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Abstract. This paper presents new results for 1D BGK elec-
tron solitary wave (phase-space electron hole) solutions and,
based on the new results, extends the solutions to include
the 3D electrical interaction (E ∼ 1/r2) of charged par-
ticles. Our approach for extending to 3D is to solve the
nonlinear 3D Poisson and 1D Vlasov equations based on a
key feature of 1D electron hole (EH) solutions; the positive
core of an EH is screened by electrons trapped inside the
potential energy trough. This feature has not been consid-
ered in previous studies. We illustrate this key feature using
an analytical model and argue that the feature is indepen-
dent of any specific model. We then construct azimuthally
symmetric EH solutions under conditions where electrons
are highly field-aligned and ions form a uniform background
along the magnetic field. Our results indicate that, for a sin-
gle humped electric potential, the parallel cut of the perpen-
dicular component of the electric field (E⊥) is unipolar and
that of the parallel component (E‖) bipolar, reproducing the
multi-dimensional features of the solitary waves observed by
the FAST satellite. Our analytical solutions presented in this
article capture the 3D electric interaction and the observed
features ofE‖ andE⊥. The solutions predict a dependence
of the parallel width-amplitude relation on the perpendicu-
lar size of EHs. This dependence can be used in conjunction
with experimental data to yield an estimate of the typical per-
pendicular size of observed EHs; this provides important in-
formation on the perpendicular span of the source region as
well as on how much electrostatic energy is transported by
the solitary waves.

1 Introduction

Solitary waves are coherent wave structures arising from the
balance of nonlinearity and the dispersive effect of a medium
(Drazin, 1984, and references therein). They have been rec-
ognized to be an ideal way of transporting energy, charge or
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information (Davydov, 1985; Hasegawa and Kodama, 1995)
owing to the fact that they retain their shape and velocity
during propagation. In the last two decades, solitary poten-
tial structures have been observed in many dynamical regions
of the Earth’s magnetosphere: the plasma sheet boundary
(Matsumoto et al., 1994; Cattell et al., 1999; Franz et al.,
1998), auroral ionosphere (Temerin et al., 1982; Boström et
al., 1988; M̈alkki et al., 1993; Eriksson et al., 1997; Mozer et
al., 1997; Ergun et al., 1998a, 1998b, 1999), bow shock (Bale
et al., 1998; Matsumoto et al., 1998) and magnetosheath (Ko-
jima et al., 1997). The question of what role(s) these solitary
waves play in the dynamics of space plasma has been of great
interest to researchers and still requires a substantial amount
of observational and theoretical effort.

Solitary waves with either positive or negative potentials
have been observed. Negative potential pulses observed in
the auroral upward current region (Boström et al., 1988;
Mälkki et al., 1993) have been shown to possess properties
that are consistent with Bernstein-Greene-Kruskal (BGK)
ion mode solitary waves in 1D (Bernstein et al., 1957; Mälkki
et al., 1989). Positive potential pulses detected in the au-
roral downward current region (Ergun et al., 1998a, 1998b,
1999) show features that are consistent with BGK electron
mode solitary waves (Muschietti et al., 1999), also called
phase space electron holes (Turikov, 1984). These solitary
waves have velocities parallel to the geomagnetic field and
directed out of the ionosphere(Boström et al., 1988; Eriksson
et al., 1997; Ergun et al., 1998a, 1998b, 1999). Since solitary
wave potentials trap charged particles, the outward propa-
gating solitary waves offer a means for transporting electro-
static energy and charge into the magnetosphere. However,
it is not yet known how significant this transport mechanism
is. Encouraged by the good agreement between 1D BGK
models and the parallel behavior of solitary waves (Mälkki et
al., 1989; Muschietti et al., 1999), we analytically construct
3D BGK solutions to model the positive potential pulses ob-
served by the FAST satellite (Ergun et al., 1998a, 1998b,
1999), with the objective of obtaining further information on
the roles played by solitary waves in ionospheric and magne-
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tospheric dynamics.
Positive potential pulses detected by the FAST satellite are

