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Abstract. An impulse-based model is developed to represent
a coupling between turbulent flow in the atmosphere and tur-
bulent flow in the ocean. In particular, it is argued that the
atmosphere flowing horizontally over the ocean surface gen-
erates a velocity fluctuation field in the latter’s near-surface
flow. The mechanism for this can be understood kinemati-
cally in terms of an exchange of tangentially-oriented fluid
impulse at the air-sea interface. We represent this exchange
numerically through the creation of Lagrangian elements of
impulse density. An indication of the efficacy of such a
model would lie in its ability to predict the observed frac-
tal dimension of lateral trajectories of submerged floats set
adrift in the ocean. To this end, we examine the geometry of
lateral tracer-paths determined from the present model.

1 Introduction

The atmosphere over an ocean (for heights up to 1000 m)
consists of a turbulent boundary layer; furthermore, the
ocean itself (for depths down to 100 m) is characterized by
a field of relatively small-scale turbulence. Despite the obvi-
ous differences in character between these two turbulent pro-
cesses, it would seem natural to ask whether they are coupled
in some causal way.

In the following, we develop a Lagrangian model of the
equilibrium of forces at the interface,∂D, between a flat,
stationary ocean and the atmosphere. We express this as an
exchange of impulse. We understand impulseI in a standard
way as the time-integral of force,F , in the limit of vanishing
time-interval,δt , i.e. as the integral

I (r, to) = lim
δt→0

∫ to+δt

to

F (r, t ′) dt ′, (1)

whereF (r, t ′) represents the force field acting at the point
r ∈ ∂D, at time,t ′. An formulation in terms of impulse is a
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useful way to represent the present physical problem of the
interaction between a boundary and an impinging fluid flow.
By considering fixed instants of time (δt → 0), we draw
some insight from problems and solutions associated with
static equilibria. The equilibrium of an interface between two
relatively moving, materially homogeneous, fluid media can
be understood in the following terms: flow in one medium
imparts an impulse to an adjoining medium at the mutual in-
terface between them. In turn, the adjoining medium imparts
an equilibriating impulse to the first medium. For horizon-
tal flow over a planar ocean, this may be stated specifically:
wind flowing tangentially over the ocean imparts an impulse
to the ocean; the ocean imparts an equilibriating impulse to
the atmosphere. The effect of this exchange on the atmo-
sphere is the formation of the atmospheric boundary layer;
the effect on the ocean is a velocity fluctuation field evolving
downwards into the ocean.

The foregoing exchange of impulse is conducted in a way
that is consistent with the boundary conditions to be satisfied
at ∂D, where we require that the two fluids do not interpen-
etrate, and that there is no “slip” at their mutual boundary.
This latter “no-slip” condition is consistent with the creation
of an impulse in the form of a thin vortex doublet sheet, co-
incident with the interface (there is a close relationship be-
tween elements of impulse of compact support and vortex
elements; see Summers, 2000a, b, 2001). Once an impulse is
created, it proceeds to evolve from the interface into the sur-
rounding fluid according to an equation of motion introduced
by Oseledets (1988). Turbulent flow has been associated with
this evolution; (see Buttke, 1993; Buttke and Chorin, 1993;
Chorin, 1994; Smereka , 1996; Summers, 2001). The turbu-
lence fluctuation field can be attributed to the macroscopic ef-
fect of an evolving ensemble of vortical structures in a fluid.
In the present case of a created impulse at the surface of an
ocean, the relevant evolution is that of a system of vortex
doublet sheets.

One specific signature of the velocity fluctuation field in
the ocean has been observed for horizontal scales of 10–
200 km, and for vertical depth scales of up to 100 m. This
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arises from the fact that experimentally observed trajecto-
ries of passive tracers in the horizontal flow near the ocean
surface describe fractal curves; these curves have a Haus-
dorff dimension of about 1.3. Such trajectories have been ob-
served, for example, in the Kuroshio Extension in the Pacific
Ocean (Osborne et al., 1989) and in the northern Atlantic
Ocean (Sanderson and Booth, 1991). The global distribution
of the observations suggests that some degree of universal-
ity is obtained. The observations have attracted interest from
the perspective of dynamical systems theory (Osborne and
Caponio, 1990). The fractal character of such trajectories
can be numerically reproduced in particle models based on
fractional-order Brownian motion in a plane (see, for exam-
ple, Addison et al., 1997).

Tracer trajectories in the ocean do not exhibit the Haus-
dorff dimension expected of a purely harmonic process, such
as that resulting from a linear superposition of waves (such a
process would have a fractal dimension of 1). In addition the
trajectories are not consistent with simple Fickian diffusion
(with dimension 2). The observed non-integer dimension has
been widely interpreted as a signature of ocean turbulence
(for example, see Osborne and Caponio, 1990).

The surface of the ocean is a complex system. The
prospect might seem remote that one could isolate (in a math-
ematical model) vorticity-induced velocity fluctuations from
the remaining flow. However, we shall see (Sect. 2) that
progress can be made if we exploit a decomposition of the ve-
locity field which was introduced by Kuz’min (1983). When
this decomposition is applied in the context of an ocean sur-
face, it effectively separates the flow problem into that as-
sociated with a “vortex sheet” at the interface (whose self-
interaction and resulting instability are classically related to
surface wave propagation; (for example, see article 239 of
Lamb, 1932), and that associated with velocity fluctuations
induced by a distribution of sub-macroscopic vortex doublet-
sheets decending into the ocean.

2 Flow as an evolution of impulse

A point source of impulse may serve as a Lagrangian ob-
ject which induces a velocity field with dipolar structure (see
Sects. 2.4, 2.5 and 7.2 of Batchelor, 1967), or (Sect. 11.2 of
Lighthill, 1986). In two dimensions, this is a vortex pair or
doublet. An ensemble of such objects constitutes, in the ab-
sence of viscosity, a Hamiltonian system (Roberts, 1972); a
dissipative perturbation of such a system reflects the dynam-
ics of flow with slight viscosity. In order to develop an ocean
model based on such elements for wind flow over a station-
ary boundary, we need to determine the relationship between
the impulse and the relevant boundary conditions.

