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Abstract. An impulse-based model is developed to representuseful way to represent the present physical problem of the
a coupling between turbulent flow in the atmosphere and turinteraction between a boundary and an impinging fluid flow.
bulent flow in the ocean. In particular, it is argued that the By considering fixed instants of timé# — 0), we draw
atmosphere flowing horizontally over the ocean surface gensome insight from problems and solutions associated with
erates a velocity fluctuation field in the latter’'s near-surfacestatic equilibria. The equilibrium of an interface between two
flow. The mechanism for this can be understood kinemati-relatively moving, materially homogeneous, fluid media can
cally in terms of an exchange of tangentially-oriented fluid be understood in the following terms: flow in one medium
impulse at the air-sea interface. We represent this exchangenparts an impulse to an adjoining medium at the mutual in-
numerically through the creation of Lagrangian elements ofterface between them. In turn, the adjoining medium imparts
impulse density. An indication of the efficacy of such a an equilibriating impulse to the first medium. For horizon-
model would lie in its ability to predict the observed frac- tal flow over a planar ocean, this may be stated specifically:
tal dimension of lateral trajectories of submerged floats setvind flowing tangentially over the ocean imparts an impulse
adrift in the ocean. To this end, we examine the geometry otto the ocean; the ocean imparts an equilibriating impulse to
lateral tracer-paths determined from the present model. the atmosphere. The effect of this exchange on the atmo-
sphere is the formation of the atmospheric boundary layer;
the effect on the ocean is a velocity fluctuation field evolving
downwards into the ocean.

The foregoing exchange of impulse is conducted in a way
The atmosphere over an ocean (for heights up to 1000 mjhat is consistent with the boundary conditions to be satisfied
consists of a turbulent boundary layer; furthermore, theatdD, where we require that the two fluids do not interpen-
ocean itself (for depths down to 100 m) is characterized byetrate, and that there is no “slip” at their mutual boundary.
a field of relatively small-scale turbulence. Despite the obvi- This latter “no-slip” condition is consistent with the creation
ous differences in character between these two turbulent prosf an impulse in the form of a thin vortex doublet sheet, co-
cesses, it would seem natural to ask whether they are coupledcident with the interface (there is a close relationship be-
in some causal way. tween elements of impulse of compact support and vortex

In the following, we develop a Lagrangian model of the elements; see Summers, 2000a, b, 2001). Once an impulse is
equilibrium of forces at the interfacé,D, between a flat, created, it proceeds to evolve from the interface into the sur-
stationary ocean and the atmosphere. We express this as apunding fluid according to an equation of motion introduced
exchange of impulse. We understand impulse a standard by Oseledets (1988). Turbulent flow has been associated with
way as the time-integral of forcd, in the limit of vanishing  this evolution; (see Buttke, 1993; Buttke and Chorin, 1993;

1 Introduction

time-interval,é¢, i.e. as the integral Chorin, 1994; Smereka , 1996; Summers, 2001). The turbu-
st lence fluctuation field can be attributed to the macroscopic ef-
I(r,1,) = lim /0 F(r.t)dt, 1) fect of an evolving ensemble of vqrtical structures in a fluid.
8t 1 In the present case of a created impulse at the surface of an

ocean, the relevant evolution is that of a system of vortex
doublet sheets.

One specific signature of the velocity fluctuation field in
Correspondence tdD. M. Summers the ocean has been observed for horizontal scales of 10—
(davids@maths.napier.ac.uk) 200 km, and for vertical depth scales of up to 100 m. This

where F(r, t’) represents the force field acting at the point
r € 9D, attime,r’. An formulation in terms of impulse is a
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arises from the fact that experimentally observed trajecto-divergence. Buttke (1993) (see also Buttke and Chorin,
ries of passive tracers in the horizontal flow near the ocear1993) demonstrates that is, by virtue of its compact sup-
surface describe fractal curves; these curves have a Haugort, related to the impulse through the volume integral
dorff dimension of about 1.3. Such trajectories have been ob-

served, for example, in the Kuroshio Extension in the Pacific| (r) = p / mdv. (3)
Ocean (Osborne et al., 1989) and in the northern Atlantic |4

Ocean (Sanderson and Booth, 1991). The global distributionrhs is to say that: is a volume density of impulsé, V¢ is
of the observations suggests that some degree of universam irrotational extensive field. We read Eq. (2) as a material
ity is obtained. The observations have attracted interest fromyecomposition of: into a local, source-like component:)
the perspective of dynamical systems theory (Osborne an@nd into a non-local, ensemble-averaged fislg). Equa-
Caponio, 1990). The fractal character of such trajectoriegjon (2) can be understood as a Hodge decomposition of
can be numerically reproduced in particle models based ofntg divergence-freeu() and curl-free ¥ ¢) components. We
fractional-order Brownian motion in a plane (see, for exam-note from Eq. (2) that vorticity defined through= V x m
ple, Addison et al., 1997). also has compact support.

Tracer trajectories in the ocean do not exhibit the Haus- QOseledets (1988) determined an equation of motion for

dorff dimension expected of a purely harmonic process, suchy, (see also Buttke, 1993) by substituting Eqg. (2) into the
as that resulting from a linear superposition of waves (such ayavier-Stokes equation to obtain

process would have a fractal dimension of 1). In addition the
tra_ject(_)ries are not consistent with simple Fick@an dif_fusion Dm = (V)" m +vAm ()
(with dimension 2). The observed non-integer dimension has Dt

been widely interpreted as a signature of ocean turbulenc@yhere we have invoked vector identities and have chosen the

(for example, see Osborne and Caponio, 1990). geometric gauge condition described by Russo and Smereke,
The surface of the ocean is a complex system. Thejggg). Theij-element of the matrixvu)” is du/dx;; the

prospect might seem remote that one could isolate (in amat"‘parameten) = 1/p denotes the kinematic viscosity of the

ematical model) vorticity-induced velocity fluctuations from fid.

the remaining flow. However, we shall see (Sect. 2) that sjnce our intention is to represent the impulsive action at

progress can be made if we exploit a decomposition of the vethe gcean-atmosphere interface at a fixed instant, we take the

locity field which was introduced by Kuz'min (1983). When divergence of Eq. (2) to determine the Poisson equation
this decomposition is applied in the context of an ocean sur-

face, it effectively separates the flow problem into that as-A¢ = —V - m. (5)
sociated with a “vortex sheet” at the interface (whose self-
interaction and resulting instability are classically related to
surface wave propagation; (for example, see article 239 o
Lamb, 1932), and that associated with velocity fluctuations
induced by a distribution of sub-macroscopic vortex doublet-
sheets decending into the ocean.