multi-dimensional with bipolarE‖ and unipolarE⊥ (Ergun
et al., 1998a, 1998b, 1999). NonzeroE⊥ indicates that the
perpendicular span of the solitary structure is finite. This
combined with the fact that the solitary waves are observed
in a 3D environment dictates that a 3D model be constructed.
The nature of electric interaction in 3D is different from that
in 1D and 2D. The electric field of a charged particle in 3D
is E ∼ 1/r2, wherer is the distance from the particle. In
1D, E is constant over distance and the 3D equivalence of
this constant field is produced by an infinite charge sheet. In
2D, E ∼ 1/r and the 3D equivalence of this field can be
realized by an infinitely long line of charges. When solving
a Poisson equation in less than 3D to explain physical fea-
tures observed in a 3D world, one must address how these
3D equivalent systems are produced and whether their use to
explain physical features is justified.

Electrons associated with solitary waves are highly field-
aligned with a gyroradius≤ 1 m, while the typical scale size
of the solitary waves and the Debye lengthλD are∼ 100 m
(Ergun et al., 1999). In this case, as a reasonably good
approximation, the electrons can be treated as if they are
confined to move only along the magnetic field. Thus, the
Vlasov equation for electrons can be reduced to 1D (the di-
mension parallel to the magnetic field).

The role of electrons trapped in the solitary potential takes
on fundamental importance in BGK solitary waves (Bern-
stein et al., 1957). In Sect. 2, we will deduce the feature
of screening-by-trapped-electrons, for 1D BGK phase space
electron holes (EH), by analytically calculating the separate
contributions from the trapped and passing electrons to the
charge density. This feature will be used in Sect. 3, where
we obtain azimuthally symmetric EH solutions to the cou-
pled 3D Poisson and 1D Vlasov equations. We discuss the
properties of these solutions and how they can enhance our
understanding of the solitary waves observed in space.

2 Screening by trapped electrons

1D BGK EH solutions have been studied extensively since
1957, when BGK obtained the general solutions to the non-
linear time-independent Vlasov-Poisson equations. Discus-
sions on general aspects of EHs, such as phase space orbits of
electrons in the vicinity of a positive potential, can be found
in textbooks (Krall and Trivelpiece, 1973; Davidson, 1972)
as well as in research papers (Bohm and Gross, 1949; Gold-
man et al., 1999). The basic idea is to separate electrons
into two populations: electrons that are trapped inside the
potential pulse and those that are not (called passing elec-
trons). As demonstrated by BGK (1957), trapped electrons
are the source of nonlinearity and they play a crucial role in
solitary wave solutions. However, the specific details as to
how trapped and passing electrons contribute to macroscopic
variables such as the charge density have not been addressed.
EHs were taken to be positively charged (Roberts and Berk,

1967; Berk et al., 1970; Schamel, 1986; Krasovsky et al.,
1999) and shielded by the ambient plasma (Schamel, 1986;
Krasovsky et al., 1999). In this section, a completely differ-
ent picture will be presented.

The charge density distribution for an EH can be computed
from the second derivative of the potential. For a bell-shaped
positive potential pulse, the charge density is negative at the
flank and positive at the core (see, for example, Fig. 1b). We
use the approach formulated by BGK to calculate the den-
sities of trapped and passing electrons and demonstrate that
the negative charge density at the flank comes exclusively
from trapped electrons. In other words, the positive core is
shielded by trapped electrons and not by the ambient elec-
trons.

