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R. Erdélyi1 and I. Ballai2

1Space & Atmosphere Research Center (SPARC), Dept. of Applied Mathematics, University of Sheffield, Hicks Building,
Hounsfield Road, Sheffield, S3 7RH, UK
2School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS, UK

Received: 12 June 2001 – Revised: 16 October 2001 – Accepted: 21 December 2001

Abstract. Nonlinear resonant magnetohydrodynamic
(MHD) waves are studied in weakly dissipative isotropic
plasmas in cylindrical geometry. This geometry is suitable
and is needed when one intends to study resonant MHD
waves in magnetic flux tubes (e.g. for sunspots, coronal
loops, solar plumes, solar wind, the magnetosphere, etc.)

The resonant behaviour of slow MHD waves is confined
in a narrow dissipative layer. Using the method of simpli-
fied matched asymptotic expansions inside and outside of
the narrow dissipative layer, we generalise the so-called con-
nection formulae obtained in linear MHD for the Eulerian
perturbation of the total pressure and for the normal compo-
nent of the velocity. These connection formulae for resonant
MHD waves across the dissipative layer play a similar role as
the well-known Rankine-Hugoniot relations connecting so-
lutions at both sides of MHD shock waves.

The key results are the nonlinear connection formulae
found in dissipative cylindrical MHD which are an important
extension of their counterparts obtained in linear ideal MHD
(Sakurai et al., 1991), linear dissipative MHD (Goossens et
al., 1995; Erd́elyi, 1997) and in nonlinear dissipative MHD
derived in slab geometry (Ruderman et al., 1997).

These generalised connection formulae enable us to con-
nect solutions obtained at both sides of the dissipative layer
without solving the MHD equations in the dissipative layer
possibly saving a considerable amount of CPU-time when
solving the full nonlinear resonant MHD problem.

1 Introduction

One of the most interesting processes in the solar atmo-
sphere is the complicated interaction of the plasma motions
with magnetic fields. The solar atmosphere is a highly non-
uniform plasma and, as a consequence, it is a natural medium
for resonant MHD waves.
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The dynamics of MHD waves is usually described in the
framework of dissipative MHD. An important property of the
governing wave equations is the smallness of the coefficients
of the dissipative terms with respect to those of the ideal
ones. On the other hand, dissipative terms contain the highest
order derivatives, which means dissipation occurs only where
strong gradients are present, or where the propagating wave
develops small spatial scales across the equilibrium field. In a
homogeneous plasma, the only transverse spatial scale is the
wavelength in the direction normal to the field. Therefore, in
order to have an efficient dissipation, the ratio between the
perpendicular and parallel wavelengths must be very small.
For this reason, damping of MHD waves in homogeneous
plasma is not a viable heating mechanism. On the other hand,
space missions of the past decade made it clear that space (in
particular solar) plasma is strongly inhomogeneous. In such
plasmas, the dissipative damping of MHD waves can be ef-
ficient, since the interaction of the propagating disturbance
with the ambient background provides new ways of creating
small transverse scales.

A direct consequence of the inhomogeneity is the possibil-
ity of the resonant transfer of energy between the plasma and
driven waves. The absorbed energy from the driven waves
can be converted into heat if the plasma is dissipative. Res-
onant absorption is one of the most popular processes to ex-
plain the anomalous behaviour of the temperature in the so-
lar corona, i.e. the heating of the coronal plasma. The solar
corona is a very hot tenuous plasma at a typical temperature
of 1−3×106 K, much higher than the underlying layers, (the
transition region, the chromosphere and the photosphere) so
nonthermal energy must be transported into the corona and
be dissipated there. The high temperature coronal plasma
mainly radiates in a soft X-ray range corresponding to typical
wavelengths of the order of 10− 100Å. This radiation is not
homogeneous neither in space nor in time, with a wide range
of spatial and time scales. High resolution observations have
now given an image of the solar corona as a rapidly evolving
dynamic plasma where energetic phenomena occur mainly
on very “small” scales.
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The main problem in the understanding of coronal heating
is to perform sufficiently high resolution observations (i.e.
observations at typical wavelengths of the order of the dissi-
pative length scales), capable of shedding light on the phys-
ical dissipative processes at work in the solar corona. As a
consequence, no realistic models, even very simplified, have
been developed so far, while a number of conceptual mod-
els derived from the available data try to roughly describe
the small scale dynamics and to derive all the possible con-
sequences on the mean dynamics in order to fit the observa-
tional large scale constraints (e.g. Litwin and Rosner, 1998,
or more references in Bray et al., 1991; Golub and Pasachoff,
1997).