We infer from this that if we have a known distribution of im-
ulse density in an atmospheric flow and if we have gradient
oundary conditions fap at the ocean-atmosphere interface,

then we can determing in the atmosphere to an additive

constant; hence, we can determi¥i¢ there uniquely, and
thereby specify the decomposition Eq. (2). In the following
section, we develop a relevant gradient boundary condition

2 Flow as an evolution of impulse for ¢ (see also Summers, 20004, b, 2001).

A point source of impulse may serve as a Lagrangian ob- )

ject which induces a velocity field with dipolar structure (see 3 The ocean-atmosphere interface
Sects. 2.4, 2.5 and 7.2 of Batchelor, 1967), or (Sect. 11.2 0
Lighthill, 1986). In two dimensions, this is a vortex pair or

doublet. An ensemble of such objects constitutes, in the abWe will assume at the interface between the air and ocean

sence O.f viscosity, a Hamiltonian system (Roberts, 1972); &hat the two fluids do not interpenetrate at molecular scale;
dissipative perturbation of such a system reflects the dynamf

) . ) . : urthermore, we assume the two fluids adhere at their com-
ics of flow with slight viscosity. In order to develop an ocean

mon surface of contact, i.e. they experience a zero “slip”

model based on such elements for wind flow over a stat|on-at that point. For our purpose of modelling the background

ary boundary, we need to determine the rela'_upnshlp betWeeBcean turbulence, we consider an idealized cartesian domain
the impulse and the relevant boundary conditions. of flow (x, y,z) € R3, where the interface is taken to be
This is achieved by considering the decomposition intro—the planez = 0. For the purpose of showing the growth

duced by Kuz'min (1983): of an atmospheric boundary layer, and to give the problem
uw=m+Vop, ) a bou_nded expressio_n, we consider a u_niform-profile _atmo-
spheric flow (occupying > 0) of magnitudeU to begin
wherem is a vector field (normalized with respect to mass impulsively atr = 0, and to flow steadily in the positive
density) which is of compact support and has non-vanishinge-direction over the surface of a geometrically flat ocean,

g.l Boundary conditions in R
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occupying the region < 0. We apply the viscous bound- with the following gradient condition to be satisfied ¢#yn

ary conditions over a representative finite lateral domain inoD:

x > 0 characterized by a lateral length scale gf We de- ¢

note the uniform density of the atmospherepgsand that — =0. 9)

of the ocean agy,, and consider flow in the interiors of both <

media to be incompressible. In this situation, consistent with(We also impose the condition that the solution be consistent
the previous conditions at = 0, the impinging wind im-  with the incident flow field, i.e. we have = Ux at the
parts an impulse to the ocean, an impulse which is orientedateral infinities of the half-space> 0,x — +c0.)

tangentially in the positive-direction. The ocean will im- At ¢+ = 0, given Eq. (9) we can solve Eq. (5) and hence,
part an equilibriating impulse to the atmosphere, an impulsedetermine the gradient fiek¢. We relate this to an irrota-
which will be oriented in the negative-direction. tional field ondD throughu* = 3¢ /dx x, which satisfies

We assume the ocean is otherwise stationary at macrothe condition
scopic scale (i.e. we neglect drift currents). The problem
as stated has two-dimensional symmetry; we confine our im#”™ -z = 0. (10)
mediate attention to the — z plane (in Sect. 6, we consider

thex — y plane). We hence deduce from Eq. (8) that the impulse density on

oD satisfiesm, = —u™: this we understand to be the im-
3.2 Two-dimensional statement in the- 7 plane pulse imparted to the atmosphere by the ocean. The (Case
I) impulse imparted to the atmosphere is consistent with es-

The horizontal flow of the atmosphere over the stationarytablishing no-slip abD. The determination oin, created
planar interfaceD, satisfies the boundary conditian=0,  at 3D, does not depend on the mass dengity but simply
which we express as the union of impermeability and no-slipon the magnitude of/; furthermore, the subsequent evolu-
conditions, i.e. as tion in z > 0 only depends upop, through the kinematic

0 viscosity of the atmosphere,.

Z-u
JE.uzo}onaD, (6)

3.4 The response of the ocean
wherez is a unit outward (relative to the ocean) normad @
and where we understand the unit vedtdo be tangential to
the ocean surface.

We substitute Eqg. (2) into Eq. (6) to determine

= —0d¢/0z
= —0¢/dx

While theevolutionof m, in z > 0, according to Eq. (4), pro-
ceeds independently from tleolutionof the impulse den-
sity in the oceanm,,, the two ensembles of impulse sheets
are intimately related to each other at their point of creation
on dD. Specificallym,, depends entirely om, (and onp,
andpy, ) for its existence. The evolving impulse in the ocean
) ) is causally derived from the motion of the atmosphere.
where the subscript denotes the impulse on the atmosphere We deduce from Eq. (3) the equilibriating impulsat 9D

S'd_l? of the mlterface. luti Eq. (5 It if by considering unit test volumes on either side of the inter-
Wo comp ementary solutions to. g. (5) result if we con- face; for equilibrium at a point on the interface, we require
strainm , to be respectively tangential or normald®. The

former implies the conditioa¢/dz = 0, known as Case lin  p,m, + pymy = O.