This is achieved by considering the decomposition intro-
duced by Kuz’min (1983):

u = m + ∇φ, (2)

wherem is a vector field (normalized with respect to mass
density) which is of compact support and has non-vanishing

divergence. Buttke (1993) (see also Buttke and Chorin,
1993) demonstrates thatm is, by virtue of its compact sup-
port, related to the impulse through the volume integral

I(r) = ρ

∫
V

m dV . (3)

This is to say thatm is a volume density of impulse,I . ∇φ is
an irrotational extensive field. We read Eq. (2) as a material
decomposition ofu into a local, source-like component (m)
and into a non-local, ensemble-averaged field (∇φ). Equa-
tion (2) can be understood as a Hodge decomposition ofm

into divergence-free (u) and curl-free (∇φ) components. We
note from Eq. (2) that vorticity defined throughξ = ∇ × m

also has compact support.
Oseledets (1988) determined an equation of motion for

m (see also Buttke, 1993) by substituting Eq. (2) into the
Navier-Stokes equation to obtain

Dm

Dt
= −(∇u)T m + ν1m (4)

(where we have invoked vector identities and have chosen the
geometric gauge condition described by Russo and Smereke,
1999). Theij -element of the matrix(∇u)T is ∂uj/∂xi ; the
parameterν = µ/ρ denotes the kinematic viscosity of the
fluid.

Since our intention is to represent the impulsive action at
the ocean-atmosphere interface at a fixed instant, we take the
divergence of Eq. (2) to determine the Poisson equation

1φ = −∇ · m. (5)

We infer from this that if we have a known distribution of im-
pulse density in an atmospheric flow and if we have gradient
boundary conditions forφ at the ocean-atmosphere interface,
then we can determineφ in the atmosphere to an additive
constant; hence, we can determine∇φ there uniquely, and
thereby specify the decomposition Eq. (2). In the following
section, we develop a relevant gradient boundary condition
for φ (see also Summers, 2000a, b, 2001).

3 The ocean-atmosphere interface

3.1 Boundary conditions in IR3

We will assume at the interface between the air and ocean
that the two fluids do not interpenetrate at molecular scale;
furthermore, we assume the two fluids adhere at their com-
mon surface of contact, i.e. they experience a zero “slip”
at that point. For our purpose of modelling the background
ocean turbulence, we consider an idealized cartesian domain
of flow (x, y, z) ∈ IR3, where the interface is taken to be
the planez = 0. For the purpose of showing the growth
of an atmospheric boundary layer, and to give the problem
a bounded expression, we consider a uniform-profile atmo-
spheric flow (occupyingz > 0) of magnitudeU to begin
impulsively at t = 0, and to flow steadily in the positive
x-direction over the surface of a geometrically flat ocean,
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occupying the regionz ≤ 0. We apply the viscous bound-
ary conditions over a representative finite lateral domain in
x > 0 characterized by a lateral length scale ofLo. We de-
note the uniform density of the atmosphere asρA, and that
of the ocean asρW , and consider flow in the interiors of both
media to be incompressible. In this situation, consistent with
the previous conditions atz = 0, the impinging wind im-
parts an impulse to the ocean, an impulse which is oriented
tangentially in the positivex-direction. The ocean will im-
part an equilibriating impulse to the atmosphere, an impulse
which will be oriented in the negativex-direction.

We assume the ocean is otherwise stationary at macro-
scopic scale (i.e. we neglect drift currents). The problem
as stated has two-dimensional symmetry; we confine our im-
mediate attention to thex − z plane (in Sect. 6, we consider
thex − y plane).

3.2 Two-dimensional statement in thex − z plane

The horizontal flow of the atmosphere over the stationary
planar interface∂D, satisfies the boundary conditionu = 0,
which we express as the union of impermeability and no-slip
conditions, i.e. as

ẑ · u = 0
x̂ · u = 0

}
on ∂D, (6)

whereẑ is a unit outward (relative to the ocean) normal to∂D
and where we understand the unit vectorx̂ to be tangential to
the ocean surface.

We substitute Eq. (2) into Eq. (6) to determine

mA · ẑ = −∂φ/∂z

mA · x̂ = −∂φ/∂x

}
on ∂D, (7)

where the subscriptA denotes the impulse on the atmosphere
side of the interface.

Two complementary solutions to Eq. (5) result if we con-
strainmA to be respectively tangential or normal to∂D. The
former implies the condition∂φ/∂z = 0, known as Case I in
Summers (2000a, b; 2001). The latter implies∂φ/∂x = 0 on
∂D, known as Case II in Summers (2000a, b; 2001). In this
way, we decompose the interaction of two fluids at their inter-
face into two processes (the superposition of which expresses
the complete interaction). If atmospheric flow is constrained
to be in thex̂ direction and if the interface is constrained to
occupy (over time) the surfacez = 0, then the impulse ex-
change is expressed by the former condition alone (i.e. by
∂φ/∂z = 0 on∂D). Thus, we create a tangential impulse to
effect no-slip atz = 0.

3.3 Impulse tangential to the interface

We consider the impulse imparted to the atmosphere,mA,
at z = 0+ to be tangential to the ocean, i.e. we constrain
the impulse in the atmosphere to satisfymA · ẑ = 0 on∂D.
Equations (7) now become

mA · ẑ = 0
mA · x̂ = −∂φ/∂x

}
on ∂D, (8)

with the following gradient condition to be satisfied byφ on
∂D:

∂φ

∂z
= 0. (9)

(We also impose the condition that the solution be consistent
with the incident flow field, i.e. we haveu = U x̂ at the
lateral infinities of the half-spacez > 0, x → ±∞.)

