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Abstract

Airborne measurements, obtained during the Asian Aerosol Characterisation Experi-
ment (ACE-Asia), of SO2 and condensation nuclei (CN) concentrations were made in
the local environment of a cumulus cloud band. Conserved quantities, wet equivalent
potential temperature θq, and total water content Q, were used to identify the sources5

of air detrained on the downwind side of the cumulus band. It was found that ∼65%
of the detrained air originated from below cloud base and the remainder was air that
had been entrained from the free troposphere upwind of the cloud and subsequently
been detrained. Calculation of the sources of the detrained air parcels enabled a pre-
diction of the concentration of SO2 and CN, assuming that SO2 and CN experienced10

no processing within cloud. A comparison of the predicted concentration of SO2 and
CN was made with those observed. The concentration of SO2 observed was less than
predicted and the amount of SO2 scavenged within cloud was calculated. The CN con-
centration observed was also less than predicted and, moreover, inclusion of the loss
of CN to cloud droplets due to Brownian scavenging resulted in an enhanced decrease15

of the number concentration of CN predicted. Clear air regions around the cloud exhib-
ited no indication of being a major source of new particles. It was concluded that new
particles were formed within cloud.

1 Introduction

The ubiquitous presence of aerosol in the atmosphere modifies the amount of radiation20

reaching the Earth’s surface. In general, the modification is to cool the Earth’s climate,
to a degree that it may offset climate warming due to greenhouse gases (Coakley
et al., 1983; Charlson et al., 1992). Two processes have been identified that lead to
the cooling, (1) the “direct effect” of enhanced scattering of shortwave radiation due
to the increased loading of aerosol in the atmosphere, and (2) the “indirect effect”25

of enhanced cloud reflectivity and lifetime, due to the higher concentration of smaller
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cloud droplets as compared to clouds formed in a cleaner atmosphere (Twomey, 1977;
Albrecht, 1989).

Aerosol particles in the remote marine boundary layer (MBL) are composed primarily
of sea-salt (produced by agitation of the sea surface) and non-sea-salt (nss) sulfate.
Nss-sulfate is primarily formed via gas-phase and aqueous-phase heterogeneous ox-5

idation of SO2. The aqueous-phase oxidation of SO2 in cloud droplets proceeds via
reaction with hydrogen peroxide (H2O2) or ozone (O3) depending on the pH of the so-
lution (e.g. Seinfeld and Pandis, 1998) to produce additional dissolved droplet mass
(sulfate). The addition of mass to aerosol due to in-cloud oxidation of SO2 has been
attributed to the aerosol number size distribution exhibiting a minimum near 0.06µm10

between two peaks near 0.02 and 0.09µm radius (Hoppel et al., 1986). The mini-
mum occurs at the smallest size at which aerosol are able to activate to become cloud
droplets. All aerosol above this size are known as cloud condensation nuclei (CCN). As
cloud droplets, the CCN scavenge additional trace material such that when the cloud
droplets evaporate the CCN form a separate mode at around 0.09µm, while the unac-15

tivated condensation nuclei (CN) remain in the mode around 0.02µm. Aqueous phase
oxidation of SO2 to sulfate and the subsequent modification of the aerosol size distri-
bution result in the dry aerosol being a more efficient light scatterer (Yuskiewicz et al.,
1999), which has a subsequent cooling effect on climate (Lelieveld and Heintzenberg,
1992).20

Despite the important role clouds have in transforming and redistributing chemical
species in the atmosphere, observational quantification of the amount of sulfate pro-
duced in clouds remains relatively undetermined. The difficulty in quantifying the pro-
portion of sulfate due to in-cloud processing is mainly due to atmospheric mixing that
makes identification of the air mass sources difficult. Previous attempts to measure the25

amount of sulfate produced in cloud have measured the decay rate of hydrogen perox-
ide (H2O2) in the presence of a released quantity of SO2 (e.g. Gervat et al., 1988) in the
atmosphere, or measured the amount of sulfate contained in cloud water directly (Hegg
and Hobbs, 1982). Measuring the amount of sulfate in cloud water directly, is unable to

7473

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/7471/2006/acpd-6-7471-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/7471/2006/acpd-6-7471-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 7471–7497, 2006

New particle
formation in cloud

J. R. Peter et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

resolve the sulfate produced from in-cloud reactions from the sulfate contained in the
CCN.