The time-independent, coupled Vlasov and Poisson equa-
tions, with the assumption of a uniform neutralizing ion
background, take the following form:

v
∂f (v, x)

∂x
+

1

2

∂φ

∂x

∂f (v, x)

∂v
= 0, (1)

∂2φ

∂x2
=

∫
∞

−∞

f (v, x)dv − 1, (2)

wheref is the electron distribution function and the quanti-
ties have been normalized with the units of the Debye length
λD, the ambient electron thermal energyTe and the electron
thermal velocityvt =

√
2Te/m. The total energyw = v2

−φ

with this convention.
For demonstration, we use a Gaussian solitary potential,

φ(ψ, δ, x) = ψe−x
2/2δ2

, (3)

and Maxwellian passing electrons whose density has been
normalized to 1 (the background ion density) outside the soli-
tary potential,

fp(w) =
2

√
π
e−w. (4)

This case has been treated by Turikov (1984) to obtain
the trapped electron distribution and to derive the width-
amplitude relation for EHs with zero phase-space density at
the hole center. We use the same starting point to calculate
the number densities of trapped and passing electrons to il-
lustrate their perspective role in how shielding is achieved.

Following the BGK approach, we obtain the expression
for the trapped electron distribution as,

ftr(ψ, δ,w) =
4
√

−w

πδ2

[
1 − 2 ln(

−4w

ψ
)

]
+

2e−w
√
π

[
1 − erf(

√
−w)

]
. (5)

The first term inftr stems from the potential and has a single
peak atw =

−ψ

4e3/2 . This term is 0 atw = 0−, goes negative
atw = −ψ and will always be single peaked even for other
bell-shaped solitary potentials (for example, sech2(x/δ) and
sech4(x/δ), see Fig. 4 of the paper by Turikov (1984) for the
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special case of empty-centered EHs). Although the peak lo-
cation may vary, it will not be at the end points, 0 and−ψ .
The second term arising from the integral of the passing elec-
tron distribution decreases monotonically fromw = 0− to
w = −ψ . The end point behavior of the two terms im-
plies thatftr(w = 0−) > ftr(w = −ψ). Combining the
behavior of the two terms inftr , it can be concluded that
ftr(0 > w ≥ −ψ) ≥ ftr(w = −ψ). This feature offtr is
essential in making a solitary pulse and it manifests itself at
the peak of the potential as two counterstreaming beams.

With fp andftr , we can now calculate the passing and
trapped electron densities separately and obtain

np = eφ
[
1 − erf(

√
φ)

]
, (6)

ntr =
−φ [1 + 2 ln(φ/ψ)]

δ2
+ 1 − eφ

[
1 − erf(

√
φ)

]
. (7)

Note that, even forφ � 1, the linearization ofnp gives
np ∼ 1 − 2

√
φ/π which is different from the leading terms

of a Boltzmann distribution. For a Boltzmann distribution,
the density∼ eφ and the leading terms are 1+ φ (Jackson,
1990). The physical meaning is that under collisionless, self-
consistent interaction of electrons and the solitary potential,
electrons in the vicinity of the potential are not in local ther-
mal equilibrium, in contrast to the standard starting point of
local thermal equilibrium in obtaining the thermal screen-
ing length (Debye and Ḧuckel, 1923; Jackson, 1990; Chen,
1984).

To study the contributions from trapped and passing elec-
trons to the charge density (−∂2φ/∂x2) and how such contri-
butions are affected by various parameters, we show in Fig. 1,
plots of ntr andnp and the charge densityρ as a function
of x for several values ofψ andδ. Figures 1a and 1b plot
100× ntr(x), 100× [np(x) − 1] and 100× ρ(x) for (ψ ,
δ)=(2× 10−5,0.1). For an ambient plasma withTe = 700 eV
and λD = 100 m as found at ionospheric heights by the
FAST satellite in the environment of BGK EHs (Ergun et
al., 1999), this case corresponds toψ = 1.4 × 10−2 V and
δ = 10 m. As shown, in this weakly nonlinear case, the
maximum perturbation innp is only 0.5% and inntr 0.4%.
The perturbation in the charge densityρ is ≤ 0.2% and oc-
curs within oneλD. The curves ofnp(x), ntr(x) andρ(x)
for (ψ , δ)=(5, 4.4) are given in Figs. 1c and d. This choice
corresponds to EHs with nearly zero phase space density at
the center,w = −ψ . That isftr(w = −ψ) ∼ 0. One can
see that the total charge density perturbation goes∼ 10%
negative and∼ 25% positive, corresponding respectively to
electron density enhancement and depletion. With similar
format, Figs. 1e and f plots cases with sameδ andψ = 1
to illustrate the change innp, ntr andρ of an EH with equal
width but smaller amplitude. The dip inntr is filled up and
the charge density perturbation only increases to 5% positive
and 2% negative.