At t = 0, given Eq. (9) we can solve Eq. (5) and hence,
determine the gradient field∇φ. We relate this to an irrota-
tional field on∂D throughu∗

= ∂φ/∂x x̂, which satisfies
the condition

u∗
· ẑ = 0. (10)

We hence deduce from Eq. (8) that the impulse density on
∂D satisfiesmA = −u∗: this we understand to be the im-
pulse imparted to the atmosphere by the ocean. The (Case
I) impulse imparted to the atmosphere is consistent with es-
tablishing no-slip at∂D. The determination ofmA created
at ∂D, does not depend on the mass densityρA, but simply
on the magnitude ofU ; furthermore, the subsequent evolu-
tion in z > 0 only depends uponρA through the kinematic
viscosity of the atmosphere,νA.

3.4 The response of the ocean

While theevolutionof mA in z > 0, according to Eq. (4), pro-
ceeds independently from theevolutionof the impulse den-
sity in the ocean,mW , the two ensembles of impulse sheets
are intimately related to each other at their point of creation
on ∂D. Specifically,mW depends entirely onmA (and onρA

andρW ) for its existence. The evolving impulse in the ocean
is causally derived from the motion of the atmosphere.

We deduce from Eq. (3) the equilibriating impulseI at∂D
by considering unit test volumes on either side of the inter-
face; for equilibrium at a point on the interface, we require

ρAmA + ρWmW = 0.

Hence, the impulse densitymW , which must be imparted by
the atmosphere to the ocean at their common interface, is

mW = − ρA mA/ρW . (11)

This tangential impulse density created in the ocean atz =

0− will subsequently evolve downwards into the ocean.
Thus, we present the problem of ocean-atmosphere coupling
as a two-dimensional Lagrangian problem in a vertical sec-
tion. We pursue this numerical model in Sect. 5.2.

3.5 Simulating “dipole creation” in three dimensions

In order to understand lateral flow in the ocean a model of a
three-dimensional atmospheric boundary layer would be re-
quired. We note that, so far as the ocean itself is concerned,
the atmosphere serves as an impulse generator at the surface
z = 0. Some understanding of the three-dimensional kine-
matics of an impulse in the ocean may be possible, if we
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represent the influence of the atmosphere through an “im-
pulse creation boundary condition”, i.e. at each time-step,
we prescribe a distribution of wind-flow values on the ocean
surface, and create an impulse doublet in response. There-
fore, the wind is to be treated as a time-dependent creation
boundary condition for an impulse in the ocean.

We can, for example, conceive of this surface condition in
terms of a random surface distribution of wind flow direc-
tions (constrained to have a positivex-component, perhaps
to capture a prevalent wind direction). This is intended to
represent instantaneous wind flow over a surface expanse of
ocean. Instead of evolving elements determined by partition-
ing a three-dimensional dipole sheet, we convert sheet ele-
ments into ameliorated point vortex dipoles with the same
orientations of moment as the sheets from which they are
derived, and with strengths, such that they induce the same
velocity in the far field as these sheets. This resembles a stan-
dard hybrid approach used in vortex sheet methods to effect
a matching of boundary layer Lagrangian sheet elements to
point elements appropriate to an interior.

Such an expedient stops short of solving a Lagrangian
three-dimensional boundary value problem. Even so, some
insight into the qualitative character of the fluctuation field
in the upper ocean may be anticipated from it. (The fractal
dimension of drifter trajectories is one such qualitative char-
acterization.) We pursue this numerically in Sect. 6.

4 Thin-sheet Lagrangian elements of impulse (IR2)

We consider the viscous interaction of the wind and the ocean
to be the only source of impulse density in the flow of either
medium. This is an essential simplifying assumption of our
model. We pose this as a two-dimensional problem in an
x − z vertical section. We represent the tangential impulse
confined to the surface∂D (z = 0) as a thin doublet sheet.
We can think of this as two vortex sheets, each with a linear
vorticity density of the opposite sense and separated from
each other by a distance ofd. The doublet sheet derives from
a thin-sheet limit

lim
d→0
κ→∞

κ d =M,

where the bounded limitM represents a tangential “impulse
per unit length”. Such a sheet can be partitioned and the re-
sulting segment elements can be made to form a Lagrangian
ensemble. Considering a segment of length` aligned in the
x-direction and centered at(xo, zo), the velocity it induces
at (x, z) is determined in Eqs. (22) and (23) in Summers
(2000a).

We ascribe to an impulse sheet atz = 0+ an impulse per
unit length ofMA = −u∗ `, whereu∗ is the magnitude at
z = 0 of the irrotational field discussed in Sect. 3.2: this is
evaluated at the mid-point of the sheet segment. The induced
velocity fields are desingularized (see Krasny, 1986) by in-
troducing an additive smoothing parameter into their respec-
tive denominators.

The choice of partition parameter` may be based on a
physical argument: choosing̀∼ O(ν) is consistent with a
flow in which translation due to inertial contributions is com-
parable to viscous displacement (see Summers, 2000a). This
would represent the condition usually associated with the for-
mation of a laminar boundary layer, for example. On the
other hand, larger values of` may be used to reflect the scale
of surface roughness in the case of a “non-smooth” ocean
(this could be chosen to reflect the scale of the surface wave
pattern, for example).

The principle of impulse creation that we have described
requires us to determine an irrotational fieldu∗

= ∇φ in
the atmosphere, satisfyingu∗

· ẑ = 0 on ∂D. A “null-
field” approach to solving this problem is described in Sum-
mers (2001). Note that in the present context, we do not
need to determine an explicit solution to the Poisson Eq. (5);
rather, we can invoke a method of images. The velocity
field induced by an impulse dipole of momentmA, located
at r = (x, y, z) and consistent with the conditionuA·ẑ = 0
at z = 0, is achieved by introducing an image dipole at
r ′

= (x, y, −z); the strength of this image will bemA, and
its orientation will consitute a reflection across the interface
z = 0.

The argument also applies to the determination of the ve-
locity in the ocean induced by an impulse dipole of mo-
ment mW , located atr = (x, y, −z), and consistent with
the conditionuW ·ẑ = 0 at z = 0. This is achieved by in-
troducing an appropriate image dipole “in the atmosphere”
at r ′

= (x, y, z).

