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Abstract. The coupled interaction of long standing hydro-
dynamic waves with a deformable non-Newtonian seabed
is examined using a two-layer model for which the up-
per layer fluid is inviscid and the lower layer is bi-viscous.
The two-dimensional response of the system to forcing by a
predominantly longitudinal (cross-shore) standing wave per-
turbed by a small transverse (along-shore) component is de-
termined. With a constant yield stress in the bi-viscous lower
layer, there is little amplification of these transverse per-
turbations and the model response typically remains quasi-
one-dimensional. However, for a bi-viscous layer with a
pressure-dependent yield stress (which represents the ef-
fect that the seabed deforms less readily under compression
and hence renders the rheology history dependent), the ini-
tially small transverse motions are amplified in some param-
eter regimes and two-dimensional, permanent bedforms are
formed in the lower layer. This simple dynamical model is,
therefore, able to explain the formation of permanent bed-
forms with significant cross- and along-shore features by pre-
dominantly cross- shore standing wave forcing.

1 Introduction

The interaction of ocean waves and beaches forms a highly
complex system and observations reveal that pattern forma-
tion occurs in the nearshore. These regular morphological
features have spatial scales that range from centimeters for
sand ripples, to kilometers for sand bars, and often maintain
their structure for time scales significantly longer than the
ocean forcing (Plant et al., 1999). While a variety of mod-
eling efforts have been carried out to gain insight into the
interaction of waves and beaches, no consensus has yet been
reached about how best to model the formation of nearshore
morphology or the impact that the seabed morphology has
on nearshore sediment transport (Thornton et al., 1998).
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Many models of pattern formation in the nearshore couple
the dynamics for the overlying fluid motion to a continuity
equation for the sediment by using a prescribed sediment flux
law. For example, Blondeaux (1990) (see also Vittori and
Blondeaux, 1990, 1992) examined the generation of small-
scale sand ripples by sea waves by coupling the flow in the
viscous oscillatory boundary layer to the continuity equation
for the sediment using an empirically determined sediment
flux relationship. Stability boundaries for various sand ripple
patterns that are in reasonable agreement with observations
were obtained; however, these results rely on the parameter-
ization of the sediment flux that is not well understood.

The approach of coupling the dynamics of the fluid mo-
tion to the seabed using a sediment transport formula also
has been applied in models of the formation of large-scale
seabed morphology. This approach is the basis for many
cross-shore sediment transport models (Roelvink and Bro-
ker, 1993) and also has been used in theoretical models of the
formation of longshore sand bars (Carter et al., 1973; Boczar-
Karakiewicz, et al., 1995) and more complex morphologies
(Holman and Bowen, 1982). In addition, a variety of new
modeling efforts have been developed to explain pattern for-
mation in the nearshore. These studies also are based upon
hydrodynamics coupled to sediment transport formulas, but
in contrast to the aforementioned studies, use a linear stabil-
ity analysis to determine instabilities in the coupled wave-
seabed system. For example, Falques et al. (1996) consid-
ered the stability of a longshore current over a plane erodible
bed and found instabilities that correspond to the formation
of longshore periodic beach topographies. Deigaard et al.
(1999) considered the stability of waves and a longshore cur-
rent over a barred erodible bed and found instabilities that
correspond to rip channels. In an earlier study, a rule-based
model that uses a kinematical description of the swash flow
and a prescribed sediment flux law was developed to describe
the formation of beach cusps (Werner and Fink, 1993).

Here, we follow the suggestion by Holman (1995) that
a promising way to gain new insights into the evolution
of nearshore morphology is to consider simplified models
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that capture the essential nonlinear dynamics of the coupled
ocean-seabed system. We recently have demonstrated that a
simple nonlinear dynamical model of the coupled interaction
of waves with a deformable seabed can describe the forma-
tion of small wavelength bedforms that maintain their struc-
ture over many periods of forcing (Becker and Bercovici,
2000). Our model is based upon the hypothesis that sand
may be modeled as a continuum with a non-Newtonian rhe-
ology. With a non-Newtonian rheology, it is possible to ap-
proximate important features of sand motion such as critical
bed shear stress (i.e. the sand bed will deform given a suffi-
ciently large stress, but will retain a solid structure otherwise)
and history-dependent loading (i.e. sand is more difficult to
move under loading than unloading). We remark that non-
Newtonian rheologies have been used previously to model
mud flows and muddy seabeds (Liu and Mei, 1989, 1993a,
b; Ng and Mei, 1994).