These examples demonstrate how passing electrons pro-
duce positive charge density perturbations owing to the de-
crease in their number density and how the addition of

-20 -10 10 20

0.2

0.4

0.6

0.8

1

-20 -10 10 20

-0.1

-0.05

0.05

0.1

0.15

0.2

0.25

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.05

0.05

0.1

0.15

0.2

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.4

-0.2

0.2

0.4

-20 -10 10 20

0.2

0.4

0.6

0.8

1

-20 -10 10 20

-0.02

-0.01

0.01

0.02

0.03

0.04

0.05

100ntr

100(n −1)

(a) (b)

(d)

(f)(e)

(c)

p

ρ

ρ

100ρ

np

trn

tr

pn

n

Fig. 1. Trapped electron density (ntr ), passing electron density (np)
and charge density (ρ) for (ψ ,δ) = (2 × 10−5,0.1) in (a) and(b),
(ψ ,δ) = (5,4.4) in (c) and (d) and (ψ ,δ) = (1,4.4) in (e) and
(f). These examples illustrate how passing electrons alone would
result in the positive charge density perturbation due to their density
decrease and how the addition of trapped electrons yields the excess
negative charge at the flank.

trapped electrons yields the excess negative charge at the
flank. For quantitative illustration, we use a specific poten-
tial and an ambient electron distribution but the above re-
sult is independent of the specific model that we use and the
strength of nonlinearity. To derive that the density of passing
electrons must decrease at the positive potential, one only
needs the equation of continuity (conservation of charge).
Velocities of passing electrons increase at the potential and
the density is inversely proportional to the velocity, hence
the decrease of their density. Therefore, the excess negative
charge cannot be from the passing electrons. It must come
exclusively from trapped electrons. In other words, it is the
trapped electrons oscillating back and forth inside the solitary
potential and carried along by the potential that shield out the
positive core of a BGK EH. This unique feature of BGK EHs
distinguishes them from positively charged objects dressed
in negative thermal charge clouds via Debye shielding mech-
anism and allows their size to be smaller thanλD. This fea-
ture will be used in the next section as a constraint for the
perpendicular boundary condition.
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Fig. 2. Trapped electron distribution (Eq. 17) as a function of
negative the electron energy (−w) for an EH with a perpendicu-
lar sizers = 5 (λD), parallel widthδ = 2.1 and potential amplitude
ψ = 0.5 at a fixed radial distance. Note that at the center of the
phase space EH,−w = 0.5, ftr is at its global minimum.

3 Electron holes in 3D magnetized plasma

3.1 The solitary potential

In the following formulation, we will assume azimuthal sym-
metry, that electron motion is alongB and ions form the
uniform background. The first assumption is a natural start-
ing point for a system with a magnetic field. The second
is justified since the electron gyroradius (≤ 1 m) is much
less than all relevant scale lengths. The third assumption is
justified because the velocity perturbation of ions due to the
self-consistent interaction with the solitary potential is much
smaller than that of electrons owing to the large mass ratio.
Therefore, to a good approximation, the ion density can be
assumed uniform.

