ρ
+8

)

−
∂(B · V )

∂α
= 0. (B5)

Appendix C Estimation of the Alfvén perturbations
produced by a pressure pulse

For an Alfvén wave, perturbations of velocity and magnetic
field are proportional to each other

v⊥ =
1

√
µ0ρ0

b⊥. (C1)

We consider a local deformation of the magnetic flux tube
caused by an enhancement of the plasma pressure. The en-
hanced plasma pressure thickens the cross section of the tube.
This local expansion of the magnetic flux tube can generate
a slow magnetosonic wave, as well as an Alfvén wave.

For simplicity, we consider the cross section of the tube
as a circle. We introduce perpendicular and parallel compo-
nents of the disturbed magnetic field, which are defined with
respect to the center line of the tube. A deformation of the

magnetic flux tube is determined by a functionδ = δ(S),
whereδ is the perturbation of the radius of the tube.

The perturbation of the magnetic tube radius is related to
the perpendicular magnetic field componentB⊥ as follows

b⊥ = B‖

dδ

dS
∼ B0

δ

λ
, (C2)

where subscript 0 denotes undisturbed parameters, andλ is
the length scale of the perturbation.

The conservation law for the magnetic flux in the tube
yields

(B0 + b‖)(1+ δ)2 = B12, (C3)

where1 is the undisturbed radius of the given magnetic flux
tube. For linear perturbations, the last equation is simplified
to

b‖ = −2B0
δ

1
. (C4)

From Eqs. (C2) and (C4), we find a relation betweenb⊥

andb‖

b⊥ = −
1

2

1

λ
b‖. (C5)

For a given total pressure, the parallel perturbation of the
magnetic field can be estimated as

b‖ = −µ0(P − P0)/B ∼
η − 1

2
B0β0. (C6)

Here,η = P1/P0 is the ratio of the initial pressure maximum
to the background pressure at the equator. In our model, this
ratio is taken to be 6 or less.

Using the equations above, we obtain

v⊥ ∼
1

λ

η − 1

4

B0
√
µ0ρ

β0. (C7)

The energy of an Alfv́en wave can be estimated as

Wa ∼
1

2
ρv2

⊥
6λ ∼

(η − 1)2

32
ρV 2

A

12

λ
β2

06. (C8)

The energy of a slow wave can be estimated as

Ws ∼
1

κ − 1
Pλ6, (C9)

whereκ is the polytropic exponent.
Taking the ratio of the energies as estimated above, we find

WA/Ws ∼
(η − 1)2

32
ρ
V 2
A

P

12

λ2
β2

0 ≤
(η − 1)2

16η

12

λ2
β0. (C10)

Taking1 ∼ λ, andη ∼ 6, we obtainWA/Ws ∼ 0.3β0.
Thus, the Alfv́en wave energy produced by a pressure

pulse is much less than that of the slow magnetosonic wave.
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Appendix D Estimation of the plasma velocity behind
the slow shock front

The plasma velocity and the plasma pressure behind the
shock propagating along the magnetic field are

V = D(1 − ρ∗/ρ), (D1)

P = ρ∗D2(1 − ρ∗/ρ)+ P ∗. (D2)

Here,D is the shock speed, the parameters denoted by the
symbol∗ correspond to the background conditions before the
shock.

From the equations above, we obtain a relation between
the velocity and plasma pressure

V = (P − P ∗)1/2
(
ρ − ρ∗

ρρ∗

)1/2

. (D3)

The latter can be written in dimensionless form

Ṽ =
V

VA0

=

√
P0

ρ0V
2
A0

√
(P − P ∗)

P0

√
ρ0

ρ∗
−
ρ0

ρ
∝
√
β0 . (D4)

The shock speed is

D̃ =
D

VA0
=

√
(P − P ∗)

V 2
A0

√
ρ

ρ∗(ρ − ρ∗)

=
√
β0

√
P − P ∗

2P0

√
ρρ0

ρ∗(ρ − ρ∗)
∝
√
β0 . (D5)

Here, the pressureP is smaller than the amplitude of the ini-
tial pressure pulseP1, the background pressureP ∗ is much
smaller thanP , and thus the ratio of the pressures is esti-
mated as

P − P ∗

P0
<
P1

P0
.

The ratios of the densitiesρ/ρ0 andρ/ρ∗ are also limited.
Hence, the normalized velocity and shock speed are

V/VA0 =
√
β0V

(0), D/VA0 =
√
β0D

(0). (D6)

The dimensionless time of the wave propagation along the
tube can be estimated as

t̃ =
L∗VA0

DRJ
=
L∗

RJ

1
√
β0D(0)

∝
1

√
β0
, (D7)

whereL∗ is the length of the magnetic tube.
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