The interaction of waves with a non-Newtonian seabed
first was examined by Liu and Mei (1993a, b) who consid-
ered a two-layer model in the long-wave limit for which the
upper layer was inviscid and the lower layer was a Bing-
ham plastic. They showed that transient waves generated by
an initial free-surface displacement leave behind permanent
“foot-prints” in the Bingham plastic layer. In the aforemen-
tioned study of Becker and Bercovici (2000), the two-layer
model of Liu and Mei (1993a, b) was revisited to determine
whether or not persistent forcing by standing waves would
generate permanent features in the non-Newtonian seabed
modeled as a bi-viscous fluid (the Bingham rheology is a
limiting form of the bi-viscous rheology) and how the spa-
tial scale of the lower layer pattern was related to that of the
standing wave forcing. By forcing the two-layer system with
an external surface pressure, Becker and Bercovici (2000)
showed that the nonlinear rheology transferred energy from
the forced wave motion to odd spatial harmonics in the lower
layer, as is consistent with the symmetry of the bi-viscous
rheology (i.e. since the stress is an odd function of the strain
rate). These lower layer features, however, oscillated with
the forcing frequency; hence, permanent bedforms did not
form under persistent standing wave forcing for a constant
yield stress bi-viscous lower layer. By considering a more re-
alistic (although still highly idealized rheology) for the lower
layer that accounted for the observation that sand deforms
less readily under compression, Becker and Bercovici (2000)
showed that energy may be transferred to evenandodd har-
monics of the forcing and that permanent bedforms with spa-
tial scales half that of the forcing were formed in the lower
layer. We remark that in Liu and Mei (1993a, b), the per-
manent footprint in the Bingham plastic lower layer remains
after the passing of the transient water wave. In the present
study, the permanent bedforms in the bi-viscous lower layer
are interfacial patterns with a non-zero time average over a
period of the oscillatory forcing.

The studies of Liu and Mei (1993a, b) and Becker and
Bercovici (2000) were developed in an effort to under-
stand the cross-shore dependence of the interaction of sea-
waves with the non-Newtonian seabed and hence were one-

dimensional. Observations reveal, however, that bedforms
with significant cross-and along-shore dependence may
form (e.g. Vittori and Blondeaux, 1992; Holman and Bowan,
1982). Here, we examine the two-dimensional model dy-
namics to determine under what conditions predominately
cross-shore (longitudinal) forcing may generate bedforms
with significant along-shore (transverse) structure. As in
Becker and Bercovici (2000), we excite standing waves by
forcing the system with a harmonic external surface pressure
of magnitudeA, but here allow for small transverse pressure
perturbations of magnitudeA′, whereA′

� A:

P0 = A cos(kx) sin(ωt) + A′ cos(ly) sin(σ t) (1)

and (k, ω) and (l, σ ) are the wave number and frequency
pairs of the longitudinal pressure forcing and transverse per-
turbation, respectively. In the limit of a constant yield stress
bi-viscous lower layer, the transverse pressure perturbations
typically remainO(A′) and as a result, the spatial pattern
formed in the lower layer is quasi-one-dimensional (with one
notable exception, see Sect. 3). In addition, in all cases ex-
amined for the constant yield stress bi-viscous lower layer,
these interfacial patterns oscillate with the forcing frequency
and hence are not permanent. In contrast, for a bi-viscous
lower layer with a pressure-dependent yield stress, the trans-
verse perturbations are amplified for a range of forcing pa-
rameters. Moreover, the two-dimensional spatial patterns in
the interface displacement that are excited have a significant
non-zero time average and result in the formation of perma-
nent bedforms with significant along-shore structure.