In the wave frame, the 3D Poisson equation and the Vlasov
equation for electrons are

−∇
28(r) = 4πρ(r), (8)

v · ∇rF(r, v)+
e

m
∇8(r) · ∇vF(r, v) = 0, (9)

where8 is the electrostatic potential,ρ the charge density
andF the electron distribution function. The second term in
the Vlasov equation is the nonlinear term that makes solitary
wave solutions possible. Equation( 8) written in the cylin-
drical coordinate system (r, θ, z) with azimuthal symmetry
is[
∂

r∂r
+
∂2

∂r2
+
∂2

∂z2

]
8(r, z) = −4πρ(r, z). (10)

Equation (10) has only two variables but it is not a 2D Pois-
son equation because they differ by the term∂

r∂r
. We search

for solutions which give a single humped potential8(r), that
is,8(r) has no node. The feature derived in the last section,
screening-by-trapped-electrons, only applies in the parallel
direction as trapped electrons cannot oscillate perpendicular
to the magnetic field. This implies that the charge density

should not change sign in the perpendicular direction and
this leads us to the eigenfunction of the differential operator

( ∂
r∂r

+
∂2

∂r2 ); the Bessel function zero. The solitary potential
constructed according to this boundary condition yields

8(r) = φ‖(z)J0

(
k00

r

rs

)
, (11)

wherek00 ' 2.404 is the first root of Bessel functionJ0, rs
is the perpendicular scale size at which8 falls to zero and
φ‖(z) the parallel profile of the solitary potential.
J0 comes into our solution because electrons associated

with EHs are highly field-aligned and the same mechanism
of screening-by-trapped-electrons of BGK EHs in the paral-
lel direction does not apply in the perpendicular direction.
The perpendicular boundary condition set by this physical
constraint selectsJ0, the eigenfunction of the radial differen-
tial operator. This means that the charge density

ρ(r, z) =
J0(k⊥r)φ‖(z)

4π

[
k2
⊥

+
1 + 2 ln(φ‖/9)

δ2

]
, (12)

and the potential have exactly the same radial function as
their perpendicular profiles. This feature can be experimen-
tally verified if EHs can be measured along the perpendicular
direction. One would observe that variations in the charge
density and the electrostatic potential track each other with
different scaling coefficients.

The structure of the solitary potential,8, the correspond-
ing electric field,

E = Er(r, z)r̂ + Ez(r, z)ẑ

= r̂

[
− φ‖(z)

∂J0(k⊥r)

∂r

]
+ ẑ

[
J0(k⊥r)

∂φ‖(z)

∂z

]
, (13)

and the charge density will be illustrated later after we dis-
cuss the physical parameter range in which there exist elec-
tron distributions to support the potential.

3.2 The trapped electron distribution

We now use the potential as given by Eq. (11) to obtain the
trapped electron distribution to demonstrate that the plasma
can kinetically support such a potential. With the assumption
that electrons only move alongB, Eq. (9) in normalized units
becomes

v
∂F (r, z, v)

∂z
+

1

2

∂8(r, z)

∂z

∂F (r, z, v)

∂v
= 0. (14)

Equation (14) stipulates that, for anyr ≤ rs , there exists a
1D Vlasov equation in the parallel direction; but these par-
allel Vlasov equations for differentr are not independent.
Instead, their mutual relation in the perpendicular direction
is determined by the perpendicular profile of8. This is be-
cause8 is the potential produced collectively by the plasma
particles. Once8 is known, how the plasma distributes it-
self to self-consistently support the potential is determined.
Therefore, we need only to solve the equation for a particular
r. Settingr = r̄, a constant, define

φ(z) = 8(r̄, z) = J0(k⊥r̄)φ‖(z),

f (z, v) = F
(
W(r̄, z, v)

)
,
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Fig. 3. The inequality relation
(Ineq. 19) between the perpendicular
size (rs ) and the potential amplitude
(ψ): (a) the relation (Ineq. 18) between
the perpendicular size, parallel size (δ)
and the amplitude,(b) three rs cuts
showing the dependence of the parallel
width (δ)-amplitude (ψ) relation on the
perpendicular size,(c) a sample solitary
potential as a function ofz and r, (d).
Solitary potentials can take (rs , δ, ψ)
values in regions marked Allowed (O).
Regions marked Forbidden (X) give un-
physical trapped electron distributions
and are thus not allowed.