Summers (2000a, b; 2001). The latter impligs/ox = 0 on

3D, known as Case Il in Summers (2000a, b; 2001). In thisHence, the impulse densityy,, which must be imparted by
way, we decompose the interaction of two fluids at their inter-the atmosphere to the ocean at their common interface, is
face into two processes (the superposition of which expresses

the complete interaction). If atmospheric flow is constrained™w = — £a M/ Pw- (11)
to be in thex direction and if the interface is constrained to This tangential impulse density created in the ocean at

occupy (over time) the surface= 0, then the impulse ex-  o- i subsequently evolve downwards into the ocean.

change is expressed by the former condition alone (i.e. byrh,s we present the problem of ocean-atmosphere coupling
9¢/0z = 0 ondD). Thus, we create a tangential impulse 10 55 4 fyo-dimensional Lagrangian problem in a vertical sec-
effect no-slip at = 0. tion. We pursue this numerical model in Sect. 5.2.

m

" } on 4D, (7)

Az
A X

3.3 Impulse tangential to the interface 3.5 Simulating “dipole creation” in three dimensions

We consider the impulse imparted to the atmospherg,
atz = O' to be tangential to the ocean, i.e. we constrain
the impulse in the atmosphere to satisfy - 7 = 0 onaD.
Equations (7) now become

In order to understand lateral flow in the ocean a model of a
three-dimensional atmospheric boundary layer would be re-
quired. We note that, so far as the ocean itself is concerned,
the atmosphere serves as an impulse generator at the surface
z = 0. Some understanding of the three-dimensional kine-
matics of an impulse in the ocean may be possible, if we

mA2:O

mA-£=—a¢/ax}°”aD’ (8)
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represent the influence of the atmosphere through an “im- The choice of partition parametérmay be based on a
pulse creation boundary condition”, i.e. at each time-stepphysical argument: choosing~ O (v) is consistent with a
we prescribe a distribution of wind-flow values on the oceanflow in which translation due to inertial contributions is com-
surface, and create an impulse doublet in response. Thergarable to viscous displacement (see Summers, 2000a). This
fore, the wind is to be treated as a time-dependent creatiomould represent the condition usually associated with the for-
boundary condition for an impulse in the ocean. mation of a laminar boundary layer, for example. On the
We can, for example, conceive of this surface condition inother hand, larger values 6imay be used to reflect the scale
terms of a random surface distribution of wind flow direc- of surface roughness in the case of a “non-smooth” ocean
tions (constrained to have a positivecomponent, perhaps (this could be chosen to reflect the scale of the surface wave
to capture a prevalent wind direction). This is intended to pattern, for example).
represent instantaneous wind flow over a surface expanse of The principle of impulse creation that we have described
ocean. Instead of evolving elements determined by partitionrequires us to determine an irrotational fiell = V¢ in
ing a three-dimensional dipole sheet, we convert sheet elethe atmosphere, satisfying® - z = 0 on 9D. A “null-
ments into ameliorated point vortex dipoles with the samefield” approach to solving this problem is described in Sum-
orientations of moment as the sheets from which they areamers (2001). Note that in the present context, we do not
derived, and with strengths, such that they induce the samaeed to determine an explicit solution to the Poisson Eq. (5);
velocity in the far field as these sheets. This resembles a stamather, we can invoke a method of images. The velocity
dard hybrid approach used in vortex sheet methods to effedield induced by an impulse dipole of moment,, located
a matching of boundary layer Lagrangian sheet elements tatr = (x, y, z) and consistent with the conditian,-z = 0
point elements appropriate to an interior. at z = 0, is achieved by introducing an image dipole at
Such an expedient stops short of solving a Lagrangiarnr’ = (x, y, —z); the strength of this image will be,, and
three-dimensional boundary value problem. Even so, somdts orientation will consitute a reflection across the interface
insight into the qualitative character of the fluctuation field z = 0.
in the upper ocean may be anticipated from it. (The fractal The argument also applies to the determination of the ve-
dimension of drifter trajectories is one such qualitative char-|ocity in the ocean induced by an impulse dipole of mo-
acterization.) We pursue this numerically in Sect. 6. mentmy, located atr = (x, y, —z), and consistent with
the conditionu,,-z = 0 atz = 0. This is achieved by in-
troducing an appropriate image dipole “in the atmosphere”

4 Thin-sheet Lagrangian elements of impulseR?) atr’ = (x, y, 7).

We consider the viscous interaction of the wind and the ocean
to be the only source of impulse density in the flow of either
medium. This is an essential simplifying assumption of our
model. We pose this as a two-dimensional problem in an5 1 splitting strate
x — z vertical section. We represent the tangential impulse™ pitting 9y
confined to the surfaceD (z = 0) as a thin doublet sheet. : . : L

) ) ; : Once an impulse is created at a wall, it evolves into its re-
We can think of this as two vortex sheets, each with a linear

vorticity density of the opposite sense and separated fromEpective flow interior according to the equation of motion
each other by a distance &f The doublet sheet derives from g. (4). The dynamics of impulse are elucidated by the term

: o (Vu)"'m in Eq. (4). This term can be expressed as the sum
a thin-sheet limit . . . .
of symmetric and antisymmetric tensors, so that we write

5 The transport of doublet sheets

lim «d = M,
d—0

K—>00

Dm

== % (V)" + (V) m

where the bounded limj#¢1 represents a tangential “impulse
per unit length”. Such a sheet can be partitioned and the re-

extension

sulting segment elements can be made to form a Lagrangian — > ((Vu)T — (Vu)) m +vAm. (12)

ensemble. Considering a segment of lengtiligned in the

x-direction and centered &t,, z,), the velocity it induces rotation

at (x, z) is determined in Egs. (22) and (23) in SUMMES 1iq s to imply an evolution in the orientation and magnitude

(2000a). ] ] ) of impulse, as well as its advection in the stream, and its
We ascribe to an impulse sheetzat= 0™ an impulse per transport by viscous diffusion.