2 Dynamics

We consider here two superposed shallow homogeneous lay-
ers of fluid (Fig. 1) with equilibrium layer depthsH1 andH2,
free-surface displacementζ1(x, t) and interface displacement
ζ2(x, t), wherex = (x, y). Both the upper and lower layer
fluids are incompressible with constant densitiesρj (j =

1, 2), and the upper layer fluid is inviscid, while the lower
layer fluid is bi-viscous.

The long-wave momentum equations for this two-layer
system in the absence of inertia are

∂u1

∂t
= −g∇ζ1 −

1

ρ1
∇P0 (2)

∂ū2

∂t
= −g∇

(
ζ2 +

ρ1

ρ2
[ζ1 − ζ2]

)
−

1

ρ2
∇P0 −

τ b

ρ2H2
(3)

and the linearized continuity equations are

∂(ζ1 − ζ2)

∂t
+ H1∇ · u1 = 0 (4)

∂ζ2

∂t
+ H2∇ · ū2 = 0, (5)

whereu1 is the horizontal fluid velocity in the inviscid upper
layer, ū2 is the depth-averaged horizontal fluid velocity in
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Fig. 1. The two-layer model. The upper layer fluid is inviscid and
incompressible, and is confined toζ2 − H1 < z < ζ1. The lower
layer fluid is bi-viscous (see Eq. 6) and incompressible, and is con-
fined to−(H1 + H2) < z < ζ2 − H1.

the lower layer,∇ = (∂x, ∂y) is the horizontal gradient oper-
ator,g is gravitational acceleration,τ b = (τxz, τyz)|z=−H is
the bottom stress andP0(x, t) is the applied surface pressure
given in Eq. (1). A derivation of the one-dimensional ver-
sions of Eqs. (2)–(5) may be found in Becker and Bercovici
(2001).

The dependence of the stress on the strain rate warrants
some motivation which is provided below. We emphasize,
however, that this lower layer rheology is highly idealized
and is not meant to represent a unique continuum model of
sand and sediment motion.

2.1 The lower layer rheology

We first consider a bi-viscous rheology for the lower layer
because it is perhaps the simplest model of the two flow
states of a sediment laden seabed; the seabed resists mo-
tion for small applied stresses, but flows readily for stresses
above a critical value. For a bi-viscous lower layer, the
stressτ = (τxz, τyz) is related to the long-wave strain rate
ε̇ = (ε̇xz, ε̇yz) =

∂u2
∂z

(u2 is thez-dependent lower layer ve-
locity) according to

1

µ
τ = ε̇, τ̂ ≤ τ0p (6)

1

µ′
τ = τ0p(

1

µ′
−

1

µ
)
ε̇

ˆ̇ε
+ ε̇, τ̂ > τ0p .

In Eq. (6), τ0p, µ and µ′ are the yield stress and dy-
namic viscosities respectively,̂τ = (τ2

xz + τ2
yz)

1/2 and
ˆ̇ε = (ε̇2

xz + ε̇2
yz)

1/2. Equation (6) describes a bi-viscous rhe-
ology with a yield stress,τ0p, that may depend upon space
and time. The Newtonian rheology may be recovered from
Eq. (6) in the limit asµ′

→ µ (or equivalentlyτ0p → ∞),
while the Bingham rheology may be recovered from Eq. (6)
for a constant yield stress in the limit asµ becomes infinite.

The lower layer rheology, Eq. (6), relates the stress to the
strain rate for all values of the vertical coordinate. Since only
the bottom stressτ b occurs in the depth-averaged lower layer
momentum balance, Eq. (3), we approximate the strain rate
at z = −H in terms of the average lower layer velocity ac-
cording to

ε̇b ≡
∂u2

∂z
|z=−H ≈

ū2

H2
. (7)

We remark that the approximation Eq. (7) differs by anO(1)

factor from the bottom strain rate obtained for a Newtonian
lower layer in the limit of creeping flow.

The dynamics of Eqs. (1)–(7) govern the evolution of the
free-surface and interface displacements, and the upper and
lower layer horizontal fluid velocities. To close this set of
equations, we specify next the yield stressτ0p.