whereW = v2
− 8(r, z) is the total energy of an electron

andF(W) is a solution to Eq. (14), as can be readily ver-
ified. Now substitute the potential constructed in Eq. (11)
into Eq. (10), replacer by r̄ and re-writeρ(r̄, z) in terms
of the trapped and passing electron distribution,ftr andfp,
respectively. In terms of these variables, Eq. (10) becomes

∂2φ(z)

∂z2
− k2

⊥
φ(z) =

∫ 0

−φ

dw
ftr(w)

2
√
w + φ

+

∫
∞

0
dw

fp(w)

2
√
w + φ

− 1, (15)

wherek⊥ =
k00
rs

'
2.404
rs

andw = W(r̄, z, v) = v2
−

J0(k⊥r̄)φ‖(z) is the total energy of an electron atr̄ travelling
alongz. Electrons withw ≥ 0 are untrapped and electrons
with w < 0 are trapped. Equation (15) differs from its coun-
terpart in the 1D model by the termk2

⊥
φ which couples the

perpendicular part of the solitary wave into its parallel equa-
tion. The larger the perpendicular size,rs , the closer Eq. (15)
approaches its counterpart in the 1D model. In the limit-
ing case, whenrs approaches infinity, the solution reduces
to the 1D solution which describes infinitely large charge
sheets perpendicular toB and propagating alongB. This is
exactly the equivalent 3D system of the 1D model. The
perpendicular size of the solitary wave determines whether
a spacecraft would be able to see the 3D structure or only
the parallel feature. This offers a plausible explanation as to
why, in the magnetosphere, both multi and one dimensional

solitary waves are seen. (See Ergun et al. (1999) for multi-
dimensional cases and Bale et al. (1998) and Matsumoto et
al. (1994) for 1D cases.)

To obtain ftr , we follow the BGK approach with
Maxwellian ambient electrons,

Fp(W) =
2

√
π
e−W , (16)

For convenience, defineJ0(k⊥r̄)9 asψ . The trapped elec-
tron distribution obtained from Eq. (15) then reduces to

ftr(w) = −
4k2

⊥

π

√
−w +

4
√

−w

πδ2

[
1 − 2 ln

(−4w

ψ

)]
+

2e−w
√
π

[
1 − erf(

√
−w)

]
. (17)

Different perpendicular, parallel widths and potential am-
plitudes give different constants and coefficients toftr(w)
and thus yield differentftr values. Some combinations of
(rs, δ, ψ) can give negativeftr values and this means that
there does not exist an electron distribution to support the po-
tentials with these (rs, δ, ψ) parameters. As an example, we
plot ftr as a function of−w in Fig. 2 for a physical combina-
tion: (rs, δ, ψ) = (5, 2.1, 0.5). ftr is positive for the entire
range of its argument and its global minimum is at−w = ψ ,
the center of the phase space EH.
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3.3 Inequality relations between parallel, perpendicular
scale sizes and the amplitude

For the solution (Eq. 17) to be physical,ftr(w) has to be non-
negative. Sinceftr(0 > w ≥ −ψ) ≥ ftr(w = −ψ), the
conditionftr(w = −ψ) ≥ 0 suffices to satisfy the require-
ment. From this condition, we obtain an inequality relation
betweenδ, ψ andrs ,

δ ≥

√
4 ln 2− 1

√
πeψ (1 − erf(

√
ψ)/2

√
ψ − 2.4042/r2

s

. (18)

We do not restrict ourselves to empty-centered EHs (EHs
with ftr(w = −ψ) = 0) and therefore, for an allowed pair of
(ψ, rs), anyδ that satisfies inequality 18 is allowed. In other
words, for a fixed amplitude and perpendicular scale size, the
parallel scale size has a lower bound but no upper bound. The
lower bound corresponds to EHs with no trapped electrons at
rest at the bottom of the potential energy troughs; that is, the
centers of the phase space structures are empty(hence, called
empty-centered EHs). The denominator on the RHS of in-
equality 18 has to be positive. This yields another inequality
relation betweenψ andrs ,

rs >
2.404√√

πeψ (1 − erf(
√
ψ)/2

√
ψ
. (19)

Ineq. (19) means that, for a given potential amplitude, the
perpendicular scale size of EHs is greater than a critical value

given by the RHS as a function of the potential amplitude in
order to have a physical electron distribution to support the
solitary potential.