Another climate-relevant modification of the aerosol size distribution can occur due to
formation of new particles near clouds. Several investigators have observed new par-
ticle formation either in the outflow of clouds (Wiedensohler et al., 1997; Clarke et al.,5

1998; Clement et al., 2002; Twohy et al., 2002), above cloud top (Weber et al., 2001), or
in both regions (Perry and Hobbs, 1994). Fresh particles are nucleated when gaseous
precursor species, sulfur dioxide (SO2) and dimethyl sulfide (DMS), are present in
sufficient concentrations. Under conditions of high relative humidity, low pre-existing
aerosol surface area and low temperature, SO2 and DMS will oxidize with hydroxyl10

radicals (OH) to form sulfuric acid (H2SO4). New particles are then formed via homo-
geneous bi-molecular nucleation of H2SO4 and H2O. Downwind of precipitating clouds,
the lower aerosol surface area (caused by precipitation scavenging) and transport of
precursor gases creates conditions conducive for particle nucleation (Perry and Hobbs,
1994). Above cloud, enhanced actinic fluxes produce an increased OH concentration15

resulting in particle nucleation (Perry and Hobbs, 1994; Weber et al., 2001).
Several studies have, however, observed production of new particles within clouds

(Radke and Hobbs, 1991; Hegg et al., 1991). The fact that enhanced numbers of par-
ticles are observed in clouds is surprising as the large in-cloud droplet surface area
provides an enormous sink for gas-phase H2SO4. In a later study, Hegg (1991) pro-20

posed that enhanced production of OH within cloud (due to the increased actinic flux,
Madronich, 1987) could promote homogeneous heteromolecular nucleation of H2SO4,
thereby providing the necessary acid supersaturation for new particle formation.

In this paper we use conserved variables, wet equivalent potential temperature (θq)
and total water (Q) to identify the sources of SO2 and unactivated CN in air detraining25

from a cumulus cloud. Analysis of the mixing properties of the conserved tracers en-
ables a prediction of the concentration of SO2 and CN particles to be made assuming
that neither have been influenced by cloud. Observed concentrations of SO2 and CN in
the detrained air are then made with the predictions of these quantities, determined via
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mixing analysis, to determine the influence of the cloud on SO2 and CN concentrations.

2 Experimental details

The Airborne Research Australia (ARA) Beechcraft King-Air was fitted with TSI-3025
and TSI-3010 condensation nuclei (CN) counters to measure total concentrations of
particles with radii greater than 1.3 nm and 6 nm respectively. Particle Measuring Sys-5

tems (PMS) ASASP and FSSP optical particle counters were used to examine accu-
mulation mode aerosol and cloud droplets. The ASASP is equipped with a heated inlet
and measures particles in the size range 0.065–1.5µm over 15 size bins. The FSSP,
which was corrected for dead time losses, measures cloud droplets in the size range
1.5–23.5µm over 22 size bins. A PMS 2D-C optical array probe was used to measure10

droplet spectra in the radius range 37.5–400µm over 30 size bins. The ASASP data
are 1 Hz averages of 64 Hz data, while the FSSP and 2-D-C measurements are 1 Hz
averages of 4 Hz data. Sulfur dioxide was measured with a Thermo Environmental Sys-
tems Inc., Model 43S Pulsed Fluorescent Ambient SO2 analyzer. SO2 measurements
are 1 Hz averages of 64 Hz data.15

On 24 April 2004, the King Air encountered a band of cumulus, south-east of Kyushu.
The cloud was located at approximately 30◦30′ N, 133◦15′ E. The King Air flew six hori-
zontal transects of the cumulus oriented east-west, roughly perpendicular to the north-
south orientation of the cloud band. Cloud base was at 540 m (925 hPa), cloud top at
3200 m (675 hPa). The wind direction in the sub-cloud layer was from the north-east,20

and from the west in the free troposphere.
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3 Observations

3.1 Mixing analysis

The analysis presented in this paper relies fundamentally on knowledge of how con-
served tracers mix, which is illustrated through the use of conserved variable diagrams
(Paluch, 1979). If two parcels (labelled a and b) identified by two conserved parame-5

ters, in this case θq and Q, are mixed then the resulting mixed parcel (labelled mix) will
have,