unit length of M, = —u* ¢, whereu* is the magnitude at

We pursue a Lagrangian numerical model based on a time-
plitting of the equation of motion. We consider Eq. (4) as
e simultaneous equation representing Euler advection,

z = 0 of the irrotational field discussed in Sect. 3.2: this is
evaluated at the mid-point of the sheet segment. The induce
velocity fields are desingularized (see Krasny, 1986) by in-
troducing an additive smoothing parameter into their respec-p,,

tive denominators. o = 0, (13)
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and viscous diffusion, ocean. In the atmosphere £ 0), a turbulent boundary layer
Im has developed over eight steps, which is represented by some
5 = vam. (14) 50000 elements; in the ocean, there is an evolving distri-

bution of elements (9000 elements). Note that by virtue of
Eqg. (11), each element in < O carries a dipole moment
0.001 times its created counterpartin> 0. Furthermore,

om r the implication of the lower particle density in < O (i.e.

9t —(Vu)y'm . (15) lower compared to the atmosphere) is that there is a smaller

This latter splitting bears analogy to a common treatment of MPUIS€ per unit volume at that point. As one descends into

vorticity stretching in three dimensions (discussed, for exam-N€ 0cean, this density becomes less, indicating the effect of

ple, in Gustafson and Sethian, 1991). dissipation on the ensemble. The lower contour plot in Fig. 1
The Euler Equation (13) is modelled numerically by eval- rgpresents the velocity magnitude level curves in the respec-

uating the interaction between each pair of impulse element&Ve Ted'?' In t:e atmospfhere, th(?_corr;tours reprisent magni-
(including their images). Note that these require modifica-Ud€ levels in the range of-8 1 m/s; in the ocean, the curves
tion in order to express the relative rotation between sheefePresentarange of-00.003 m/s.

elements (Summers, 2000a). We determine the advection of

the resultingn-body system of impulse elements by using
Runge-Kutta integration.

If we consider the evolution over a time-step interdal
then Eq. (14) is modelled by considering a dissipative pertur- s o . .
bation to the trajectories determined from Eq. (13), specif-6'1 Dipole creation” in three dimensions
:fflgltlz)t/er%r?\?viﬁlggerf rii(::] |;nn[()julvsaerizlne0n;je2n t _lfilhriznr(;(;rrr;_dls-We consider that over a large expanse of ocean (thousands

) . . of kilometers) and over a long duration of time (weeks), the
sents a stochastic model of Browian motion (a random walkWind flow at anv point on the ocean surface mav chande its
model). There are deterministic methods of modelling such y P y 9

e . speed and direction. As a consequence, the impulse imparted
diffusion, and these are numerically more accurate (see, fo{o the ocean at such a point may assume a variety of strengths
example, Fishelov, 1990; Bernard, 1995). P Y y 9

As elements of a partitioned doublet sheet evolve fromand directions in the lateral plane. We model this situation

the surface, they each actively induce a local contribution to.by assuming a distribution of wind speeds which is random

the velocity field. Since part of this evolution is a viscous in magnitude and direction (although the wind can be con-

diffusion, the time variations of the ensemble-averaged in_stralned to veer within an angular pencil to reflect a prevalent

duced velocity field will reflect a stochastic character. This yvmd direction). Given the consequential downwardly evolv-

field will, therefore, not be a manifestation of deterministic ing and continuously created distribution of dipoles, we ask

chaos; the non-integer fractal dimensions that we will de_the guestion: what is the character of a passive tracer con-

termine (see Sect. 6) resemble, in this respect, those of th%t.ralned to_ move in a Iatera]— y plane at depthp, in the
idst of this impulse evolution?

stochastic processes described by Osborne and Provenzale . . .
To model passive tracers in an— y plane (i.e. mov-

(1989). ing in the projection — onto a plan section with the depth
5.2 Numerical examples in the— z plane — of a three-dimensional velocity field), we propose to model
the evolution in a simplified manner. Although stretching
By way of illustrating the exchange in a familiar context, and rotation are explicitly modelled in the numerical experi-
we consider the following reduced scale numerical exam-ment described in Sect. 5.2, these processes make a relatively
ple. The parameters will be chosen to conform to the neigh-small contribution to the evolution in the ocean. This situa-
bourhood of the Blasius profile: we conceive of a lateral do-tion is a consequence of Eq. (11): the strength of the doublet
main on the order of 1m. We considg /oy = 0.001, moments irg < 0 is three orders of magnitude smaller than
with both fluids being relatively viscous, i.e. we choose their counterparts in > 0 (having chosep,/py = 0.001.)
v, = 0.01 nf/s andvy, = 0.01 n?/s. We also choose pa- In the context of the present three-dimensional case, we
rameterst, = 0.001 m,¢;, = 0.001 m withdr = 0.05 s. will model only the diffusion and advection of elements, i.e.
The smoothing parameter is in both caséstiines the sheet- we suppress the possibility for stretching and rotation in the
segment length. Our interest in examining this example re-ocean. Such an approximation may serve our limited purpose
lates to the fact that although the flow in the “air” medium in modelling the trajectories of tracers. This expedient will
is turbulent, it still preserves (in time average) something ofgreatly reduce the computational effort, although it does sup-
the character of Blasius self-similarity. As such, the examplepress the tendency towards large-scale instability, or the ten-
serves to demonstrate the exchange of impulse in a numerdency towards coherence of elements to form macroscopic
cally transparent setting. structures. These appear to be small effects, and in any case,
The upper diagram in Fig. 1 represents the distribution ofthey are of less importance to us as we pursue the creation of
doublet sheets in this scale-model of the atmosphere and the sub-macroscopic fluctuation field.

Added to these is the evolution of impulse density strength
implied by

6 Trajectories of submerged drifters in near-surface
flow
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03 T T T T T
= atmospheric boundary layer

0.2

ocean

x (m)

Fig. 1. (Above) Distribution of impulse elements jn-z plane (i.e. in vertical section) after 8 time-steps have elapsed; (below) corresponding
level curves of magnitude of the velocity field.