The physical background of resonant absorption is based
on the existence of continuous spectra for slow MHD and
Alfv én waves in inhomogeneous plasmas (Belien et al.,
1997). Resonant absorption occurs whenever the frequency
of a laterally driven oscillation matches the local slow and/or
Alfv én frequency of the plasma and resonant field lines are
created which transfer energy from the surface disturbance
to its environment.

In ideal plasmas resonant waves are confined to an individ-
ual magnetic surface which cannot interact with its neigh-
bors. Since we suppose that the driven external mode can
exist for an infinitely long period, this energy accumulation
results in infinite wave amplitude at the resonant position.
But one of the basic characteristics of the solar plasma is
that it is dissipative. Dissipative effects cause coupling of
one resonant magnetic surface to neighboring magnetic sur-
faces and the disturbance provoked at the resonant surface is
transmitted to neighboring field lines. We can define a “res-
onant layer” by considering a region where the disturbances
do not become out of phase relative to the driven oscilla-
tions. For large values of the viscous and magnetic Reynolds
numbers (just like in the solar atmosphere), this coupling is
weak and the local resonant slow and Alfvén oscillations are
characterized by steep gradients across the resonant magnetic
field lines. In this case, the energy of the external oscilla-
tions is dissipated and it can be converted into heat. The total
Reynolds number, which measures the magnitude of the dis-
sipative effects, is defined by

1

R
=

1

Rv

+
1

Rm

, (1)

whereRv and Rm are the viscous and magnetic Reynolds
numbers, respectively.

Ionson (1978) pointed out first that resonant absorption
can be a viable candidate for coronal heating. Since then,
this process became one of the most popular mechanisms for
explaining the anomalous behaviour of the coronal temper-
ature (see, e.g. Kuperus et al., 1981; Davila, 1987; Narain
and Ulmschneider, 1990; Hollweg, 1991; Goossens, 1991;
Narain and Ulmschneider, 1996, and references therein). The
same mechanism may be used to explain the observed energy
loss ofp-modes in the vicinity of sunspots (see, e.g. Holl-
weg, 1988; Lou, 1990; Goossens and Poedts, 1992; Goossens
and Hollweg, 1993; Erd́elyi and Goossens, 1994).

A very elegant way to study resonant absorption in the
vicinity of the resonant singularity is to use the concept of
the so-calledconnection formulaeintroduced first by Sakurai
et al. (1991) in ideal plasmas and by Goossens et al. (1995)
and Erd́elyi (1997) in dissipative plasmas. This approach is
based on the idea that the thin dissipative layer acts as a sur-
face of discontinuity when solving the MHD equations. At
both sides of this surface of discontinuity the plasma motion
is governed by the ideal MHD equations. The solution of
the dissipative MHD equations inside the dissipative layer is
used then to obtain the connection formulae which provide
boundary conditions at the surface of discontinuity.

In the nonlinear description of resonant absorption we use
some characteristic quantities, such as the characteristic scale
of inhomogeneity,linh, the characteristic thickness of the dis-
sipative layer,ldis , and the dimensionless amplitude of per-
turbationsε far away from the dissipative layer. Under the
plausible assumption that the characteristic scale of the per-
turbations along the dissipative layer is of the order oflinh,
linear theory predicts that the perturbations of the large vari-
ables are of the order ofεlinh/ldis inside the dissipative layer
(see, e.g. Goossens et al., 1995). Since the ratiolinh/ldis is
proportional toR1/3, the amplitudes of the so-called large
variables (for definition, see e.g. Goossens et al., 1995) can
be very large inside the dissipative layer even when they are
small outside. Note that the present analysis is valid for per-
turbations with characteristic wave numbers along the reso-
nant dissipative layer for which

ε−1
� klinh � ε.

As a result, nonlinear theory can become important inside the
dissipative layer.