θq,mix = (1 − F )θq,a + (F )θq,b

Qmix = (1 − F )Qa + (F )Qb (1)

where F represents the fraction of mass of the final mixture that was originally in parcel10

b. A mixing diagram of {θq,Q} samples obtained during the flight is shown in Fig. 1.
One Hz {θq,Q} samples are shown for clear air, cloudy air and a sounding made in clear
air in the upwind side of the cloud band. Here, clear (cloudy) air is defined by all 64 Hz
samples within a 1 Hz averaged sample having a LWC ≤0.01 g kg−1 (LWC≥0.1 g kg−1).
The cloudy and clear air samples were obtained from an aircraft penetration made15

across the cloud at a constant altitude. The clear air samples were obtained in air that
had been detrained on the downwind side of the cloud. The cloudy and clear air sam-
ples fall on a straight line between the cloud base sample and a level on the sounding
termed the Primary Source of Entrained Air (PSEA). The linearity of the cloudy and
clear air samples indicates that air at the flight level is a mixture of air that originated20

from below cloud base and the PSEA. Furthermore, because Q mixes linearly and
θq nearly linearly, the fraction of sub-cloud air contained in the cloudy and clear air
samples is given by (Jensen et al., 1985),

F ≈ 1
2

(
θq − θq,e

θq,s − θq,e
+

Q −Qe

Qs −Qe

)
(2)
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where subscripts s and e refer to sub-cloud and entrained (PSEA) air respectively.
The forcing mechanism of the cloud band was presented extensively in Peter et al.

(2006), however, the main points are summarized here. Figure 2 illustrates the forcing
and dynamics of the observed cumulus band. Sub-cloud air on the western extent of
the cloud band had an increased buoyancy compared to BL air on the eastern side of5

the cloud band. The air on the eastern edge of the cloud band had experienced cooling
due to evaporation of precipitation into the BL. Additionally, the sea surface exhibited a
temperature gradient with cooler surface temperature on the eastern side of the cloud
band. The combination of evaporative cooling and lower SST resulted in a cold pool
forming on the eastern extent of the cloud band, such that air on the western extent was10

lifted and made its way into cloud base. The cloud detrained air sampled downwind of
the cumulus, the thermodynamic characteristics of which is represented by the closed
circles in Fig. 1, thus consisted of air that had originated from below cloud base and
was transported vertically in cloud then subsequently mixed with air entrained into the
cloud from the PSEA. The resulting mixture of air was then detrained on the downwind15

side of the cloud band. The relative fraction of air that had originated from sub-cloud
and the PSEA is represented schematically in Fig. 2 and is quantitatively determined
by Eq. (2).

The use of the conserved variable diagram has provided a method whith which to
explicitly determine the sources of the cloud detrained air. Knowledge of the sources of20

the detrained air is important as it enables determination of the effect of cloud process-
ing on aerosol and gas species. If the cloud has no effect on aerosol and gas species
then they will mix in the same fraction as the conserved tracers, therefore discrep-
ancies between the concentration predicted via mixing arguments and the observed
concentration can be attributed to cloud processing. Mathematically, if a species has a25

concentration Cs, in the sub-cloud layer and a concentration Ce, at the PSEA, then the
predicted (labelled pre) concentration is given by,

Cpre = (F )Cs + (1 − F )Ce (3)
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The loss attributed to cloud processing (labelled cp) is then,

Ccp = Cpre − Cobs (4)

We use the above arguments to predict the concentration of SO2 and CN in the de-
trained air and then compare the prediction with observations to examine cloud pro-
cessing of these species.5

3.2 Sulfur dioxide

3.2.1 Amount of SO2 processed by cloud

The mixing ratio of sulfur dioxide in the source regions (sub-cloud and PSEA) and the
detrained region are shown in Table 1. The difference between the predicted and ob-
served SO2 concentration is the amount of SO2 that has been lost in cloud, most likely10

due to aqueous phase oxidation of SO2 to sulfate. The predicted mixing ratio of SO2 in
the detrained air downwind of the cumulus band was 5.81±0.17µg m−3 (assuming the
fraction of air originating from sub-cloud was F=0.64), while the measured concentra-
tion was 4.57±0.12µg m−3. The implication is that 1.24±0.17µg m−3 of SO2 has been
scavenged.15