We shall create and partition an impulse doublet sheet, a1 Sect. 4 is not possible for an amelioration of a point ele-
described in Sect. 4. We will convert each element into anment (i.e. an element that will have no intrinsic spatial scale).
equivalent three-dimensional impulse dipole. The strengthRather, the field of a point dipole (16) is to be desingularized
of this dipole (M) will be chosen (numerically) so that the through convolution with a Beale and Majda (1985) fourth-
velocity field it induces in R\ supgM} approximates that order smoothing kernel
induced by its thin sheet counterpart. Figure 2 illustrates the
comparison of field components (in the vertisal- z plane) ¢ /5y — 1+ <§(£)3 _ 1) /9% 17)
induced by a doublet sheet (of density) and its equivalent 23
ameliorated point d|pqle element (.Of momed). . . To match the field induced by a smoothed point dipole to that

We release a passive marker into a procession of point

. . of a doublet sheet, the smoothing parameielis adopted
impulse elements which evolves downwardly from the sur-. - : i

o . : in terms of the partition parameter associated with the dou-
face, at position(x, y, —z,), with the depth of the trajectory

plane, z,, chosen to approximate the ratio of drifter depth blet sheet; typically, this smoothing parameter is chosen to

: ; . . me fraction of.
to the spatial extent of its ultimate trajectory. We allow the be some fraction of

. ) . . Although the velocity field induced by an ensemble of
marker to negotiate its way in this plane through the (pro_such dipoles is heterogeneous (especially at a scale compa-
jected) velocity field induced by the evolving distribution of P 9 P y P

impulse dinoles. Specifically. the velocity field induced at rable tod), it is nevertheless by design a desingularized and
P P - 9P Y, the. y differentiable field. A passive tracer is impelled by this resul-
r = (x, y, —zp) by a vortex point dipole of momer#, lo-

cated at, = (xo, o, —2,), iS given by tant velocity field alone._ Although Lagrangian_impulse_ ele-
e ' ments undergo a Brownian motion that is consistent with the

3M-HF-M 3M -F)i —-M equation of motion for impulse (i.e. consistent with viscous

’ (16) diffusion), passive tracers are simply advected in the velocity

induced by these elements; this emphasizes that no stochastic

where7 is the unit vector in the direction — r,; 7' isthe  displacement is imparted to the passive tracers themselves.

unit vector in the direction — r/,, wherer/ is the image

point (x,, y,. +2,). The vectorM’ represents the reflection 6.2 The fractal dimension of an irregular path

of M acrosg = 0. In this experiment)M is understood to be

horizontally oriented throughout the evolution. The simple As an initial experiment, we adopt directly the numeri-

Krasny-type desingularization of a sheet element mentioneaal parameterization associated with the model described in

uy(r) =
Ir—rol3 Ir—rl|3
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Ocean surface

velocit

Tracer plane

0 0.01 0.02 0.03 0.04
distance from element centroid

Fig. 2. Velocity components induced by a two-dimensional dou-
blet sheet (solid line) and an equivalent three-dimensional impulse
dipole (dotted line).

Sect. 6, namelyy, = 0.02, ¢, = 0.01m with time-step
interval dt = 0.05 s. We conceive of the impulse gener-
ated at successive points of time at the surface 0 as
an ensemble of point impulse dipoles of uniform moment;
these are randomly oriented at their points of creation in di-
rections tangential to the ocean surface. The elements are
positioned randomly (and uniformly) in a unit disc lying in b
z = 0. The density of the ensemble created at each time-step
will be chosen to be consistent with the density illustrated in
Fig. 1. Thus, we create some 3000 elements at each time- Plan view
that acoumulate in the time.evolugon, we delete these afie . SChemate representation of ciolecreatiayipols re-
they have reached a depth 0f35 (A schematic representa- ated aF the ocean SLiface eyolve into d.epth, a tracer is conflned to
. o o move in the plane = —zp; (b) plan view (the prevalent wind
tion of the model geometry is illustrated in Fig. 3). direction points to “top of page”).
The impulse moments are randomly oriented in the fol-
lowing way: the moment of each element is prescribed as
(M cost;, M sing;,0) atz = 0, whered; = —% + mq;, that are coincident with the trajectory. Figure 5 illustrates
and{g;} is a set of random numbers with uniform distribu- the path of Fig. 4b after this has been “measured” in this
tion in (0, 1). Thus, the lateral orientation lies in a range way, withn = 2 x 107°. An efficient algorithm (which we
6; € [-%.+%], i.e. the orientations are scattered in such aemploy here) for constructing the sequence of line-segments
way that their moments are always positively oriented. Thisthat constitute this “measuring”, is described by Rapaport
implies an element of anisotropy in the ensemble of dipole(1985). The “length” of)-sequence, denoted (), is sim-
elements (see Sect. 6.4). ply the productN 5, whereN is the number of segments in
Figures 4a, b and c illustrate respectively the trajectory ofthe sequence.
a typical passive marker after 30, 100, and 1000 steps have A fractal dimensionD,, which approximates, can be
elapsed, released from a point= (0.4377x 104, 0.3452x  deduced from the relationship
1075, —0.2 x 10~2). (The trajectories of Fig. 4 would repre- 1D, 18
sent, in an ocean context, the excursions from a drift current,L(n) = An (18)
i.e. they are the paths after a mean drift has been subtractedgee Rapaport, 1985; Mandelbrot, 1977; Voss, 1988), where
A is a constant independentmfin practical terms, one con-
We can seek to understand any implicit self-similarity in structs a number ofi-sequences corresponding to a range
these trajectories by characterizing the paths as fractal curvesf divider separations; in this way, the functidrin) is de-
of some Hausdorff dimensio®. To approximateD, we  veloped. If the trajectory exhibits strict self-similarity, then
can use a strategy introduced by Richardson (see Sect. 7 die exponent in Eq. (18) will be a constant from whibl
Richardson, 1961) or (Sects. 5 and 28 of Mandelbrot, 1977)can be deduced. In the context of numerical or physical ex-
we “walk” a pair of dividers of fixed separation, along the  periments, one may expect such self-similarity to obtain
trajectory in order to measure its length in a contiguous sethe averaggspecifically over an ensemble of realizations. In
quence of uniform segments, each of which has end-pointsuch a case, the self-similarity (or more accurately expressed,
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n=2x10"