In what follows, we examine two rheologies for the lower
layer. In the first and simplest case, the yield stress is a con-
stantτ0 (τ0p = τ0) and Eq. (6) reduces to the bi-viscous
rheology considered by Liu and Mei (1993b). In this case,
whenµ � µ′, the lower layer dynamic balance for small
applied stresses withτb ≤ τ0 is creeping flow, while for
larger applied stresses withτb > τ0, the dynamics are those
of weakly-damped internal waves (Becker and Bercovici,
2001). We emphasize, however, that the bottom stress is a
function of space and time; hence, at a particular time, the
viscosity of the lower layer fluid may vary in space depend-
ing upon the local value of the bottom stress.

The second rheology considered here models the observa-
tion that a seabed yields less readily under compression than
extension. As a result, we allow the yield stress,τ0p, to be
a simple linear function of the dynamic bottom pressure ac-
cording to:

τ0p = τ0(1 + Cpb(x, t)), 0 ≤ C < Cmax (8)

pb = ρ2gζ2 + ρ1g(ζ1 − ζ2) + P0 .

WhenC = 0, we recover the constant yield stress bi-viscous
rheology described above. For 0< C < Cmax , Eq. (8) rep-
resents a Coulomb-type friction, so that the yield stress de-
pends upon the normal stress. In regions where the normal
stress (bottom pressure) is positive/negative, the yield stress
is elevated/depressed. Hence, this pressure-dependent yield
stress represents a packing condition: for a positive normal
stress, the bed resists motion for a larger range of stresses,
since the yield stress is elevated (representing the relative
difficulty of setting compacted grains in motion), while for
a negative normal stress, the bed is more easily eroded be-
cause the yield stress is depressed (representing the relative
ease of setting loosely packed grains in motion). In Eq. (8),
C is a constant that varies from 0 for a constant yield stress
lower layer to an empirically determined maximum value
Cmax chosen so thatτ0p undergoes significant variations, but
remains positive. Similar results to those reported in Sect. 3
also have been obtained with a yield stress that is an expo-
nential function of the bottom pressure given by

τ0p = τ0e
Cpb(x,t) (9)
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so thatτ0p is positive for all values ofC; obviously, Eq. (8)
is the first two terms in a Taylor expansion of Eq. (9). Fi-
nally, we remark that we have neglected fluid inertia in
Eqs. (2)–(3) and linearized the continuity Eqs. (4)–(5) to iso-
late the effects of nonlinearity due to the lower layer rheol-
ogy Eqs. (6)–(8); hence, the model dynamics are valid in the
small-amplitude limit.

2.2 Non-dimensional dynamics

We non-dimensionalize Eqs. (1)–(8) according to

(x, t) = L(x∗, c−1t∗)

(uj , ζj ) =
AkL

ρ1c2
(cuj

∗, Hζ ∗

j ) (j = 1, 2)

and

P0 = A50, (τ , τ0p) = AkH
ρ2

ρ1
(ϒ, ϒ0p),

where the∗ superscript indicates dimensionless quantities,
50, ϒ, and ϒ0p are the dimensionless applied pressure,
stress, and yield stress respectively,L is a representative hor-
izontal lengthscale andc = (gH)1/2.

As mentioned in the Introduction, we excite waves in the
system with the (dimensionless) applied surface pressure

50 = cos(κx∗) sin(�t∗) + α cos(λy∗) sin(6t∗), (10)

where α =
A′

A
� 1 is the ratio of the magnitude

of the pressure perturbation to the pressure forcing, and
(κ, λ) = L(k, l) are the nondimensional wave numbers and
(�, 6) =

L
c
(ω, σ ) are the nondimensional frequencies of

the pressure forcing and perturbation, respectively. We force
standing waves by choosingκ = mπ and consider trans-
verse standing wave perturbations withλ = nπ for a variety
of (n, m) wheren andm are integers.