The result compares quite favorably with (Liu et al., 1993), who observed 1.5–
4.6 ppbv (6–18µg m−3) SO2 converted to sulfate in cloud droplets for a cumulus cloud
observed over Ontario, Canada. For an orographic cloud Birmili et al. (1999) observed
a mass increase (to the aerosol spectrum due to sulfate production) of approximately
1.4µg m−3. Hegg et al. (1984) measured 1.0±0.3µg m−3 sulfate produced within cu-20

mulus and stratocumulus (SCu) clouds. O’Dowd et al. (1998) modeled a case of
aerosol processing by a SCu, and found 0.44µg m−3 of sulfate to be produced in
cloud. Recently, Husain et al. (2004) used Se as a tracer to determine the amount
of SO2−

4 produced within cloud and thereby calculate in-cloud loss of SO2. They ob-

tained concentrations in the range 0.1–1.0 ppb (0.26–2.6µg m−3 STP) of SO2 oxidized25

in cloud. Their method utilised 5-min average measurements of aerosol Se, however,
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the present method relies on measurements generally obtainable on most research
aircraft (temperature, water vapour mixing ratio and liquid water content) at larger fre-
quency (∼1 Hz). Dual calculations of SO2 uptake within a cloud using both techniques
would be beneficial.

The amount of SO2 scavenged within cloud can provide rate constants for aqueous5

phase oxidation of SO2 with H2O2 and O3. Additionally, it can provide a measure of
parcel in-cloud residence time, which is a vital parameter to make meaningful com-
parisons of model simulations of cloud droplet size distributions with observations. The
time a parcel spends in-cloud may be significantly different from the cloud lifetime deter-
mined, say, from radar measurements. Since the use of mixing fractions to determine10

the amount of SO2 converted to sulfate within cloud agrees well with previous calcu-
lations, the technique should be investigated further for applications to in-cloud parcel
residence time.

3.2.2 Effect of sulfate production on CCN

When a cloud droplet evaporates it will leave a residue aerosol particle consisting of15

the initial CCN on which the droplet formed plus sulfate produced in the droplet due
to oxidation of SO2. The production of sulfate will increase the mass of the residual
aerosol particle relative to the CCN on which the cloud droplet formed. To investigate
how sulfate production will effect the aerosol size distribution, it was assumed that the
SO2 scavenged within cloud was converted to ammonium sulfate, (NH4)2SO4. In the20

atmosphere, the evaporated droplet will leave behind an aerosol in a molecular form
somewhere between H2SO4 and (NH4)2SO4 depending on the availability of ammonia
(Pilinis and Seinfeld, 1987). Measurements by (Bahreini et al., 2003), during the ACE-
Asia campaign, estimated the molar ratio of NH+

4 /SO2−
4 to be 1.9 for air masses which

had influence from Korean emissions. The air mass examined here had similar origins25

to those investigated by (Bahreini et al., 2003); it thus reasonable to assume that the
majority of scavenged SO2 had been converted to ammonium sulfate.

The number of aerosol activated (CCN) was determined from the cloud droplet num-
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ber concentration (CDNC). At cloud base, the CDNC measured with the FSSP-100
probe was 620 cm−3, but in cloud, 800 m above cloud base, it was reduced to 470 cm−3.
The reduction in CDNC with height is indicative of entrained air diluting the CDNC. The
number of CCN, calculated as an average of the CDNC, at two levels in cloud was
540 cm−3. The ASASP measured concentration of aerosol, in the cloud in-flow region5

below cloud base was 370 cm−3. This implies that all of the ASASP measured aerosol
served as CCN, and a fraction of the aerosol measured by the CN counters. From
a plot of the cumulative sub-cloud aerosol size distribution (not shown), it was calcu-
lated that the minimum size of aerosol activated at cloud base was rp≈0.04µm. This
assumes that all aerosol larger than this radius are soluble and able to serve as CCN.10