30 steps /ﬁ finish
0.
2 start
0

100 steps | Fig. 5. The trajectory of Fig. 4b, “measured” using Rapaport’s
/Qv (1985) algorithm with the divider separatign= 2 x 10°.

trajectory, but are smaller in length than the smallest segment
@ in the trajectory. It is the final part of the curve that yields
through its gradient the paramet@y .
b. In the case of the trajectories illustrated in Fig. 4, we deter-
‘ mine L(n) for a range of values of. The fractal dimension
0. is calculated from the log-log regression illustrated in Fig. 6.
This exercise shows how the truncation of the data record for
this particular trajectory affects the calculation of the fractal
dimension: this varies betweer2land 15, depending upon
the length of the measurement record (which ranges from 30
to 1000 locations, equispaced in time).

The data associated with the trajectory illustrated in Fig. 4
can be reconfigured in another obvious way. We could
choose to sample the tracer locations at increasingly large
time intervals. In other words, we could reconstruct the tra-
jectory by taking every second node, every fifth node, etc.
The fractal dimensions associated with these reconstructed
paths are calculated (e.g. see Fig. 7) for sampling intervals
C. of dr = 0.05,0.1,0.25, 0.5,0.75, and 10. The calculated
fractal dimensiorD,, varies between.? and 15. The errors

0. indicated are based on the regression residuals. This calcu-
] ] ] o ] lation is for a single trajectory; however, upon ensemble av-
Fig. 4. Passive tracer trajectories in the horizontal plane= o346 the error attached to the fractal dimension may well
;O'OOZ after 30, 100, and 1000 steps. Impulse dipoles are rang o |5 or The results of the exercises associated with Figs. 6
omly distributed, and randomly oriented in a positive sense (i.e. . - ..
such tha® < ). Time interval isds — 0.0535. _and 7 a_re_summanzed in Fig. 8. The mea_surement_sensmv-
ity that is illustrated by these purely numerical exercises has
been well understood for some time in experimental contexts.
o _ ) ) We note the “curvature” of thé (n) plots of Figs. 6 and
the “_self—afnnlty”) expresses itself throughglmear regression7 | the context of modelling molecular diffusion, Rapa-
applied to the log-log plot of.() as a function of;. port (1985) associates such curvature with a non-Gaussian

The initial “linear part” of the positive gradient in the distribution of vector displacements of active Lagrangian el-
curves of Fig. 6 corresponds to divider separations that arements. In the present case, our distribution of created dou-
too small to encompass the entire length of the trajectory inblet elements has a directional bias, so we would expect this
(arbitrarily) 500 contiguous segments. The following part to be non-Gaussian.
of the curve, roughly with a zero gradient, corresponds to We note that the calculated fractal dimensions indicated
divider separations that do encompass the full length of thean these figures, determined from a very simple model, can

1000 steps

0. f Q?
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Fig. 6. For cases illustrated in Fig. 4: log-log plot of length as Fig. 7. The case of Fig. 4c re-sampled at coarsened time intervals,
a function of divider separation; regression indicates approximatei: = 0.1, 0.25, and (6s.
fractal dimension in each case determined from Rapaport’s algo-
rithm.
a depth of 100 m from the surface and its trajectory at this

be compared to that observed experimentally (at very differ-depth is tracked over 70 steps (3.5 days). Figure 9a illustrates

ent scales) from drifter trajectories in the ocean: for example,t he{ﬁsultmfg tr?jelzgtlory, w.her(camwe_lnielrélj[sggsl? apaports al-
Osbhorne et al. (1989) obtainéy = 1.274+0.06 and Sander- gort m) a ractaldimension ab, = L. T

son and Booth (1991) obtaind?, — 1.28-+ 0.08. We note, Figure 9b illustrates the trajectory for the same problem as
however, that Osborne et al. (1989) determined their data t§19- 9a, except the magnitude of incident wind is increased

be weakly multifractal in character, whereas we have pursued©m 1 m/s to Sm/s. After S0 steps, we infer a fractal di-
a monofractal treatment. mension ofD; = 1.27 + 0.08. We attach no significance to

the closeness of this result to that derived from experimental
6.3 Scaling up the problem to ocean dimensions measurement: rather, it is a matter of coincidence. Calcu-

lations based on alternative trajectories (released from other
The scales associated with the numerical experiments irstarting positions, for example) would result in another esti-
Sect. 6.2 can be enlarged to reflect those of ocean driftemate of D;. One expects in any given ocean trajectory the
experiments. We consider a sheet length parametér-ef  direction and strength of the incident wind-flow to vary over
1000 m, and an ensemble of impulse dipoles created in @he duration of the experiment; furthermore, the “roughness
disc of radius 1®m (100 km) randomly distributed in loca- scale” associated with the created impulse would also vary in
tion and orientation, as described previously. We considettime. From the present numerical exercise, we can develop,
v = 10°% m/s2. The time-step is taken to ki = 4320s, at best, a general expectation of the fractal dimension that
which is to say 1.2 hours. A passive tracer is released ats consistent with the proposed model. However, numerical
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11t 1 7 Fractional Brownian motion (fBm)
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10 075 05 025 0.1 An ordinary Brownian motion random proceBs$t) has the

property that the sequence of incremeBts, + ) — B(t,),
with ¢, representing some multiple ofi.e. ¢, = nt, is a se-
Fig. 8. Summary of effect on fractal dimensid@y, of the truncation quence of independent Gaussian random variables with zero

and re-sampling of the trajectory of Fig. 4c. mean and variance We write

sub-sampling time-interval

([B(t, +1) — B(1,)]%) = At, (19)