Nonlinearity in the dissipative layer was first taken into
account in the theory of resonant absorption by Ruderman
et al. (1997a) where they studied the nonlinear evolution of
slow resonant MHD waves considering Cartesian geometry
and isotropic dissipative effects. Later, this theory was ex-
tended for anisotropic plasmas (e.g. solar corona) by Bal-
lai et al. (1998b) where an anisotropic viscosity and field-
aligned thermal conductivity played the role of dissipative
effects. These theories were applied to study the resonant
absorption of sound and fast magneto-acoustic waves in so-
lar structures (see, e.g. Ruderman et al., 1997b; Ballai et
al., 1998a; Erd́elyi and Ballai, 1999; Erd́elyi et al., 2001).
One of the main results of these studies was that in con-
trast to the linear theory, the coefficient of wave energy ab-
sorption is dependent on the particular type of dissipation.
They have also found that the general tendency of nonlin-
earity is to decrease the absolute value of the coefficient of
wave energy absorption when the wavelength of the incom-
ing wave is much larger than the characteristic scale of inho-
mogeneity and nonlinearity is considered weak. This situa-
tion is changed in the limit of strong nonlinearity, as pointed
out by Ruderman (2000), when this tendency does not per-
sist anymore, at least for intermediate wavelengths. In the
case of long wavelength approximation, nonlinearity again
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decreases the net coefficient of energy absorption and the dif-
ference relative to the results found by means of linear theory
is about 20%.

The goal of the present paper is to investigate how nonlin-
earity effects the dynamics of the resonant slow MHD waves
in twistedmagnetic flux tubes and to investigate the effect of
the magnetic twisting on the connection formulae. We re-
call here a few recent studies on MHD wave dynamics when
magnetic twist has been incorporated (e.g. Sakai et al., 2001;
de Bruyne et al., 1996); however, they do not focus on the
resonant aspect which is the key ingredient in our paper. The
paper is organized as follows. In the next section, we intro-
duce the basic equations and the equilibrium state. In order
to obtain an equation that contains the effects of nonlinearity
and dissipation, a scaling law is introduced in this section. In
Sect. 3, we derive the governing equations for wave dynam-
ics outside and inside the dissipative layer. Since the resonant
surface acts like a singular surface, the connection formulae
are calculated by means of the simplified method of matched
asymptotic expansions. The generation of a mean flow due to
resonant absorption of wave momentum is studied in Sect. 4.
Finally, we summarize and discuss our results.

2 Physical model

The solar corona consists of myriads of loops. They can
be up to 700 000 km long with a radius between 1 000 and
10 000 km and longer loops having larger radii. Hence,
the model of a cylindrical plasma column considered in the
present paper is a good approximation for coronal loops.

The study of twisted tubes can be important in the context
of solar physics. Many observational studies have revealed
that the solar magnetic field is twisted. This is manifested in
various kinds of observations, such as the morphology ofHα

structures, the morphology of filaments and coronal loops
and the signs of current helicity derived from vector magne-
tograms. (For more details see the review books, e.g. Bray et
al., 1991; Golub and Pasachoff, 1997).

We consider a cylindrical plasma column described by
cylindrical coordinates,(r, ϕ, z), with longitudinal and he-
lical equilibrium magnetic field. We suppose all equilibrium
quantities depend on the radial variable,r, only. Gravity is
ignored at the present stage.

3 Nonlinear MHD equations

We use the full set of nonlinear visco-resistive MHD equa-
tions

Dρ̄

Dt
+ ρ̄∇ · v = 0, ∇ · B = 0, (2)

Dv

Dt
= −

∇p̄

ρ̄
+

1

µρ̄
[(∇ × B) × B] +

+ν̄

(
∇

2v +
1

3
∇(∇ · v)

)
, (3)

∂B

∂t
= ∇ × (v × B) + η̄∇

2B, (4)

D

Dt

(
p̄

ρ̄γ

)
= 0, D/Dt = ∂/∂t + v · ∇. (5)

Here,v andB are the velocity and magnetic induction vec-
tors, p̄ and ρ̄ are the pressure and density,ν̄, η̄ andγ de-
note the coefficient of kinematic shear viscosity, the mag-
netic diffusion and the adiabatic index, respectively. The per-
turbations of the magnetic field and velocity are denoted by
b = (br , bϕ, bz) andv = (u, v, w). In spite of the presence
of dissipation we use the adiabatic equation as an approxima-
tion of the energy equation. Ballai et al. (2000) have shown
that the dissipation due to viscosity and finite electrical con-
ductivity present in the energy equation does not lead to a
significant change in the behaviour of nonlinear slow reso-
nant MHD waves in a driven problem. This property is based
on the fact that the amplitudes of the nonlinear terms in the
energy equation are larger than the amplitudes of the dissipa-
tive terms. This result is not applicable to nonlinear resonant
Alfv én waves since in that case the two amplitudes may be
of the same order.