The ammonium sulfate was distributed to the activated fraction of aerosol accord-
ing to number concentration. The aerosol was assumed to be internally mixed and
of uniform chemical composition. Since particles smaller than the lowest size resolu-
tion of the ASASP were activated, some of the mass was distributed among aerosol
not detected by it. As there was no size information available for the CCN below the15

lowest size resolution of the ASASP, only the fraction of mass added to ASASP de-
tectable aerosol was considered. This meant that each size class i , gained a mass
governed by its number concentration (ni /540µg). Distribution of SO2 mass according
to aerosol number concentration results in the ratio of scavenged gas to particle mass
being inversely proportional to particle radius (i.e. smaller CCN increase their radius20

more due to gas scavenging than the larger CCN). Model (e.g. Bower and Choularton,
1993; Choularton et al., 1997) and experimental (Krämer et al., 2000) studies indicate
that the smallest activated aerosol particles are most significantly affected by cloud
processing. This is because the scavenging ratio (mass of gas scavenged to mass
of aerosol) is highest for the smaller particles. Apportioning the mass according to25

number concentration conforms to this behavior. As pointed out by Leaitch (1996),
distributing the available sulfate among the aerosol population according to number
concentration assumes that the growth is controlled by the surface area of the cloud
droplets.
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The spectra predicted by mixing, predicted after the mass addition of sulfate and
observed are shown in Fig. 3. Figure 3 shows that the majority of the predicted mass
addition of sulfate (open squares) occurs in the first three size classes of the ASASP
and, aerosol in these size classes may grow enough such that they may be transferred
to a larger size class, i.e. there will be a net loss of particles from ASASP size classes5

one-to-three. However, the lowest size resolved by the ASASP was above that of the
minimum size of activated CCN, which would result in a gain in the number of ASASP
size classes one-to-three. Because the smallest CCN grow the most after addition of
sulfate, there is a net production of particles in the smallest ASASP size classes.

Coalescence of cloud droplets reduces the concentration of CCN. The response of10

the aerosol particle size distribution to the competing mechanisms of, (1) growth of
particles due to sulfate production and (2) particle loss, due to droplet coalescence
is illustrated in Fig. 3. Except for the first two ASASP size classes, the observed
aerosol particle concentration is consistently less than the predicted concentration,
due to droplet coalescence (Peter et al., 2006). Since, the concentration of aerosol15

particles in the first two size classes is nearly equal to the predicted concentration, the
addition of mass to these size classes has compensated for their loss due to cloud
droplet coalescence.

3.3 Condensation nuclei

The concentration of CN measured by the TSI-3025 and TSI-3010 probes in the source20

regions (sub-cloud and PSEA) and the detrained region are shown in Table 1. As was
calculated for SO2, the difference between the predicted and observed CN concentra-
tions is the concentration of CN that has been lost in cloud. Unlike SO2, however, which
undergoes aqueous phase oxidation, CN diffuse via Brownian motion to cloud droplets.
The ratio of the predicted CN concentration to the observed is shown in Fig. 4 (horizon-25

tal red lines). The ratios were calculated from the differential concentration, not from
the cumulative concentration which is output from the probes. The differential concen-
tration for the TSI-3025 (rp≥1.3 nm) is the difference of the concentrations measured by
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the TSI-3025 and TSI-3010. The differential concentration for the TSI-3010 (rp≥6 nm)
is the difference of the concentrations measured by the TSI-3010 and ASASP probes.
Figure 4 shows the number concentration of CN predicted by mixing is greater than
observed, presumably due to Brownian scavenging by cloud droplets.

A model was used to determine if diffusional loss of unactivated particles to cloud5

droplets could account for the observed loss of particles measured by the CN counters
as compared to the predicted concentration (see Table 1). Aerosol particles, interstitial
in the cloudy air, are assumed to collide with cloud droplets and are removed from cloud
interstitial air. The rate of such removal is governed by coagulation theory. Let na(ra, t)
and nd (x, t) represent the aerosol and cloud droplet number distributions respectively.10

The loss rate of aerosol particles per unit volume of air due to diffusional loss to cloud
droplets is determined by,

−
∂na(ra, t)

∂t
= na(ra, t)

∫ ∞
0

K (ra, x)nd (x, t)dx (5)

where K (ra, x) is the collection coefficient. Assuming that aerosol particles diffuse to
the cloud droplets via Brownian motion, the collection coefficient, which represents col-15

lisions between an interstitial aerosol and the cloud drops, can be written as (Seinfeld
and Pandis, 1998, p.660):

K (r1, r2) = 4π(r1 + r2)(D1 + D2)β (6)

where ri and Di are the radius and diffusion coefficient of particle i , respectively. The
correction factor, β, to account for the transition and free-molecular regimes is that20

proposed by Dahneke (1983), namely,

β =
1 + KnD

1 + 2KnD(1 + KnD)
(7)