5 The transport of doublet sheets

5.1 Splitting strategy

Once an impulse is created at a wall, it evolves into its re-
spective flow interior according to the equation of motion
Eq. (4). The dynamics of impulse are elucidated by the term
(∇u)T m in Eq. (4). This term can be expressed as the sum
of symmetric and antisymmetric tensors, so that we write

Dm

Dt
= −

1

2

(
(∇u)T + (∇u)

)
︸ ︷︷ ︸

extension

m

−
1

2

(
(∇u)T − (∇u)

)
︸ ︷︷ ︸

rotation

m + ν1m. (12)

This is to imply an evolution in the orientation and magnitude
of impulse, as well as its advection in the stream, and its
transport by viscous diffusion.

We pursue a Lagrangian numerical model based on a time-
splitting of the equation of motion. We consider Eq. (4) as
the simultaneous equation representing Euler advection,

Dm

Dt
= 0, (13)
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and viscous diffusion,

∂m

∂t
= ν1m. (14)

Added to these is the evolution of impulse density strength,
implied by

∂m

∂t
= −(∇u)T m . (15)

This latter splitting bears analogy to a common treatment of
vorticity stretching in three dimensions (discussed, for exam-
ple, in Gustafson and Sethian, 1991).

The Euler Equation (13) is modelled numerically by eval-
uating the interaction between each pair of impulse elements
(including their images). Note that these require modifica-
tion in order to express the relative rotation between sheet
elements (Summers, 2000a). We determine the advection of
the resultingn-body system of impulse elements by using
Runge-Kutta integration.

If we consider the evolution over a time-step intervaldt ,
then Eq. (14) is modelled by considering a dissipative pertur-
bation to the trajectories determined from Eq. (13), specif-
ically by imparting to each impulse element a random dis-
placement with zero mean and variance 2νdt . This repre-
sents a stochastic model of Browian motion (a random walk
model). There are deterministic methods of modelling such
diffusion, and these are numerically more accurate (see, for
example, Fishelov, 1990; Bernard, 1995).

As elements of a partitioned doublet sheet evolve from
the surface, they each actively induce a local contribution to
the velocity field. Since part of this evolution is a viscous
diffusion, the time variations of the ensemble-averaged in-
duced velocity field will reflect a stochastic character. This
field will, therefore, not be a manifestation of deterministic
chaos; the non-integer fractal dimensions that we will de-
termine (see Sect. 6) resemble, in this respect, those of the
stochastic processes described by Osborne and Provenzale
(1989).

5.2 Numerical examples in thex − z plane

By way of illustrating the exchange in a familiar context,
we consider the following reduced scale numerical exam-
ple. The parameters will be chosen to conform to the neigh-
bourhood of the Blasius profile: we conceive of a lateral do-
main on the order of 1 m. We considerρA/ρW = 0.001,
with both fluids being relatively viscous, i.e. we choose
νA = 0.01 m2/s andνW = 0.01 m2/s. We also choose pa-
rameters̀ A = 0.001 m,`W = 0.001 m withdt = 0.05 s.
The smoothing parameter is in both cases 0.6 times the sheet-
segment length. Our interest in examining this example re-
lates to the fact that although the flow in the “air” medium
is turbulent, it still preserves (in time average) something of
the character of Blasius self-similarity. As such, the example
serves to demonstrate the exchange of impulse in a numeri-
cally transparent setting.

The upper diagram in Fig. 1 represents the distribution of
doublet sheets in this scale-model of the atmosphere and the

ocean. In the atmosphere (z > 0), a turbulent boundary layer
has developed over eight steps, which is represented by some
50 000 elements; in the ocean, there is an evolving distri-
bution of elements (9000 elements). Note that by virtue of
Eq. (11), each element inz < 0 carries a dipole moment
0.001 times its created counterpart inz > 0. Furthermore,
the implication of the lower particle density inz < 0 (i.e.
lower compared to the atmosphere) is that there is a smaller
impulse per unit volume at that point. As one descends into
the ocean, this density becomes less, indicating the effect of
dissipation on the ensemble. The lower contour plot in Fig. 1
represents the velocity magnitude level curves in the respec-
tive media. In the atmosphere, the contours represent magni-
tude levels in the range of 0− 1 m/s; in the ocean, the curves
represent a range of 0− 0.003 m/s.

6 Trajectories of submerged drifters in near-surface
flow

6.1 “Dipole creation” in three dimensions

We consider that over a large expanse of ocean (thousands
of kilometers) and over a long duration of time (weeks), the
wind flow at any point on the ocean surface may change its
speed and direction. As a consequence, the impulse imparted
to the ocean at such a point may assume a variety of strengths
and directions in the lateral plane. We model this situation
by assuming a distribution of wind speeds which is random
in magnitude and direction (although the wind can be con-
strained to veer within an angular pencil to reflect a prevalent
wind direction). Given the consequential downwardly evolv-
ing and continuously created distribution of dipoles, we ask
the question: what is the character of a passive tracer con-
strained to move in a lateralx − y plane at depthzD, in the
midst of this impulse evolution?

To model passive tracers in anx − y plane (i.e. mov-
ing in the projection – onto a plan section with the depth
– of a three-dimensional velocity field), we propose to model
the evolution in a simplified manner. Although stretching
and rotation are explicitly modelled in the numerical experi-
ment described in Sect. 5.2, these processes make a relatively
small contribution to the evolution in the ocean. This situa-
tion is a consequence of Eq. (11): the strength of the doublet
moments inz < 0 is three orders of magnitude smaller than
their counterparts inz > 0 (having chosenρA/ρW = 0.001.)

In the context of the present three-dimensional case, we
will model only the diffusion and advection of elements, i.e.
we suppress the possibility for stretching and rotation in the
ocean. Such an approximation may serve our limited purpose
in modelling the trajectories of tracers. This expedient will
greatly reduce the computational effort, although it does sup-
press the tendency towards large-scale instability, or the ten-
dency towards coherence of elements to form macroscopic
structures. These appear to be small effects, and in any case,
they are of less importance to us as we pursue the creation of
a sub-macroscopic fluctuation field.
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Fig. 1. (Above) Distribution of impulse elements iny−z plane (i.e. in vertical section) after 8 time-steps have elapsed; (below) corresponding
level curves of magnitude of the velocity field.