) . ) . whereA is a constant. This is the principle which underlies
experiment suggests that the approximate fractal dimensiog,e stochastic model of diffusion discussed in Sect. 5.1 .

that re_su_lts fro_m a variety of drifter starting positions falls The previous process can be generalized (Mandelbrot and
well within the intervalD,. & (1.0, 2.0). Van Ness, 1968; Mandelbrot, 1999); we consider a process
By in which the variance satisfies

6.4 Anisotropy of “wind-direction” ([Bu(to +1) — By(t)1?) = 12" Vy (20)

with the coefficient/, defined as
One can conceive of a physical situation in which an impulse

imparted to the ocean is generated by a prevailing wind flow-y, — I /O [(1-— ;’)H—% — (_t’)H—%]Zdﬂ
ing in one direction. The resulting distribution of impulse [I'(H + %)]2 —00

elements should mirror this as an anisotropy with respect to 1

dipole moment orientation. This anisotropy can be accom-  + —} , (22)
modated in a graduated way into the present simple model. 2H

For example, if we choos¢ = —x + 2n¢;, then we have . .
0; € [—m, +m], which is to say that the orientations have yvhereF is the Gamma function. The paramefére (0, 1)

an isotropic distribution. Generally, if for somee [0, 2), IS called the Hurst exponent and the process s ca_lled a frac-
we choos®); = —Z + Z¢;, then the moment vectors are :!ona}l Browmandmouﬁn (or ﬂ.ST)' Ordlrr}:ry Blrownlan mo-
aligned in a pencil defined by e [, +Z]. ion is recovere as the special case whigre- 5.
The implication of Eq. (21) is that such a process does not

Figure 10 shows the relationship between calculated frac{at least forH # %) consist of a sequence of independent
tal dimension and the pencil width (rangedipthat controls ~ Gaussian increments, but that the coefficiépis consistent
the level of anisotropy in the model; this calculation is de- with Lagrangian “memory” over previous increments.
termined for 30-step trajectories with the numerical parame- For a given tracer trajectory, one can plot the growth of its
terization described in Sect. 6.2. The spread would seem t@ariance as a function of time. A log-log plot of this vari-
contract as the condition of isotropy is approached. able, if it is associated with a fBm process, will determine
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the Hurst exponent. For a trajectory with isotropic displac- = -05 0 05 1 15 2
ments, this exponent bears a direct relationship to the fractau ot
dimension of the path: this is

Fig. 11. Hurst exponent calculated from a plot of standard deviation

1 against time (assuming fractional Brownian motion).
D= mln[ﬁ, 2] (22)

(derived by Mandelbrot (1985)). For ordinary Brownian mo-

tion, the path has_ a fraCtal dlm_en3|on of 2(iH. = 3 in _ strated through a numerical model in vertical section. The
Eq. 22). For motion that is strictly non-fractal (€.9. parti- o js represented numerically through the kinematics of
qles advected.m apotentlal flow ﬂ.eld), one expects asmplqmpu'se doublet sheets. From this we develop a three-
linear curve W'thl_) =1(e. H Tl n Eq. 22). i dimensional Lagrangian model of the advection and diffu-

Thus, the limiting fractal dimension db; =~ 1.5 associ- o, of impulse dipoles into a half-space ocean. In this three-

at_erc]j with Fig. 4 could imply a frrlactlonal BrO\:cvnlanh motion  jimensional case, we represent the “atmosphere” by a con-
with Hurst exponent/ > 2/3. The variance of such a pro- 5| generation of dipoles at the ocean surface. Our in-

ibit 4’3 time- . . L . .
cess (Eq. 20) should exhibit 4’ time-dependence. The capiive for doing this is to model the fractal dimension of
paramgterH can be determmeq directly frpm a numenca_llly the trajectories of passive tracers in a lateral plane at a fixed
determined trajectory by applying regression to the logarithmg, .o 2 “gepth. The fractal dimension of such trajectories can

of standard deviation on the logarithm of time, although ape approximated numerically using the algorithm of Rapa-

long time record is typically needed to achieve a converged, . (19gs) or alternatively, by understanding the process as
estimate of this power (Rapaport (1985) discusses this in th fractional Brownian motion.

context of molecular d|ffu.s|on).. We s_hould §|SO note that = . - < aled-down numerical example, we apply the model
Eq. (20) represents a relationship that is true in ensemble av:

N thel b fd trati lot th in order to understand the effect on the fractal dimension of
erage. INeverineless, by way ol demonstration, we plo %runcating a record of a trajectory after a varying number of
standard deviation of the trajectory shown in Fig. 4c as

. _ ) ) asteps has elapsed. In addition, we examine the effect of re-
function _0f_t|me, _and de_tern_une from this the Hu_rst expo- sampling the trajectory location data at coarser intervals of
nent. This is carried out in Fig. 11, where we obtain a valuey " \va scale the problem up to the dimensions of a typi-
of H ~ 0.64 .04 after 1000 time-steps. cal ocean trajectory, although we note that this proves to be
computationally expensive.
8 Conclusions In the literature, approaches to wind-induced ocean turbu-
lence are usually based on the mechanism of wave propaga-
We have proposed a simple physical mechanism to explairtion (see, for example, Sect. 4.3 of Kraus, 1972), and are de-
the generation of velocity fluctuations in the surface regionrived from a treatment of momentum transfer at the ocean-air
of an ocean. This is based on the viscous exchange of iminterface. The essential usefulness of the present approach,
pulse between the ocean and an evolving atmospheric boundhased on the exchange of impulse, follows from the relation-
ary layer. The true geophysical phenomenon will be compli-ship between impulse and vorticity (vorticity is the curl of
cated by many additional dynamical considerations, such agnpulse density). Thus, in order to impart impulse to the
temperature gradients, buoyancy, surface wave phenomenagcean, vorticity is generated. The resulting flow evolution is
coriolis effects, and ocean drift current. In the present modelgexpressed through a nonlinear transport of a tangential im-
we attempt to isolate a single physical component from thispulse from the ocean surface. Such a process is complemen-
complex system, namely the aspect of tangential impulse extary to that of wave formation (which is associated with the
change. exchange and transport nbrmally-orientedmpulse). The