KnD =
2(D1 + D2)

c12r12

(8)
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where r12=r1+r2, c12=
√
c2

1+c
2
2 and ci=(8kT

πmi
)1/2. Here, ci represents the mean free

path of either the aerosol or cloud droplet. If the cloud drop number size distribution is
stationary (i.e. if the drop distribution that the aerosol are diffusing is constant in time)
then the number of aerosol n(ra, t) remaining after a time t, will be,

n(ra, t) = n(ra, 0) exp [−Λ(r, t)] (9)5

where Λ is the scavenging coefficient,

Λ(r, t) ≡ −1
n
∂na(ra, t)

∂t
=
∫ ∞
0

K (ra, x)nd (x, t)dx (10)

Equations (9) and (10) were solved with the assumption of a stationary droplet size
distribution. The droplet size distribution nd (x, t), was determined from FSSP measure-
ments during the cloud penetration at the same altitude (800 m above cloud base) as10

the SO2 and CN observations. Although the cloud droplet size distribution will change
due to coalescence and mixing of sub-saturated entrained air from the PSEA, the effec-
tive radius and number concentration at this level was found to be representative (i.e.
comparable number concentrations and effective radii) of the droplet size distribution
for cloud traverses at higher altitudes. Brownian diffusion scavenging of CN to accumu-15

lation mode aerosol in clear air detrained downwind of the cloud band was neglected
as it was found to be insignificant when compared with scavenging to cloud droplets.

The results of the calculation are shown in Fig. 4. The series of dashed red curves
represent the ratio of, the number concentration of CN predicted due to mixing and
Brownian diffusion to the number concentration observed. Curves are shown for in-20

cloud times of 1, 5, 10 and 60 min, representative of a potential parcel in-cloud lifetime.
It can be seen that even for an in-cloud time of one minute most, if not all, of the small-
est CN particles will be scavenged by Brownian diffusion. In-cloud updraft speeds were
∼5 m s−1, so at the flight altitude (∼900 m above cloud base) an in-cloud parcel resi-
dence time of ∼3 min would be an absolute minimum. The fact that CN are observed25

in the detrained cumulus air is indicative of new particle formation. Due to the large
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discrepancy between the predicted and observed concentration when Brownian diffu-
sion was taken into account we considered the possibility that not all of the aerosol that
originated from the PSEA was cloud processed, but perhaps passed through cloud tur-
rets. This is equivalent to setting the multiplier in the second term on the rhs of Eq. (3)
to 1, rather than 1-F . The results of the calculation are shown as blue curves and still5

indicate an excess of CN observed compared to the predicted concentration. There
is no doubt that all of the aerosol that originated from the sub-cloud layer has been
cloud processed as the only way which air can make its way from the sub-cloud layer
to the free troposphere (where the cloud-detrained CN observations were obtained) is
via convection.10

To examine where the new particles were formed, time series of the difference in
particle concentration of the TSI counters was examined. The difference in concen-
tration as measured by the TSI-3010 and TSI-3025 represents the concentration of
particles in the approximate size range 1.3 nm≤r≤6 nm. Peaks in a timeseries of par-
ticle number concentration difference are indicative of new particle production (Warren15

and Seinfeld, 1985; Schröder and Ström, 1997; Weber et al., 2001). The time series
of the concentration difference is shown for all cloud traverses in Fig. 5. No systematic
peaks are located near cloud boundaries or in the cloud outflow. If particle produc-
tion was occurring near cloud, then measurable particle production would be evident
in Fig. 5 as spikes in these regions. A peak is evident on the upwind side of Leg 6,20

indicating a location of new particle formation, however, this is well above the PSEA
and can, therefore, not be the source of new particles. The fact that no systematic par-
ticle production is evident near the cloud boundaries, and that numerical calculations
predict the majority of CN to be scavenged in-cloud, yet CN are still measured, raises
the possibility that the particles were formed within cloud. If CN were formed within25

cloud then, in the present case, their rate of formation must be less than their rate of
loss due to Brownian diffusion, since a deficit of particles was observed compared to
the predicted concentration.