Figures 3a–c show plots of the allowed parameter range
with Fig. 3a representing Ineq. (19), Fig. 3b Ineq. (18) and
Fig. 3crs cuts of Ineq. (18). For a solitary potential8 with
a peak amplitude9, the perpendicular sizers has to satisfy
Ineq. (19) with theψ on the RHS replaced by9. For ex-
ample, if9 is 0.5 (in units ofTe/e), the perpendicular size
is roughly greater than 3 (in units ofλD). We indicate the
allowed region by O and the forbidden by X in Figs. 3a and
b. Any (δ, 9, rs) lying on or above the shaded surface is al-
lowed. For example, for9 = 100 (corresponding to 10 kV
for Te = 100 eV) andrs = 100 (corresponding to 10 km
for λD = 100 m) the parallel scale sizeδ can be as small
as 20 (λD) and as large as several earth radii (RE) or even
larger. We can look at another example with9 = 10−4 (cor-
responding to 10 mV forTe = 100 eV) andrs = 0.2 (corre-
sponding to 20 m forλD = 100 m), whenδ is at least 0.12
(λD) or larger. The inequality nature of the width-amplitude-
perpendicular size relation means that the plasma permits
BGK EHs with any parallel width ranging from less than 1
λD to greater than 1RE . Figure 3c shows the dependence
of the parallel width-amplitude (δ − ψ) relation on the per-
pendicular sizers . With a fixedrs , the empty-centered EHs
(corresponding to the equal sign in Ineq. 18) give the largest
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Fig. 5. (a) the charge density for the
constructed BGK solitary wave.(b) two
parallel cuts of the charge density along
the symmetry axis (r = 0) of the soli-
tary wave and alongr = 2rs/3. The
excursions along the symmetry axis are
the largest, comparing to other parallel
cuts of the charge density.

amplitudes for the sameδ. For the same amplitude, EHs with
largerrs have smaller lower bounds forδ. This dependence
of the parallel width-amplitude relation on the perpendicular
size can be used in conjunction with the measured width-
amplitude scatter plot to give an estimate of the typical per-
pendicular size of EHs. For example, if the measured par-
allel widths and amplitudes (unbinned) lie between the lines
for rs = 4 andrs = 8, we know that the typical perpen-
dicular size for these EHs is 4–8λD. We can then estimate
how much electrostatic energy is transported by each of these
EHs by multiplying the measured energy density (square of
the electric field amplitude), the parallel width and the cross
sectional area with the above radius.

3.4 The structure of the potential, electric field and charge
density

We next examine the structure of the potential and compar-
isons this within observations. As the solitary waves travel
along B with typical velocity ∼ 1000 km/s and pass the
spacecraft, the measurement taken on the spacecraft is anal-
ogous to taking parallel cuts of the involved quantities. We
will plot the parallel cuts for comparison with the observa-
tions.