We consider finite perturbations of the form

f̄ = f0(r) + f (r, ϕ, z, t), (6)

wheref0 is the equilibrium value of a variable andf is its
Eulerian perturbation.

The equilibrium variables satisfy the radial force balance

d

dr

(
p0 +

B2
0

2µ

)
= −

B2
0ϕ

µr
, (7)

whereB0 = (B2
0ϕ + B2

0z)
1/2. With these variables, we can

define the total pressure perturbation as

P = p +
B2

2µ
= p +

B0 · b

µ
+

b2

2µ
. (8)

In linear theory all physical variables oscillate with the
same real frequency,ω and they can be Fourier-analysed.
However in nonlinear theory, this procedure cannot be ap-
plied since the oscillations are not in phase anymore; their
propagation speed depends on the amplitude of the wave. To
be as close as possible to the linear theory, we suppose that
the oscillations are plane periodic propagating waves with
permanent shape and we take all the variables to be depen-
dent on the combinationθ = mϕ + kz − ωt of the indepen-
dent variablesϕ, z and t rather than onϕ, z andt separately.
Here,m andk are the azimuthal and longitudinal wave num-
bers. The square of the Alfvén and sound speeds, and the
Alfv én and the cusp frequencies are defined as

v2
A =

B2
0

µρ0
, c2

S =
γp0

ρ0
, ω2

A =
f 2

B

µρ0
, ω2

T =
ω2

Ac2
S

v2
A + c2

S

,

where

fB =
m

r
B0ϕ + kB0z, gB =

m

r
B0z − kB0ϕ . (9)
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Let us introduce the parallel and perpendicular compo-
nents of the velocity and magnetic field relative to the equi-
librium magnetic field as

(v‖, b‖) = (v, b) ·
B0

B0
,

(v⊥, b⊥) =
1

B0

[
(v, bϕ)B0z − (w, bz)B0ϕ

]
. (10)

The resonant wave properties are studied near and far from
the resonant surface in the next section.

4 The wave dynamics in the dissipative layer

The mathematical procedure applied to derive the equa-
tion that describes the resonant slow wave motion in the
dissipative layer is based on the simplified method of
matched asymptotic expansions developed by Ruderman et
al. (1997a) and Ballai et al. (1998b) from a more general de-
scription of the method (Nayfeh, 1981).

The simplified version of the method of matched asymp-
totic expansion is based on very simple ideas. Since we are
dealing with weakly dissipative plasmas, viscosity and mag-
netic diffusivity are essential only in the dissipative layer. Far
away from the dissipative layer the amplitudes of perturba-
tions are small. These two facts enable us to consider that
outside the dissipative layer, the plasma motion is described
by the ideal linear MHD equations. Another assumption is
related to the behaviour of the equilibrium quantities. We
suppose that these variables change only slightly across the
dissipative layer and they can be approximated by the first
non-vanishing term in their Taylor series expansion with re-
spect to the inhomogeneity coordinate,r. Similar to the lin-
ear theory, we assume that these expansions provide suitable
approximations for the equilibrium quantities in the region
embracing the ideal resonant position that is much wider than
the dissipative layer. This implies that there are two overlap-
ping regions to both sides of the dissipative layer where both
the outer (the solution of the linear ideal MHD) and inner
solutions (the solution of the nonlinear dissipative MHD) are
valid. The two solutions have to coincide in the overlapping
regions which provides a matching condition.