It is interesting that the horizontal profiles of the difference between the two TSI
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counters exhibit large peaks within cloud. One may be tempted to surmise, on these
observations alone, that new particles were formed within the cloud. However, Weber
et al. (1998) concluded that many observations of particle formation within clouds, rely-
ing solely on observations of counts, were spurious due to shattering of cloud droplets
impacting the aerosol inlet. In the present study, we have circumvented the confound-5

ing effects of droplet shattering because only clear-air samples were considered in the
calculations.

A possible mechanism for CN formation within cloud was proposed by Hegg (1991)
but, due to the problem of droplet shattering, has received little attention since. Hegg
(1991) observed and modelled a case of particle production within cloud and attributed10

it to heterogeneous nucleation of H2SO4−H2O droplets. He hypothesized that the
enhanced actinic flux within cloud could produce high concentrations of OH radicals
such that the gas-phase supply rate of H2SO4 (due to oxidation of SO2 by OH) was
large enough to compensate for the diffusional sink of H2SO4−H2O to cloud droplets.

Several studies reported observations of enhanced H2SO4 concentration and new15

particle formation in the vicinity of clouds (Hegg et al., 1990; Perry and Hobbs, 1994;
Weber et al., 2001, e.g.). The conclusion implicit in these studies was that new par-
ticle formation was occurring, in clear-air regions near the cloud. Weber et al. (2001)
concluded that the increased H2SO4 and CN concentrations were due to the increase
of actinic flux in clear-air near the cloud. However, it is also possible that, if the pro-20

duction rate of H2SO4 and CN within cloud was greater than their diffusional sink, then
increased concentrations of H2SO4 and freshly nucleated particles would be observed
near clouds. As such, observations of new particle formation near cloud may be the
“left over” particles that have spent insufficient time within cloud to be scavenged. An
additional feature of Fig. 5 is that large CN concentrations are not always congruent25

with high LWC inside cloud. It is, therefore, possible that new particles are formed in ar-
eas of low LWC within cloud, where the actinic flux may be sufficiently high to produce
the required acid supersaturations, but with low cloud droplet surface area.

Recently Lee et al. (2004) observed high CN particle concentrations in tropical cir-
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rus clouds synchronous with high ice water contents. They hypothesized that binary
homogeneous nucleation and ion-induced nucleation played a significant role in the
formation of new particles in these clouds. A model study by Ekman et al. (2006) found
formation of nucleation mode CN (rp≤5.84 nm) inside cloud in small quantities, even
neglecting the increased in-cloud actinic flux. We are unsure of the exact mechanism5

of new particle formation in the present case but, the fact that new particle formation
has been observed in three dynamically different cloud types (cirrus, stratocumulus and
cumulus c.f Lee et al., 2004; Hegg, 1991, and present study) and that a model study
has hinted at the possibility of particle formation in a convective cloud (Ekman et al.,
2006) necessitates that the process of in-cloud new particle formation be investigated10

further, especially in light of its important climatological consequences.

4 Conclusions

We used a thermodynamic mixing diagram (Paluch, 1979) to determine the sources of
cloud-processed air detrained on the downwind side of a cumulus band. The detrained
air was found to consist of ∼65% air from the sub-cloud layer and the remainder from15

air that had been entrained from the free troposphere on the upwind side of the cloud
and subsequently been detrained on the downwind side. The mixing analysis enabled
a prediction of SO2 and condensation nuclei (CN) concentrations based on, their con-
centrations in the source regions and assuming that they mix in the same fraction as
{θq,Q}. The assumption that SO2 and CN mix in the same fraction as conserved quan-20

tities is equivalent to considering that they experience no processing within cloud, even
though it was apparent from the mixing analysis that the detrained air passed through
cloud. A comparison of the predicted concentrations of SO2 and CN was then made
with those observed, to examine in-cloud processes which modify the aerosol size dis-
tribution, namely; (1) the conversion of sulfur dioxide to sulfate within cloud and, (2) the25

coagulation of unactivated interstitial CN to cloud droplets.
SO2 and CN concentrations observed in the cloud-processed detrained air were
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found to be in deficit with those predicted from the mixing analysis. The deficit between
the observed and predicted concentrations of SO2 and CN was attributed to cloud
processing. The amount of SO2 scavenged within cloud (assumed to be converted
to sulfate via aqueous-phase oxidation) was calculated. The observations and model
calculations were analysed to examine where the produced sulfate resided on the de-5

trained aerosol particle size distribution. Furthermore, a model was used to examine
if the deficit between the observed and predicted concentration of CN particles could
be explained by Brownian diffusion of the CN to cloud droplets. The conclusions are
summarised as follows:

1. The amount of SO2 scavenged in cloud was calculated to be 1.20±0.21µg m−3.10

2. The SO2 was assumed to be converted to sulfate. The increased mass of sulfate
on the detrained aerosol size distribution was found to primarily effect the size of
the smallest activated aerosol. All aerosol particles experienced some scavenging
due to cloud droplet coalescence, however, the mass increase of the smallest
activated aerosol, due to addition of sulfate, compensated for loss due to cloud15

droplet coalescence.