In dimensionless form, the governing equations become

∂u∗

1

∂t∗
= −∇

∗ζ ∗

1 + sin(mπx∗) sin(�t∗)î

+α sin(nπy∗) sin(6t∗)ĵ (11)

∂ū∗

2

∂t∗
= −∇

∗
[ζ ∗

2 + s(ζ ∗

1 − ζ ∗

2 )] −
ϒb

H ∗

2

+s sin(mπx∗) sin(�t∗)î

+αs sin(nπy∗) sin(6t∗)ĵ (12)

∂(ζ ∗

1 − ζ ∗

2 )

∂t∗
+ H ∗

1 ∇
∗

· u∗

1 = 0 (13)

∂ζ ∗

2

∂t∗
+ H ∗

2 ∇
∗

· ū∗

2 = 0, (14)

where(î, ĵ) are unit vectors in the(x, y) directions,s =
ρ1
ρ2

is

the density ratio,(0, 0′) =
L

ρ2cH
2 (µ, µ′) are the nondimen-

sional viscosity parameters and(H ∗

1 , H ∗

2 ) = H−1(H1, H2)

are the nondimensional layer depths. The nondimensional
bottom stressϒb = ϒ|z∗=−H ∗ is given by

1

0
ϒb =

ū∗

2

H ∗

2
, ϒ̂b ≤ ϒ0p

1

0′
ϒb =

ϒ0p

ˆ̇ε
∗

b

(
1

0′
−

1

0
)

ū∗

2

H ∗

2
+

ū∗

2

H ∗

2
, ϒ̂b > ϒ0p, (15)

where (ϒ̂b, ˆ̇ε
∗

b) are the magnitudes of the nondimensional
bottom stress and strain rate, and

ϒ0p(x∗, t∗) = ϒ0(1 + Cp∗

b(x
∗, t∗)), 0 ≤ C < Cmax

p∗

b(x
∗, t∗) = s(50 + ζ ∗

1 − ζ ∗

2 ) + ζ ∗

2 (16)

is the pressure-dependent yield stress, whereC = 0 for a
constant yield stress lower layer (ϒ0p = ϒ0), andC 6= 0 for
a lower layer with a Coulomb-type friction.

3 Numerical solutions

We solve Eqs. (11)–(16) numerically using a finite-difference
method on a domain given by 0< x < 2, 0 < y < 2
subject to the condition of no normal flow at the bound-
aries. We time-step the dependent variables using a centered-
difference scheme supplemented with a forward time-step
every 10 steps in order to to supress the computational mode.
The time-step is chosen so that the CFL condition is satis-
fied. The number of grid points in space required to obtain a
converged solution is dictated by resolving the highest wave
number excited and hence depends upon the forcing wave
numbers and frequencies in Eq. (10) (see below). We have
benchmarked this code against the pseudo-spectral method
of Becker and Bercovici (2000) and the analytic solution for
a Newtonian lower layer derived in Becker and Bercovici
(2001). We time-step the dynamics starting from rest until
an oscillatory steady state is reached. As discussed in Becker
and Bercovici (2001), this oscillatory steady-state solution is
a forced solution of Eqs. (11)–(16) as the transient free waves
of the system are damped. This is why the transverse pertur-
bation is imposed as an applied surface pressure rather than
as an initial condition.

The dynamics of Eqs. (11)–(16) depend on properties
of the fluid model. These parameters include the nondi-
mensional layer depth and density ratios:(H ∗

1 , s) and
the nondimensional viscosities and yield stress parame-
ters: (0, 0′, ϒ0, C). As in Becker and Bercovici (2000),
we choose the density ratio and upper layer depth as
(s, H ∗

1 ) = ( 1
1.1, 1

3), the viscosities and yield stress as
(0, 0′, ϒ0) = (50, 1, 1.5) and consider both the pressure-
dependent yield stress (C 6= 0) and constant yield stress
(C = 0) bi-viscous rheologies. In the numerical solutions
that follow, we choose an empirically determined value forC
so that the yield stressϒ0p undergoes significant variations,
but remains positive.