We shall create and partition an impulse doublet sheet, as
described in Sect. 4. We will convert each element into an
equivalent three-dimensional impulse dipole. The strength
of this dipole (M) will be chosen (numerically) so that the
velocity field it induces in IR3 \ supp{M} approximates that
induced by its thin sheet counterpart. Figure 2 illustrates the
comparison of field components (in the verticalx − z plane)
induced by a doublet sheet (of densityM) and its equivalent
ameliorated point dipole element (of momentM).

We release a passive marker into a procession of point
impulse elements which evolves downwardly from the sur-
face, at position(x, y, −zD), with the depth of the trajectory
plane,zD, chosen to approximate the ratio of drifter depth
to the spatial extent of its ultimate trajectory. We allow the
marker to negotiate its way in this plane through the (pro-
jected) velocity field induced by the evolving distribution of
impulse dipoles. Specifically, the velocity field induced at
r = (x, y, −zD) by a vortex point dipole of momentM, lo-
cated atro = (xo, yo,−zo), is given by

uM(r) =
3(M · r̂) r̂ − M

|r − ro|
3

+
3(M ′

· r̂
′
) r̂

′
− M ′

|r − r ′
o|

3
, (16)

wherer̂ is the unit vector in the directionr − ro; r̂ ′ is the
unit vector in the directionr − r ′

o, wherer ′
o is the image

point (xo, yo, +zo). The vectorM ′ represents the reflection
of M acrossz = 0. In this experiment,M is understood to be
horizontally oriented throughout the evolution. The simple
Krasny-type desingularization of a sheet element mentioned

in Sect. 4 is not possible for an amelioration of a point ele-
ment (i.e. an element that will have no intrinsic spatial scale).
Rather, the field of a point dipole (16) is to be desingularized
through convolution with a Beale and Majda (1985) fourth-
order smoothing kernel

f (r/δ) = 1 +

(
3

2
(
r

δ
)3

− 1

)
e−(r/δ)3

. (17)

To match the field induced by a smoothed point dipole to that
of a doublet sheet, the smoothing parameter,δ, is adopted
in terms of the partition parameter associated with the dou-
blet sheet; typically, this smoothing parameter is chosen to
be some fraction of̀.

Although the velocity field induced by an ensemble of
such dipoles is heterogeneous (especially at a scale compa-
rable toδ), it is nevertheless by design a desingularized and
differentiable field. A passive tracer is impelled by this resul-
tant velocity field alone. Although Lagrangian impulse ele-
ments undergo a Brownian motion that is consistent with the
equation of motion for impulse (i.e. consistent with viscous
diffusion), passive tracers are simply advected in the velocity
induced by these elements; this emphasizes that no stochastic
displacement is imparted to the passive tracers themselves.

6.2 The fractal dimension of an irregular path

As an initial experiment, we adopt directly the numeri-
cal parameterization associated with the model described in
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Fig. 2. Velocity components induced by a two-dimensional dou-
blet sheet (solid line) and an equivalent three-dimensional impulse
dipole (dotted line).

Sect. 6, namelyνW = 0.02, `W = 0.01 m with time-step
interval dt = 0.05 s. We conceive of the impulse gener-
ated at successive points of time at the surfacez = 0 as
an ensemble of point impulse dipoles of uniform moment;
these are randomly oriented at their points of creation in di-
rections tangential to the ocean surface. The elements are
positioned randomly (and uniformly) in a unit disc lying in
z = 0. The density of the ensemble created at each time-step
will be chosen to be consistent with the density illustrated in
Fig. 1. Thus, we create some 3000 elements at each time-
step. In order to bound the number of Lagrangian elements,
that accumulate in the time-evolution, we delete these after
they have reached a depth of 35zD. (A schematic representa-
tion of the model geometry is illustrated in Fig. 3).

The impulse moments are randomly oriented in the fol-
lowing way: the moment of each element is prescribed as
(M cosθi,M sinθi, 0) at z = 0, whereθi = −

π
2 + πqi ,

and{qi} is a set of random numbers with uniform distribu-
tion in (0, 1). Thus, the lateral orientation lies in a range
θi ∈ [−

π
2 , +π

2 ], i.e. the orientations are scattered in such a
way that their moments are always positively oriented. This
implies an element of anisotropy in the ensemble of dipole
elements (see Sect. 6.4).

Figures 4a, b and c illustrate respectively the trajectory of
a typical passive marker after 30, 100, and 1000 steps have
elapsed, released from a pointr = (0.4377×10−4, 0.3452×
10−5, −0.2× 10−2). (The trajectories of Fig. 4 would repre-
sent, in an ocean context, the excursions from a drift current,
i.e. they are the paths after a mean drift has been subtracted.)

We can seek to understand any implicit self-similarity in
these trajectories by characterizing the paths as fractal curves
of some Hausdorff dimensionD. To approximateD, we
can use a strategy introduced by Richardson (see Sect. 7 of
Richardson, 1961) or (Sects. 5 and 28 of Mandelbrot, 1977):
we “walk” a pair of dividers of fixed separation,η, along the
trajectory in order to measure its length in a contiguous se-
quence of uniform segments, each of which has end-points

a

z = 0

z = − z
D

Tracer plane

Ocean surface

b

Plan view

Fig. 3. Schematic representation of dipole creation:(a) dipoles cre-
ated at the ocean surface evolve into depth; a tracer is confined to
move in the planez = −zD ; (b) plan view (the prevalent wind
direction points to “top of page”).

that are coincident with the trajectory. Figure 5 illustrates
the path of Fig. 4b after this has been “measured” in this
way, withη = 2 × 10−5. An efficient algorithm (which we
employ here) for constructing the sequence of line-segments
that constitute this “measuring”, is described by Rapaport
(1985). The “length” ofη-sequence, denoted byL(η), is sim-
ply the productNη, whereN is the number of segments in
the sequence.