Figure 3d plots an example of the solitary potential9 as
a function ofr andz with rs = 5, 9 = 0.5, andδ = 2.1,
in the allowed parameter range. Positivez is along the direc-
tion of the magnetic field. The potential peaks at the center
and monotonically drops to zero in the parallel direction as
a Gaussian and perpendicularly as a Bessel zero. The elec-
tric field of the solitary structure vanishes at the center and
points outward away from the center. The parallel compo-
nent of the electric field,Ez ≡ E‖, is shown in Fig. 4a as a
function of r andz. Two parallel cuts ofE‖ at r = 0 and
r = rs/1.5 are shown in Fig. 4b. For anȳr < rz, E‖(r̄, z)

is symmetric and bipolar. On the symmetry axis,r = 0, the
maximum excursion ofE‖ is the largest and, asr increases,
it falls off asJ0(k⊥r). The perpendicular component of the
electric field,Er ≡ E⊥, is plotted in Fig. 4c as a contour plot
to aid in the visualization of its parallel cuts. One example of
the parallel cuts is shown in Fig. 4d and it is unipolar. Any
parallel cut ofE⊥ is unipolar except the one along the sym-

metry axis (r = 0) whereE⊥ is zero. Note thatE⊥ is not
zero at the perpendicular boundary,r = rs , so perpendicular
screening from the ambient electrons is needed to facilitate
the decrease ofE⊥ to zero. This perpendicular screening is
not described by our solution.

The charge distribution,ρ, as a function ofr andz is pre-
sented in Fig. 5a, and two parallel cuts ofρ are depicted in
Fig. 5b. Note that, as the radial distance from the symmetry
axis increases, the measured charge density perturbation be-
comes smaller. Along the symmetry axis, the charge density
variation is the largest with the positive excursion reaching
∼ 24% and the negative∼ 4%. An off-centered cut along
r = rs/1.5 with a positive excursion∼ 13% and∼ 2% neg-
ative is also shown.

4 Summary and conclusion

We have obtained new results for 1D BGK electron soli-
tary waves and, based on the 1D results, we have extended
the solutions incorporating the 3D electric interaction of the
plasma. One key feature of a 1D BGK EH is that its posi-
tive core is shielded by electrons trapped and oscillating in-
side the solitary potential. Since the thermal screening from
the ambient plasma is not needed, the size of a 1D BGK
EH can be smaller than oneλD (an example can be found
in Figs. 1a and b). The 3D solution preserves the proper-
ties of 1D solutions in the direction parallel to the magnetic
field, hence it is like a perpendicularly confined bundle of 1D
BGK EHs. In 3D BGK EHs, as electrons are highly field-
aligned, trapped electrons can oscillate back and forth along
the direction of the magnetic field and, as a consequence, the
screening-by-trapped-electrons in 1D still applies in the par-
allel direction. Since thermal screening is not needed in the
parallel direction, the parallel widths of the 3D BGK EHs
can also be smaller than oneλD. We therefore predict that
multi-dimensional BGK EHs in magnetized plasma can have
parallel widths smaller than the Debye scale.

The extension to three dimensions utilizes the key fea-
ture, screening by trapped electrons, of 1D BGK EHs. This
feature is an essential part of the boundary condition from
which we obtain Bessel function zero,J0, for the perpendic-
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ular profiles of the potential and charge density. The observ-
able is that the perpendicular cuts of the solitary potential and
charge density would track each other with different scaling
coefficients.

We derived the physical parameter range within which the
plasma can self-consistently support the solitary potential.
The relations between the parallel and perpendicular scale
sizes and the potential amplitude are inequalities. The in-
equality relations permit EHs of large scales with reasonable
potential amplitudes. The inequality relation between the
three parameters indicates a dependence on the perpendicu-
lar size of the parallel width and amplitude relation. This de-
pendence can be used in conjunction with experimental data
to give an estimate of the typical perpendicular size of EHs.
This information is a measure of the perpendicular span of
the EH source region and provides an estimate of the amount
of electrostatic energy transported by the solitary waves.

Finally, note that this paper has analytically modeled the
electric field bipolar pulses as BGK electron holes that are
time stationary solutions of the nonlinear Vlasov-Poisson
equations. We have not addressed the problem associated
with the dynamical and evolutionary features of the EHs that
have been addressed by numerical simulations (Oppenheim
et al., 1999; Singh et al. 2000; Muschietti et al. 2000; New-
man et al. 2001).
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