We solve Eqs. (11)–(16) for the forcing parameters:

κ = mπ, � =

√
H ∗

1 κ =
mπ
√

3
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Fig. 2. Purely longitudinal surface pressure forcing. The free-
surface (upper panels) and interface displacement (lower pan-
els) at two representative times that satisfy Eqs. (11)–(16) with
(s, H∗

1 , 0, 0′, ϒ0) =( 1
1.1, 1

3, 50, 1, 1.5), (κ, �)=(2π, 2π√
3
), α=0 and

a constant yield stress,C = 0 in Eq. (16).

for m = 1, 2, 3 so that long-standing waves of wave number
m are excited in the upper layer. For reference, we present
in Figs. 2 and 3 snapshots at two times over a period of the
forcing of the free-surface (upper panels) and interface dis-
placement (lower panels) for zero applied transverse pressure
perturbation (α = 0) for m = 2.

We remark that in the runs presented here form = 2, we
use a spatial resolution of 129× 129 grid points which was
sufficient to obtain accurate, converged solutions. Forα =

0, the solutions of Eqs. (11)–(16) remain one-dimensional
and the dynamics reduce to those examined in Becker and
Bercovici (2000). As mentioned above, the only nonlinearity
in the dynamics of Eqs. (11)–(16) is in the rheology, and for
a constant yield stress (C = 0) the stress is an odd function of
the strain rate for one-dimensional motions. The symmetry
of the nonlinear rheology restricts the transfer of energy from
the forced wave motion to odd harmonics of the forcing. Fig-
ure 2 shows the model response for a bi-viscous lower layer
with a constant yield stress (C = 0) that demonstrates (as in
Becker and Bercovici, 2000) that the nonlinear lower layer
rheology results in the transfer of energy from the directly
forced wave to odd spatial harmonics of this forcing. This
lower layer spatial pattern oscillates in time with the forc-
ing frequency and hence, is not permanent. For a pressure-
dependent yield stress, however, the odd symmetry of the
stress-strain rate relationship is broken and energy may be
transferred to even and odd harmonics of the forcing. As a
result, for a pressure-dependent yield stress (C 6= 0), a spatial
pattern in the interface displacement with a significant non-
zero time average is generated that has half the wavelength
of the forcing (Fig. 3).

We next perturb the dynamics of Eqs. (11)–(16) with the
small transverse external surface pressure with wave number
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Fig. 3. Same as Fig. 2, but with the pressure-dependent yield stress,
C = 1.2 in Eq. (16).

and frequency:

λ = nπ, 6 =

√
H ∗

1 λ =
nπ
√

3

for 1 ≤ n ≤ 6, (m = 2, 3) and 1 ≤ n ≤ 4, (m = 1).
We fix the nondimensional amplitude of these perturbations
α = 0.1, although other values ofα were explored. For two-
dimensional motions, the rheology described by Eqs. (15)–
(16) for a constant yield stress (C = 0) does provide a
pathway for energy to be transferred between longitudinal
and transverse motions through the magnitude of the bottom
strain-rateˆ̇ε

∗

b. We find, however, that for a constant yield
stress bi-viscous lower layer, the model response remains
quasi-one-dimensional and resembles the one-dimensional
solutions presented in Fig. 2 forα = 0 in all cases examined,
except whenn

m
= 2. Figures 4 and 5 are analogous to Figs. 2

and 3 and present the free-surface elevation and interface
displacement that satisfy Eqs. (9)–(14) form = 2, but for
the applied transverse pressure perturbation(α, n)=(0.1, 2).
Comparing Figs. 2 and 4 shows that the transverse pressure
perturbation produces only a small forced transverse modu-
lation for the constant yield stress, bi-viscous lower layer and
the model results remain quasi-one-dimensional.

For a pressure-dependent yield stress, however, the lower
layer response differs dramatically from that obtained for a
constant yield stress rheology in some parameter regimes.
Specifically, for the numerical experiments conducted when
n
m

=
1
3, 1

2, 2
3, 1, 2, the lower layer response is strongly two-

dimensional with its transverse wavelength always greater
than or equal to its longitudinal wavelength. Figure 5
presents the free-surface and interface displacement that sat-
isfy Eqs. (11)–(16) withn = m = 2 but withC = 1.2. Com-
paring Fig. 4 with Fig. 5 shows that the pressure-dependent
yield stress has resulted in the significant amplification of the
transverse pressure perturbation. This significant amplifica-
tion of transverse motions is due to the additional nonlinear
coupling between longitudinal and transverse motions in the
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Fig. 4. Effects of a transverse pressure perturbation withC = ′ in
Eq. (16). Same as Fig. 2, but with the transverse pressure perturba-
tion (α, λ,6) = (0.1, 2π, 2π√

3
).

rheological model Eqs. (15)–(16) provided by the pressure-
dependent yield stress.