A fractal dimensionDL, which approximatesD, can be
deduced from the relationship

L(η) = Aη1−DL (18)

(see Rapaport, 1985; Mandelbrot, 1977; Voss, 1988), where
A is a constant independent ofη. In practical terms, one con-
structs a number ofη-sequences corresponding to a range
of divider separations; in this way, the functionL(η) is de-
veloped. If the trajectory exhibits strict self-similarity, then
the exponent in Eq. (18) will be a constant from whichDL

can be deduced. In the context of numerical or physical ex-
periments, one may expect such self-similarity to obtainin
the average, specifically over an ensemble of realizations. In
such a case, the self-similarity (or more accurately expressed,
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  0. 
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c.

Fig. 4. Passive tracer trajectories in the horizontal planez =

−0.002 after 30, 100, and 1000 steps. Impulse dipoles are ran-
domly distributed, and randomly oriented in a positive sense (i.e.
such thatθ ≤ π ). Time interval isdt = 0.05 s.

the “self-affinity”) expresses itself through a linear regression
applied to the log-log plot ofL(η) as a function ofη.

The initial “linear part” of the positive gradient in the
curves of Fig. 6 corresponds to divider separations that are
too small to encompass the entire length of the trajectory in
(arbitrarily) 500 contiguous segments. The following part
of the curve, roughly with a zero gradient, corresponds to
divider separations that do encompass the full length of the

η = 2 × 10−5

start

finish

Fig. 5. The trajectory of Fig. 4b, “measured” using Rapaport’s
(1985) algorithm with the divider separationη = 2 × 10−5.

trajectory, but are smaller in length than the smallest segment
in the trajectory. It is the final part of the curve that yields
through its gradient the parameterDL.

In the case of the trajectories illustrated in Fig. 4, we deter-
mineL(η) for a range of values ofη. The fractal dimension
is calculated from the log-log regression illustrated in Fig. 6.
This exercise shows how the truncation of the data record for
this particular trajectory affects the calculation of the fractal
dimension: this varies between 1.2 and 1.5, depending upon
the length of the measurement record (which ranges from 30
to 1000 locations, equispaced in time).

The data associated with the trajectory illustrated in Fig. 4
can be reconfigured in another obvious way. We could
choose to sample the tracer locations at increasingly large
time intervals. In other words, we could reconstruct the tra-
jectory by taking every second node, every fifth node, etc.
The fractal dimensions associated with these reconstructed
paths are calculated (e.g. see Fig. 7) for sampling intervals
of dt = 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0. The calculated
fractal dimensionDL varies between 1.2 and 1.5. The errors
indicated are based on the regression residuals. This calcu-
lation is for a single trajectory; however, upon ensemble av-
erage, the error attached to the fractal dimension may well
be larger. The results of the exercises associated with Figs. 6
and 7 are summarized in Fig. 8. The measurement sensitiv-
ity that is illustrated by these purely numerical exercises has
been well understood for some time in experimental contexts.

We note the “curvature” of theL(η) plots of Figs. 6 and
7. In the context of modelling molecular diffusion, Rapa-
port (1985) associates such curvature with a non-Gaussian
distribution of vector displacements of active Lagrangian el-
ements. In the present case, our distribution of created dou-
blet elements has a directional bias, so we would expect this
to be non-Gaussian.

We note that the calculated fractal dimensions indicated
in these figures, determined from a very simple model, can
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Fig. 6. For cases illustrated in Fig. 4: log-log plot of length as
a function of divider separation; regression indicates approximate
fractal dimension in each case determined from Rapaport’s algo-
rithm.

be compared to that observed experimentally (at very differ-
ent scales) from drifter trajectories in the ocean: for example,
Osborne et al. (1989) obtainedDL = 1.27±0.06 and Sander-
son and Booth (1991) obtainedDL = 1.28± 0.08. We note,
however, that Osborne et al. (1989) determined their data to
be weakly multifractal in character, whereas we have pursued
a monofractal treatment.

6.3 Scaling up the problem to ocean dimensions

The scales associated with the numerical experiments in
Sect. 6.2 can be enlarged to reflect those of ocean drifter
experiments. We consider a sheet length parameter of` =

1000 m, and an ensemble of impulse dipoles created in a
disc of radius 105 m (100 km) randomly distributed in loca-
tion and orientation, as described previously. We consider
ν = 10−6 m/s2. The time-step is taken to bedt = 4320 s,
which is to say 1.2 hours. A passive tracer is released at
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Fig. 7. The case of Fig. 4c re-sampled at coarsened time intervals,
dt = 0.1, 0.25, and 0.5 s.

a depth of 100 m from the surface and its trajectory at this
depth is tracked over 70 steps (3.5 days). Figure 9a illustrates
the resulting trajectory, where we infer (using Rapaport’s al-
gorithm) a fractal dimension ofDL = 1.19± 0.08.

Figure 9b illustrates the trajectory for the same problem as
Fig. 9a, except the magnitude of incident wind is increased
from 1 m/s to 5 m/s. After 50 steps, we infer a fractal di-
mension ofDL = 1.27± 0.08. We attach no significance to
the closeness of this result to that derived from experimental
measurement: rather, it is a matter of coincidence. Calcu-
lations based on alternative trajectories (released from other
starting positions, for example) would result in another esti-
mate ofDL. One expects in any given ocean trajectory the
direction and strength of the incident wind-flow to vary over
the duration of the experiment; furthermore, the “roughness
scale” associated with the created impulse would also vary in
time. From the present numerical exercise, we can develop,
at best, a general expectation of the fractal dimension that
is consistent with the proposed model. However, numerical
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Fig. 8. Summary of effect on fractal dimensionDL of the truncation
and re-sampling of the trajectory of Fig. 4c.

experiment suggests that the approximate fractal dimension
that results from a variety of drifter starting positions falls
well within the intervalDL ∈ (1.0, 2.0).