Let us proceed to the derivation of the governing equa-
tions. In the first step we obtain the solution outside the dis-
sipative layer. As it was pointed out, in this region, the wave
dynamics is described by ideal linear MHD. The system of
linearized ideal MHD equations can be reduced to a system
of two coupled first order PDEs for the radial component of
the velocity,u, and the Eulerian perturbation of the total pres-
sure,P

D
∂(ur)

∂r
= C1ur + ωC2r

∂P

∂θ
, (11)

and

ωrD
∂2P

∂r∂θ
= C3ur − ωrC1

∂P

∂θ
, (12)

where

D = ρ0DADC, DA = ω2
− ω2

A,

DC = (c2
S + v2

A)(ω2
− ω2

T ) , (13)

and

C1 = 2ω4
B2

0ϕ

µr
− 2

mfBB0ϕ

µr2
DC,

C2 = ω4
−

(
m2

r2
+ k2

)
DC,

C3 = D

[
ρDA

∂2

∂θ2
+

2B0ϕ

µ

d

dr

(
B0ϕ

r

)]
−

−4ω4

(
B2

0ϕ

µr

)2

+
4ρ0DCω2

A

µr2
B2

0ϕ . (14)

All other variables can be calculated in terms of these two
variables. By eliminating the pressure from Eqs. (11)–(12),
we obtain a second order differential equation for the radial
component of the velocity

∂

∂r

[
f (r)

∂(ur)

∂r

]
− g(r)

∂2(ur)

∂θ2
= 0, (15)

where

f (r) =
D

rC2
, g(r) =

∂

∂r

(
C1

rC2

)
−

1

rD

(
C3

ω
−

C2
1

C2

)
.(16)

We are interested in the solution of the system (11)-(12) in
the vicinity of the slow wave resonant point, i.e. atr = rc
determined by the conditionω = ωT (r = rc), whereω is the
driver frequency. The waves which satisfy this condition are
calledresonant waves. Let us introduce a new radial variable,
s, defined by

s = r − rc. (17)

The s = 0 point (the resonant position) is a regular singu-
lar point of the system (11)–(12) and therefore we look for
solutions in the form of Fr̈obenius expansions around the res-
onant positions = 0. The solutions take the form

P = P1(θ) + P2(θ) s ln |s| + P3(θ) s + . . . , (18)

and

u = u1(θ) ln |s| + u2(θ) + u3(θ)s ln |s| + . . . . (19)

Here dots denote terms that are of higher order with respect
to s. In general, the coefficient functions ofθ in Eqs. (18)–
(19) are different fors < 0 ands > 0.

Using the relations found for the other variables, we even-
tually find that the perpendicular components of the velocity
and magnetic field perturbation behave like the total pres-
sure perturbation, so they are regular ats = 0. The other
quantities are singular. The quantitiesu andbr behave like
ln |s|, while the quantitiesv‖, b‖, p, ρ have ans−1 singular-
ity. These latter quantities are called large variables.
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The outer solution is the so-called large-scale mode, be-
cause the transverse scale of this motion is of the order of the
physical model (e.g. the diameter of a coronal loop). How-
ever, near to the resonant position, in theinner region, the
character of the solution changes and the assumption of ideal
MHD is not valid. In this region we must have the dissipa-
tive, small-scale inner solution.

The magnitude of the dissipation is given by the total Rey-
nolds number defined in the Introduction where the magnetic
and viscous Reynolds numbers have the properties

Rm ∼
1

η̄
, Rv ∼

1

ν̄
. (20)

If f is a large variable, then a typical representative of the
large nonlinear terms is of the formf ∂f /∂z. The typical rep-
resentative of large dissipative terms is of the form∂2f /∂s2

multiplied by one of the dissipative coefficients (ν or η).
Since inside the dissipative layer the large variables are of
the order off ∼ εR1/3 and∂/∂z ∼ l−1

inh, ∂/∂s ∼ l−1
dis the ra-

tio of the nonlinear terms to the dissipative terms is estimated
to be

f ∂f/∂z

ν̄ ∂2f/∂s2
∼ εR2/3 , (21)

andεR2/3 emerges as the nonlinearity parameter.
If εR2/3

� 1 is satisfied, then linear theory gives an ad-
equate description of the motions in the dissipative layer.
However, for combinations ofε andR such thatεR2/3

∼ 1,
and definitely forεR2/3

� 1, nonlinearity has to be taken
into account when studying resonant waves in the dissipative
layer. Linear theory is a valid approximation for the descrip-
tion of the wave dynamics in the dissipative layer if the dis-
sipative terms are much larger than the nonlinear terms and
so linear theory can be used ifε � R−2/3.