The ocean-atmosphere exchange of impulse is demon-
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two processes may be superposed, and under this circunmodel of turbulent transport (e.g. Viecelli, 1989). By way of
stance, they will almost certainly be coupled. contrast, the approach described in the present note does not
Thus, we introduce a numerical model in which wind invoke an explicit turbulence model, rather we seek to form
flowing tangentially at the ocean surface becomes the causa Lagrangian model of the equation of motion itself Eq. (4)
agent for the creation of vortex doublet sheets. The ocean iand model its associated boundary conditions kinematically.
represented as a fluid which, in the mean, is stationary; in this We draw attention to a further distinguishing feature of
fluid, a fluctuation field (induced by these doublet elements)the present approach. We have described a specific viscous
evolves into depth. When this evolving impulse distribution mechanism whereby vortex doublet sheets are continually
interacts with a passive tracer at depth, the tracer experiencagenerated at the ocean’s surface. The implication of Eq. (4) is
translation in its fixed plane and, in this process, describeghat these elements subsequently diffuse into the ocean: the
a fractal trajectory. We emphasize that the ocean itself doe#nitial direction of this diffusive flux is predominantly down-
not undergo macroscopic drift in the present model. ward. As this diffusion proceeds, a tracer float submerged
We note that our impulse-based explanation for the frac-at a constant depth is constrained to inscribe its trajectory
tal dimension of passive tracer trajectory poses an alternain a horizontal plane that is normal to this direction of flux.
tive to that derived from the considerations of dynamical Although there is a continual movement of doublet elements
systems theory. In various phenomenological theories opassing normally through this trajectory plane, the sheet den-
mesoscale turbulence, the ocean surface at such scale is caity on the plane remains, on average, stationary. Thus, as
sidered to consist of ensembles of horizontal large-scale vortime advances, there is little significant mean time-evolution
tex eddies, i.e. with dipole moments oriented normally to of sheet density in the drifter’s plane of motion. This is in
the ocean surface; see, for example, DiBattista et al. (1998}ontrast with the case of a “free” tracer which is materi-
or Provenzale (1999). Coherent vortical structures (whichally transported (passively and without constraint) within the
are typically three-dimensional) can originate from purely same three-dimensional diffusing field. For similar reasons,
geostrophic mechanisms. In some circumstances, a lowthe present case is distinguished from that of a tracer pas-
dimensional system, consisting of such eddies, can exhibisively transported within a dispersing patch of point vortices
deterministic chaos, and this can be characterized by a fradn a two-dimensional plane.
tal dimension. If the cyclic variations of the system are rapid The notion of a “fluctuation field” in the ocean with a
enough, one could conceive of eddy configurations whichkilometer spatial scale may seem to violate human intuition
give rise to passive tracer paths of non-integer fractal dimenconcerning the scale of a “fluctuation”. The question is re-
sion. However, such a mechanism seems highly contingentlly one of perspective in the context of a continuum dou-
Atracer in the presence of a slowly-rotating, large-scale eddyblet sheet whose partitioning reveals the property of self-
(or eddy-pair) could plausibly be expected to exhibit the inte-similarity (incidentally, this is in contrast to the case of a sin-
ger dimension® = 1) normally associated with an analytic glet vortex sheet). In effect, a small fragment of a large dou-
curve arising from a harmonic (in this case, Biot-Savart) po-blet sheet retains in miniature its integrity as a doublet sheet.
tential. Eddies generated by coriolis forces or by topographicThe converse is also true: aggregates of uniform contiguous
stress form a visible part of the macroscopic flow at largesmall-scale doublet elements, perceived at sufficiently large
scale. The question is whether such objects themselves corcale, are mathematically indistinguishable from a consoli-
stitute the near-surface fluctuation field, and whether they arelated sheet.
responsible for the fractal dimension of tracers. At the “hundred kilometer scale”, the notion that a fluc-
We are attracted to the alternative notion that a much largetuation field in the ocean is “wind-driven” may also need
stochastic system better represents the condition of the naklaboration. In this context, we understand “wind” to be
ural ocean. (The underlying contrast between the two apthe large-scale movement of the atmosphere relative to the
proaches is analyzed in Osborne and Provenzale, 1989). Wecean. What is being modelled at this scale is the viscous
are drawn to the postulate that the near-surface fluctuatioiteraction of these two fluids at their mutual interface.
field is derived from a mechanism that is common throughout - The fact that the estimates of fractal dimension that result
a significant spectrum of spatial scales, from 1 m t80  from the present model broadly resemble those determined
This range would hint at the universality of structure gen-from geophysical experiment lends plausibility to the pro-
erally observed in turbulence phenomena. This is to suggegtosed viscous mechanism of tangential impulse-exchange at
that fractional Brownian motion in the ocean bears a scale rethe ocean surface. As we have explained, the mechanism
lationship to eddy diffusivity in general, for example, in the is robust (i.e. fractal dimension does not depend on spe-
meter-scale experiment reported by Richardson and Stommeific configurations of macroscopic eddies); furthermore, it
(1948) and in the observations of fractional Brownian motionis spatially pervasive over the ocean surface, and it fits nat-

in smaller bodies of water first reported by Hurst (1951).  urally above a hierarchy of similar phenomena occurring at
We note a number of alternative stochastic approaches t@rogressively smaller scales.

the question of passive tracers in turbulent flow. For example,

a model equation can be postulated with a random forcingAcknowledgementsThis paper was originally presented at the 25th
term (e.g. Carmona et al., 1997). In addition, one can postuGeneral Assembly of the European Geophysical Society, Nice,
late a specific scaling law and develop from this a Lagrangiarf-rance, 25-29 April 2000.
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