As mentioned above, then
m

= 2 solution produces an
amplified transverse component for the constant yield stress
lower layer. We remark, however, that the amplitude of
this transverse component is less than that obtained for the
pressure-dependent yield stress. Moreover, for the constant
yield stress, the lower layer spatial pattern oscillates with
the forcing frequency while for the pressure-dependent yield
stress, the lower layer spatial pattern has a significant non-
zero time average.

4 Discussion

We have considered here the two-dimensional response of a
two-layer model of the interaction of long standing waves
with a deformable seabed modeled as a bi-viscous fluid. We
have shown previously (Becker and Bercovici, 2000) in one
dimension that permanent bedforms (i.e. interfacial spatial
patterns with a significant non-zero time average over a pe-
riod of the forcing) do not form on a bi-viscous lower layer
with a constant yield stress, but do form on a bi-viscous lower
layer with a pressure-dependent yield stress that models the
effect that the lower layer (sand bed) is more difficult to move
under increased compression. Here, we have sought to deter-
mine under what conditions predominantly longitudinal forc-
ing will generate permanent bedforms with significant trans-
verse and longitudinal spatial structures.

Insight into the two-dimensional results presented here
may be gained by revisiting the one-dimensional model re-
sults. For a bi-viscous lower layer with a constant yield
stress, the only nonlinearity in the one-dimensional versions
of Eqs. (11)–(16) is in the rheology Eqs. (15)–(16) and the
odd symmetry of this nonlinearity results in odd spatial har-
monics of the forcing being excited in the lower layer. More-
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Fig. 5. Effects of a transverse pressure perturbation withC = ∞.∈
in Eq. (16). Same as Fig. 3, but with the transverse pressure pertur-
bation(α, λ, 6) = (0.1, 2π, 2π√

3
).

over, these odd spatial harmonics all oscillate with the forc-
ing frequency. Hence, the lower layer pattern is directly
forced in time (i.e. the frequency of the lower layer response
is the same as the forcing frequency), but a nonlinear cascade
of energy to smaller scales occurs in space (Fig. 2).

For the pressure-dependent yield stress, the odd symmetry
of the nonlinear rheology in the one-dimensional dynamics is
broken. As a result, energy is transferred to even and odd spa-
tial harmonics of the forcing. While the odd spatial harmon-
ics excited in the lower layer still oscillate with the forcing
frequency, the even spatial harmonics of the free surface and
interface displacements have a significant time-independent
component (Fig. 3). Hence, the history-dependent rheol-
ogy has resulted in a nonlinear cascade of energy in space
and time; with the constant yield stress bi-viscous rheology,
significant nonlinear interactions in the lower layer only oc-
curred in space.

In two dimensions, the nonlinear rheology for a constant
yield stress remains an odd function of the strain rate in both
the longitudinal and transverse directions, and in all cases
examined, we find that the interfacial pattern excited oscil-
lates with the forcing frequency (e.g. Fig. 4). The spatial
structure of this oscillating pattern typically remains one-
dimensional (longitudinal), except in the special case when
the transverse pressure perturbation has twice the wavelength
and frequency of the longitudinal pressure forcing. In this
special case, significant coupling between the longitudinal
and transverse motions occurs through the magnitude of the
bottom strain-ratė̂ε

∗

b. So while spatial coupling between lon-
gitudinal and transverse motions may occur in two dimen-
sions througĥ̇ε

∗

b, the interfacial pattern still is directly forced
in time for a constant yield stress and hence, is not perma-
nent.