In linear theory, terms describing dissipation in the MHD
equations are retained inside the dissipative layer to remove
the singularity. The nonlinear terms have to be taken into
account in the dissipative layer if they are of the same order
or larger than the dissipative terms, so thatεR2/3

∼ 1, i.e.
R ∼ ε−3/2. Linear studies of velocity scaling laws (v ∼

R1/3) indicate that the predicted velocities in the dissipative
layer are several orders of magnitude larger than the observed
nonthermal velocities if the linear results are scaled to match
the observed heating rate. This lead to the suggestion that
nonlinear effects, important in the dissipative layer, might
enhance dissipation and alter the linear velocity scaling law.
Therefore, according to Eq. (20), we can scale the dissipative
coefficients as

ν̄ = ε3/2ν, η̄ = ε3/2η . (22)

In order to obtain the solutions in the internal region, we
introduce a new stretching variable in the system of equa-
tions. The thickness of the dissipative layer is of the or-
der of linhR

−1/3 and since we assume that in the dissipa-
tive layer the nonlinear and dissipative terms are of the same
order (R ∼ ε−3/2), the new variable isτ = ε−1/2s, i.e.
r = τ ′

= rc + ε1/2τ .

The system of equations obtained in this way containε1/2,
so we use this quantity as an expansion parameter. To find
the expansion form for the variables in the dissipative layer,
we have to analyze the form of the outer expansions given by
Eqs. (18)–(19). Since the quantitiesv⊥, b⊥ andP are regular
in the vicinity of s = 0, their amplitudes in the dissipative
layer have to be the same as the amplitude outside this layer.
Therefore, the expansion of this quantity is

f = εf (1)
+ ε3/2f (2)

+ . . . . (23)

It is easy to verify that the amplitudes of the large variables
in the dissipative layer is of the order ofε1/2, so we can write
the expansion forv‖, b‖, p andρ in the form

g = ε1/2g(1)
+ εg(2)

+ . . . . (24)

The quantitiesu andbr have an ln|s| behaviour near to the
resonant positions = 0, so they are of the order ofε ln ε in
the dissipative layer, which means that we have to start the
expansions of these quantities with this term. It was shown
by Ruderman et al. (1997a) that expansions (23) and (24)
also contain terms proportional toε3/2 ln ε andε ln ε. How-
ever, according to the results found by Ballai et al. (1998a)
in the simplified version of the method of asymptotic expan-
sion we use the fact that ln|ε| � ε−κ for any positiveκ and
ε → +0, and we consider lnε to be of the order of one in the
dissipative layer. This enables us to write the expansion for
u andbr in the form of Eq. (23).

In the first order approximation we obtain a system of ho-
mogeneous linear equations for the variables with the super-
script ′1′. The quantities we need to express with the vari-
ables of the second order can be written with the aid ofP (1),
u(1) andv

(1)
‖

as

b
(1)
‖

= −
ωfB

ω2
A

v
(1)
‖

, b(1)
r = −

fB

ω
u(1), (25)

p(1)
=

B0ωρ0

fB

v
(1)
‖

, ρ(1)
=

B0ωρ0

c2
SfB

v
(1)
‖

. (26)

The radial component of the momentum equation connects
the derivative of the total pressure perturbation and the par-
allel component of the velocity

∂P (1)

∂τ
=

2B2
0ϕωρ0

B0fBrc
v

(1)
‖

, (27)

and the equation that relates the normal and parallel compo-
nent of velocity is

∂u(1)

∂τ
+

ω2

ω2
A

fB

B0

∂v
(1)
‖

∂θ
= 0, (28)

where the equilibrium quantities are evaluated at the resonant
point. We can see that forB0ϕ = 0 we recover the results for
the straight equilibrium magnetic field found by Ballai et al.
(2000). By combining the two last equations, we obtain a
conservation law similar to the linear theory, i.e.

dP (1)

dθ
+

2B2
0ϕ

ωµrc
u(1)

= C(1)(θ), (29)
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whereC(1)(θ) is the first term in a series expansion of the
coefficientC(θ), i.e. C(θ) ' εC(1)(θ). In the second or-
der approximation, we obtain a system which can be derived
from the left-hand sides of the corresponding equations of
the first order approximation by substituting variables with
superscripts′2′ for the corresponding variables with super-
scripts′1′. Since the set of first order approximation equa-
tions possess a non-trivial solution, the second order equa-
tions are compatible only if the first order terms satisfy a
compatibility condition. Eventually, we obtain a nonlinear
partial differential equation which describes the dynamics of
resonant slow MHD waves in the dissipative layer