6.4 Anisotropy of “wind-direction”

One can conceive of a physical situation in which an impulse
imparted to the ocean is generated by a prevailing wind flow-
ing in one direction. The resulting distribution of impulse
elements should mirror this as an anisotropy with respect to
dipole moment orientation. This anisotropy can be accom-
modated in a graduated way into the present simple model.
For example, if we chooseθi = −π + 2πqi , then we have
θi ∈ [−π, +π], which is to say that the orientations have
an isotropic distribution. Generally, if for somen ∈ [0, 2),
we chooseθi = −

π
n

+
2π
n

qi , then the moment vectors are
aligned in a pencil defined byθi ∈ [−

π
n
,+π

n
].

Figure 10 shows the relationship between calculated frac-
tal dimension and the pencil width (range inθ ) that controls
the level of anisotropy in the model; this calculation is de-
termined for 30-step trajectories with the numerical parame-
terization described in Sect. 6.2. The spread would seem to
contract as the condition of isotropy is approached.
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Fig. 9. (a)Trajectory over 70 steps (dt = 1.2 days) at ocean scale,
with U = 1 m/s;(b) trajectory over 50 steps forU = 5 m/s.

7 Fractional Brownian motion (fBm)

An ordinary Brownian motion random processB(t) has the
property that the sequence of incrementsB(to + t) − B(to),
with to representing some multiple oft , i.e. to = nt , is a se-
quence of independent Gaussian random variables with zero
mean and variancet . We write

〈 [B(to + t) − B(to)]
2
〉 = A t, (19)

whereA is a constant. This is the principle which underlies
the stochastic model of diffusion discussed in Sect. 5.1 .

The previous process can be generalized (Mandelbrot and
Van Ness, 1968; Mandelbrot, 1999); we consider a process
BH in which the variance satisfies

〈 [BH (to + t) − BH (to)]
2
〉 = t2H VH (20)

with the coefficientVH defined as

VH =
A

[0(H +
1
2)]2

{ ∫ 0

−∞

[(1 − t ′)H−
1
2 − (−t ′)H−

1
2 ]

2dt ′

+
1

2H

}
, (21)

where0 is the Gamma function. The parameterH ∈ (0, 1)

is called the Hurst exponent and the process is called a frac-
tional Brownian motion (or fBm). Ordinary Brownian mo-
tion is recovered as the special case whereH =

1
2.

The implication of Eq. (21) is that such a process does not
(at least forH 6=

1
2) consist of a sequence of independent

Gaussian increments, but that the coefficientVH is consistent
with Lagrangian “memory” over previous increments.

For a given tracer trajectory, one can plot the growth of its
variance as a function of time. A log-log plot of this vari-
able, if it is associated with a fBm process, will determine
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the Hurst exponent. For a trajectory with isotropic displac-
ments, this exponent bears a direct relationship to the fractal
dimension of the path: this is

D = min
[ 1

H
, 2

]
(22)

(derived by Mandelbrot (1985)). For ordinary Brownian mo-
tion, the path has a fractal dimension of 2 (i.e.H =

1
2 in

Eq. 22). For motion that is strictly non-fractal (e.g. parti-
cles advected in a potential flow field), one expects a simple
linear curve withD = 1 (i.e.H ↑ 1 in Eq. 22).

Thus, the limiting fractal dimension ofDL ' 1.5 associ-
ated with Fig. 4 could imply a fractional Brownian motion
with Hurst exponentH ' 2/3. The variance of such a pro-
cess (Eq. 20) should exhibit at4/3 time-dependence. The
parameterH can be determined directly from a numerically
determined trajectory by applying regression to the logarithm
of standard deviation on the logarithm of time, although a
long time record is typically needed to achieve a converged
estimate of this power (Rapaport (1985) discusses this in the
context of molecular diffusion). We should also note that
Eq. (20) represents a relationship that is true in ensemble av-
erage. Nevertheless, by way of demonstration, we plot the
standard deviation of the trajectory shown in Fig. 4c as a
function of time, and determine from this the Hurst expo-
nent. This is carried out in Fig. 11, where we obtain a value
of H ' 0.64± .04 after 1000 time-steps.

8 Conclusions

We have proposed a simple physical mechanism to explain
the generation of velocity fluctuations in the surface region
of an ocean. This is based on the viscous exchange of im-
pulse between the ocean and an evolving atmospheric bound-
ary layer. The true geophysical phenomenon will be compli-
cated by many additional dynamical considerations, such as
temperature gradients, buoyancy, surface wave phenomena,
coriolis effects, and ocean drift current. In the present model,
we attempt to isolate a single physical component from this
complex system, namely the aspect of tangential impulse ex-
change.
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Fig. 11.Hurst exponent calculated from a plot of standard deviation
against time (assuming fractional Brownian motion).

The ocean-atmosphere exchange of impulse is demon-
strated through a numerical model in vertical section. The
flow is represented numerically through the kinematics of
impulse doublet sheets. From this we develop a three-
dimensional Lagrangian model of the advection and diffu-
sion of impulse dipoles into a half-space ocean. In this three-
dimensional case, we represent the “atmosphere” by a con-
tinual generation of dipoles at the ocean surface. Our in-
centive for doing this is to model the fractal dimension of
the trajectories of passive tracers in a lateral plane at a fixed
ocean depth. The fractal dimension of such trajectories can
be approximated numerically using the algorithm of Rapa-
port (1985) or alternatively, by understanding the process as
a fractional Brownian motion.

For a scaled-down numerical example, we apply the model
in order to understand the effect on the fractal dimension of
truncating a record of a trajectory after a varying number of
steps has elapsed. In addition, we examine the effect of re-
sampling the trajectory location data at coarser intervals of
time. We scale the problem up to the dimensions of a typi-
cal ocean trajectory, although we note that this proves to be
computationally expensive.