For a pressure-dependent yield stress, however, we find
small initial transverse perturbations are amplified over a
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larger range of perturbation parameters than for a constant
yield stress. Moreover, these two-dimensional patterns have
a significant non-zero time average (e.g. Fig. 5). Specifi-
cally, we find that when the forcing wave number and fre-
quency is greater than or equal to the perturbation wave num-
ber and frequency, or in the special case when the perturba-
tion wave number and frequency is twice the forcing wave
number and frequency, transverse bedforms are excited with
transverse wavelengths greater than or equal to their longi-
tudinal wavelengths. That significant coupling between lon-
gitudinal and transverse motions occurs in a larger parame-
ter regime for the pressure-dependent yield stress than the
constant yield stress bi-viscous rheology is not surprising
since the pressure-dependent yield stress breaks the symme-
try of this rheology. With a constant yield-stress, the only
coupling between longitudinal and transverse motions oc-
curs through the strain-rate invariant, while for the pressure-
dependent yield stress, additional coupling between longi-
tudinal and transverse motions is provided by the history-
dependent rheology. Moreover, as in the one-dimensional
case, this history-dependent rheology has resulted in nonlin-
ear temporal interactions leading to the formation of perma-
nent bedforms.

While the present model is highly idealized, it is worth-
while to assess the length scales of the bedforms gener-
ated by representative wave conditions. For example, a
10-s wave in 10 m of water has a wavelength of approx-
imately 100 m. The longitudinal (cross-shore) wavelength
of the one-dimensional interfacial pattern shown in Fig. 4
for a bi-viscous, constant yield stress lower layer is approx-
imately 50 m, while the interfacial pattern for the bi-viscous
lower layer with a pressure-dependent yield stress shown in
Fig. 5 has a longitudional (cross-shore) wavelength of ap-
proximately 50 m and a transverse (along-shore) wavelength
of approximately 100 m. For a unit amplitude wave (crest-
to-trough), Fig. 6 shows the crest-to-trough height,|ζ av

2 | of
the time-average of the lower layer interfacial pattern

ζ av
2 =

�

2π

∫ t+ 2π
�

t

ζ2(x, y, t)dt, (17)

where|ζ av
2 | is the difference between the maximum and min-

imum values ofζ av
2 , as a function ofC, the coefficient of

the pressure-dependent yield stress in Eq. (16) for the con-
trolling parameters(s, H ∗

1 , 0, 0′, ϒ0) = ( 1
1.1, 1

3, 50, 1, 1.5),
the forcing parameters(κ, �) = (2π, 2π

√
3
) and perturbation

parameters(α, λ, 6) = (0.1, 2π, 2π
√

3
). For C=0, the time-

average of the interface displacement is zero (see also Fig. 4).
As C is increased, the two-dimensional interfacial pattern of
Fig. 5 (lower panels) develops with a time-averaged crest-to-
trough amplitude|ζ av

2 | that increases with increasingC. We
emphasize that while both the predicted amplitudes of the
bedforms and their transverse wavelength depend upon the
controlling and forcing parameters, for all cases examined
the longitudinal wavelength of the interfacial pattern is half
that of the forcing.
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Fig. 6. Dependence of the time-averaged interface displace-
ment |ζ av

2 | as a function ofC, the parameter controlling the
pressure dependence of the yield stress in Eq. (16) for a free-
surface displacement of unit amplitude and(s,H∗

1 , 0, 0′, ϒ0) =

( 1
1.1, 1

3, 50, 1, 1.5), the forcing parameters(κ,�) = (2π, 2π√
3
) and

perturbation parameters(α, λ,6) = (0.1, 2π, 2π√
3
).

We conclude by noting that theoretical models of the cou-
pled interaction of waves with a deformable lower layer are
useful in isolating the effects of specific dynamical processes
on this interaction. For example, we have shown that a
simple constant yield stress bi-viscous lower layer rheol-
ogy does not allow for the formation of two-dimensional
permanent bedforms by standing-wave forcing. By exam-
ining a slightly more realistic (although still highly ideal-
ized) rheology that incorporates a packing condition through
a pressure-dependent yield stress, however, we find that two-
dimensional permanent lower layer patterns are excited in
some parameter regimes.
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