1τ
∂v

(1)
‖

∂θ
−

ω3B0
[
(γ + 1)v2

A + 3c2
S

]
fBc2

S(c2
S + v2

A)
v

(1)
‖

∂v
(1)
‖

∂θ
+

+ω

(
ν +

ω2
T

ω2
A

η

)
∂2v

(1)
‖

∂τ2
=

ω3B0

ρ0v
2
AfB

C(1)(θ) , (30)

where

1 = −
dω2

T

ds
(s = 0).

Similar to theB0ϕ = 0 case investigated by Ballai et al.
(2000), the driving term is the quantity which does not
change across the dissipative layer. Equation (30) is the non-
linear governing equation for the parallel velocity in the dis-
sipative layer for slow resonant waves. The second term in
the left-hand side is the nonlinear term and the third term
is the dissipative term. The term in the right-hand side of
Eq. (30) is determined by the solution outside the dissipative
layer and its form can be prescribed.

The resonant surfaces = 0 can be considered as a surface
of discontinuity when solving the system of equations that
govern the plasma motion outside the dissipative layer, i.e.
we have to calculate the jumps in the physical parameters.
The solution of Eq. (30) has to vanish at infinity and has to
satisfy the condition that its mean value over a period with
respect toθ is zero.

The jump of a functionf (r) across the dissipative layer is
defined by

[f ] = lim
s→+0

{f (s) − f (−s)}. (31)

Let us introduce new dimensionless variables

σ = δ−1
c ε1/2τ, q = ε1/2ωδc

v2
Ac

v
(1)
‖

, (32)

whereδc measures the thickness of the dissipative layer in
isotropic plasmas and is defined by the condition that the
first and the third terms in the left-hand side of the governing
Eq. (30) are of the same order. Its form is given by

δc =

[
ω

|1|

(
ν̄ +

ω2
T c

ω2
Ac

η̄

)]1/3

. (33)

Let r0 be the characteristic width of the overlap regions to
the left and right of the dissipative layer, where both the lin-
ear ideal and the nonlinear and dissipative MHD equations

with coefficients approximated by the first non-zero terms of
the Taylor expansions are valid. The main property of the
variableσ introduced in Eq. (32) is thatσ = O(1) in the dis-
sipative layer, while|r| → r0 corresponds to|σ | → ∞. In
agreement to the matching procedure, the inner and the outer
solutions have to be identical in the overlapping regions. This
condition provides us with another definition of the jump in
the functionf (r) across the dissipative layer

[f ] = lim
σ→∞

{f (σ) − f (−σ)}. (34)

In the new variables, the governing equation becomes

σ
∂q

∂θ
+ 3q

∂q

∂θ
−

∂2q

∂σ 2
= −

ω4B0

v4
AfBρ0|1|

C(θ), (35)

where3 can be expressed by the equilibrium quantities at
the resonant position. Here, the approximationsu ≈ εu(1)

C(θ) ≈ εC(θ)(1) are used outside the dissipative layer.
In order to derive the two connection formulae, we intro-

duce the new variables in the relations (27) and (28) and us-
ing Eq. (34) we finally obtain

[P ] =
2B2

0ϕB0

µrcfB

P
∫

∞

−∞

q dσ, (36)

and

[u] = −
ωfBv2

A

ω2
AB0

P
∫

∞

−∞

∂q

∂θ
dσ, (37)

where we used the symbol of Cauchy principal partP since
the integrals are divergent at infinity. We can see that for a
magnetic field with straight lines (B0ϕ = 0), the jump in the
total pressure becomes zero, i.e. this quantity is conserved
across the singularity. These two equations are thenonlinear
analogof the connection formulae for the radial component
of the velocity and total pressure perturbation obtained in lin-
ear theory by Sakurai et al. (1991). However, in contrast to
the linear theory where the jump conditions were given as a
function of equilibrium quantities and the perturbation of the
total pressure, the nonlinear connection formulae are given
in terms of an integral of an unknown function,q. There-
fore, we have to solve simultaneously the system (11)–(12)
describing the wave motionoutsidethe dissipative layer and
Eq. (35), which describe the wave dynamicsinsidethe dissi-
pative layer, with Eqs. (36)–(37) providing boundary condi-
tions for the problem.