In the literature, approaches to wind-induced ocean turbu-
lence are usually based on the mechanism of wave propaga-
tion (see, for example, Sect. 4.3 of Kraus, 1972), and are de-
rived from a treatment of momentum transfer at the ocean-air
interface. The essential usefulness of the present approach,
based on the exchange of impulse, follows from the relation-
ship between impulse and vorticity (vorticity is the curl of
impulse density). Thus, in order to impart impulse to the
ocean, vorticity is generated. The resulting flow evolution is
expressed through a nonlinear transport of a tangential im-
pulse from the ocean surface. Such a process is complemen-
tary to that of wave formation (which is associated with the
exchange and transport ofnormally-orientedimpulse). The
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two processes may be superposed, and under this circum-
stance, they will almost certainly be coupled.

Thus, we introduce a numerical model in which wind
flowing tangentially at the ocean surface becomes the causal
agent for the creation of vortex doublet sheets. The ocean is
represented as a fluid which, in the mean, is stationary; in this
fluid, a fluctuation field (induced by these doublet elements)
evolves into depth. When this evolving impulse distribution
interacts with a passive tracer at depth, the tracer experiences
translation in its fixed plane and, in this process, describes
a fractal trajectory. We emphasize that the ocean itself does
not undergo macroscopic drift in the present model.

We note that our impulse-based explanation for the frac-
tal dimension of passive tracer trajectory poses an alterna-
tive to that derived from the considerations of dynamical
systems theory. In various phenomenological theories of
mesoscale turbulence, the ocean surface at such scale is con-
sidered to consist of ensembles of horizontal large-scale vor-
tex eddies, i.e. with dipole moments oriented normally to
the ocean surface; see, for example, DiBattista et al. (1998)
or Provenzale (1999). Coherent vortical structures (which
are typically three-dimensional) can originate from purely
geostrophic mechanisms. In some circumstances, a low-
dimensional system, consisting of such eddies, can exhibit
deterministic chaos, and this can be characterized by a frac-
tal dimension. If the cyclic variations of the system are rapid
enough, one could conceive of eddy configurations which
give rise to passive tracer paths of non-integer fractal dimen-
sion. However, such a mechanism seems highly contingent.
A tracer in the presence of a slowly-rotating, large-scale eddy
(or eddy-pair) could plausibly be expected to exhibit the inte-
ger dimension (D = 1) normally associated with an analytic
curve arising from a harmonic (in this case, Biot-Savart) po-
tential. Eddies generated by coriolis forces or by topographic
stress form a visible part of the macroscopic flow at large
scale. The question is whether such objects themselves con-
stitute the near-surface fluctuation field, and whether they are
responsible for the fractal dimension of tracers.

We are attracted to the alternative notion that a much larger
stochastic system better represents the condition of the nat-
ural ocean. (The underlying contrast between the two ap-
proaches is analyzed in Osborne and Provenzale, 1989). We
are drawn to the postulate that the near-surface fluctuation
field is derived from a mechanism that is common throughout
a significant spectrum of spatial scales, from 1 m to 104 m.
This range would hint at the universality of structure gen-
erally observed in turbulence phenomena. This is to suggest
that fractional Brownian motion in the ocean bears a scale re-
lationship to eddy diffusivity in general, for example, in the
meter-scale experiment reported by Richardson and Stommel
(1948) and in the observations of fractional Brownian motion
in smaller bodies of water first reported by Hurst (1951).

We note a number of alternative stochastic approaches to
the question of passive tracers in turbulent flow. For example,
a model equation can be postulated with a random forcing
term (e.g. Carmona et al., 1997). In addition, one can postu-
late a specific scaling law and develop from this a Lagrangian

model of turbulent transport (e.g. Viecelli , 1989). By way of
contrast, the approach described in the present note does not
invoke an explicit turbulence model, rather we seek to form
a Lagrangian model of the equation of motion itself Eq. (4)
and model its associated boundary conditions kinematically.

We draw attention to a further distinguishing feature of
the present approach. We have described a specific viscous
mechanism whereby vortex doublet sheets are continually
generated at the ocean’s surface. The implication of Eq. (4) is
that these elements subsequently diffuse into the ocean: the
initial direction of this diffusive flux is predominantly down-
ward. As this diffusion proceeds, a tracer float submerged
at a constant depth is constrained to inscribe its trajectory
in a horizontal plane that is normal to this direction of flux.
Although there is a continual movement of doublet elements
passing normally through this trajectory plane, the sheet den-
sity on the plane remains, on average, stationary. Thus, as
time advances, there is little significant mean time-evolution
of sheet density in the drifter’s plane of motion. This is in
contrast with the case of a “free” tracer which is materi-
ally transported (passively and without constraint) within the
same three-dimensional diffusing field. For similar reasons,
the present case is distinguished from that of a tracer pas-
sively transported within a dispersing patch of point vortices
in a two-dimensional plane.

The notion of a “fluctuation field” in the ocean with a
kilometer spatial scale may seem to violate human intuition
concerning the scale of a “fluctuation”. The question is re-
ally one of perspective in the context of a continuum dou-
blet sheet whose partitioning reveals the property of self-
similarity (incidentally, this is in contrast to the case of a sin-
glet vortex sheet). In effect, a small fragment of a large dou-
blet sheet retains in miniature its integrity as a doublet sheet.
The converse is also true: aggregates of uniform contiguous
small-scale doublet elements, perceived at sufficiently large
scale, are mathematically indistinguishable from a consoli-
dated sheet.

At the “hundred kilometer scale”, the notion that a fluc-
tuation field in the ocean is “wind-driven” may also need
elaboration. In this context, we understand “wind” to be
the large-scale movement of the atmosphere relative to the
ocean. What is being modelled at this scale is the viscous
interaction of these two fluids at their mutual interface.

The fact that the estimates of fractal dimension that result
from the present model broadly resemble those determined
from geophysical experiment lends plausibility to the pro-
posed viscous mechanism of tangential impulse-exchange at
the ocean surface. As we have explained, the mechanism
is robust (i.e. fractal dimension does not depend on spe-
cific configurations of macroscopic eddies); furthermore, it
is spatially pervasive over the ocean surface, and it fits nat-
urally above a hierarchy of similar phenomena occurring at
progressively smaller scales.
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