5 Generation of mean flow

One of the most interesting effects of nonlinearity in the dis-
sipative layer is the generation of a mean flowoutsidethe
dissipative layer due to absorption of wave momentum. For
the sake of simplicity, we consider this problem in the un-
twisted case, i.e.B0ϕ = 0.

In linear theory all perturbed quantities are harmonic func-
tions of θ and their mean values over a period vanishes. In
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nonlinear theory, however, the mean value of perturbations
can have a non-zero value due to the interaction of the differ-
ent harmonics. This interaction generates a mean flow out-
side the dissipative layer. The mean value of a quantityf (θ)

over a periodL is defined by

〈f 〉 =
1

L

∫ L

0
f (θ)dθ. (38)

Let us divide theϕ- andz-components of velocity into mean
and oscillatory parts, as follows:

v = Uϕ + ṽ, w = Uz + w̃, 〈v〉 = Uϕ, 〈w〉 = Uz, (39)

where quantities with a tilde denote the oscillatory part of the
velocities. The quantitiesUϕ andUz, respectively, describe
the mean flow components.

This flow is in the plane parallel to the dissipative layer,
parallel and perpendicular to the magnetic field lines. Its am-
plitude is determined by the balance between the forces cre-
ated by resonant absorption and shear viscosity. After long
and cumbersome calculations (for details see, e.g. Ruderman
et al., 1997a; Ballai et al., 2000) we see that the components
of the generated flow are continuous functions ofr, but their
vorticity have a jump across the dissipative layer given by

[Vϕ] =

[
dU⊥

ds

]
= −
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rcω
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P −1
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×
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〉

ds , (40)

[V‖] =

[
dUz

ds

]
= −

ω

kv2
A

(1 + P −1
m )

∫
∞

−∞

〈(
∂ṽ

∂s

)2
〉

ds, (41)

wherePm = ν/η is the magnetic Prandtl number. Keeping
in mind solar applications, the value of this flow may reach
about a fewkm/s. The existence of this mean flow was pre-
dicted numerically by Ofman and Davila (1995). This tur-
bulent flow might be subject to Kelvin-Helmholtz instability
which could destroy the dissipative layer, and the process of
resonant absorption ceases to exist. At the same time, the
turbulent flow outside the dissipative layer may enhance lo-
cally the dissipative coefficients which could lead to a better
energy transfer.

6 Conclusions

The aim of the present paper is to study the nonlinear be-
haviour of resonant slow MHD waves intwistedmagnetic
flux tubes analytically. The applied scaling method divides
the domain into two regions, where the wave behaviour and
dynamics are governed by different sets of equations.

In the outer domain, i.e. outside the dissipative layer, the
wave motion is described by the ideal linear MHD equations
which can be reduced to a pair of coupled first order PDE’s
derived for the radial component of the velocity and the total
pressure perturbation.

In the inner domain, i.e. in the dissipative layer, the wave
dynamics is governed by an inhomogeneous nonlinear PDE
derived for the parallel component of the velocity, where the
inhomogeneous part originates from the driving term. Since
the dissipative layer embracing the resonant surface is very
narrow, it can be considered as a surface of discontinuity
when solving the governing PDE’s outside the dissipative
layer. The connection formulae obtained for the total pres-
sure perturbation and the radial component of the velocity
provides the jumps in these quantities across the dissipative
layer, therefore providing boundary conditions at the reso-
nant surface of discontinuity. In contrast to the case with a
straight equilibrium magnetic field, the Eulerian perturbation
of the total pressure is no longer a conserved quantity. In-
stead, we found that the conserved quantity is a combination
of the total pressure and the radial component of the velocity,
as it was found in linear theory.

The nonlinear interaction between harmonics generates a
mean flow outside the dissipative layer. Analytical expres-
sions are found for the mean flow which are piecewise linear
continuous functions of the radial coordinate,r. However,
the vorticity of these shear flows exhibits a jump across the
dissipative layer. For a strong flow, this process can be sub-
ject to Kelvin-Helmholtz instability which could destroy the
dissipative layer.
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