3. Numerical calculation predicted that the majority of unactivated CN, interstitial in
cloudy air, is scavenged due to Brownian diffusion to cloud droplets. This was
in contrast to observations which showed CN to be present in the detrained air,
though their number concentration was still less than that predicted by mixing.20

Moreover, since the observed concentration of CN observed was greater than
predicted when Brownian diffusion was accounted for, it was concluded that there
was a source of new CN. Examination of timeseries of the concentration differ-
ence of the two CN counters (operating at differing threshold radii) did not indicate
new particle formation in clear air regions around the cloud. The only other pos-25

sible source of the new CN was the supersaturated cloud environment. The anal-
ysis did not reveal the mechanism of nucleation, though increased actinic fluxes
within cloud appeared the most likely mechanism. New particle formation within
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clouds has major implications for the climatology of the tropospheric aerosol and
will receive further attention.
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Table 1. Concentration of SO2 and CN near cloud.

Sub cloud Entrained Detrained Predicted Cloud
from PSEA processedc

SOa
2 7.79±0.14 2.36±0.10 4.57±0.12 5.81±0.17 1.24±0.21

CN (r≥1.3 nm)b 2179±170 507±89 1303±93 1577±146 274±239
CN (r≥6 nm)b 1807±94 434±27 1068±62 1313±70 245±132

aUnits: µg m−3.
bUnits: cm−3 STP.
cCalculated using Eq. (3) with F=0.64 evaluated from Eq. (2).
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Fig. 1. Mixing diagram of conserved variables, wet-equivalent potential temperature (θq) and
total water (Q). Cloud base, sounding, cloudy air and clear air points are labeled. In-cloud and
clear air points are 1 Hz observations. The primary source of entrained air (PSEA) is indicated
where the line of best fit between cloud base and the clear air measurements intersect the
sounding. The fraction of sub-cloud air (F ) is determined by the relative distance of a cloudy
or clear air sample between the cloud base sample and the PSEA, and is given by Eq. (2).
Reprinted from (Peter et al., 2006) with kind permission of the Royal Meteorological Society.
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Fig. 2. A schematic of the cumulus dynamics. Sub-cloud air was forced over a cold pool gener-
ated by evaporating precipitation. Entrained air was mixed with sub-cloud air and subsequently
deposited downwind of the cloud, in the direction of the upper level shear. Analysis of the
mixing fraction of {θq,Q} samples revealed that the detrained air contained a fraction, F=0.64
sub-cloud air and, 1-F=0.36 entrained air from the PSEA. If gas-phase and aerosol species
experience no cloud processing they will mix in the same fraction as the {θq,Q} samples.
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Fig. 2. A schematic of the cumulus dynamics. Sub-cloud air was forced over a cold pool gener-
ated by evaporating precipitation. Entrained air was mixed with sub-cloud air and subsequently
deposited downwind of the cloud, in the direction of the upper level shear. Analysis of the
mixing fraction of {θq,Q} samples revealed that the detrained air contained a fraction, F=0.64
sub-cloud air and, 1-F=0.36 entrained air from the PSEA. If gas-phase and aerosol species
experience no cloud processing they will mix in the same fraction as the {θq,Q} samples.
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Fig. 3. ASASP aerosol size distribution of the spectra predicted due to mixing, predicted after
addition of sulfate and observed. The spectrum due to the addition of sulfate was calculated
assuming an accumulation mode aerosol of uniform composition and modified by the addition
of 1.24±0.21µg m−3 of sulfate.
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Fig. 4. The ratio of the predicted concentration of CN to the observed concentration. The ratio
is shown for differential concentrations measured by the TSI-3025 (rp≥1.3 nm) and TSI-3010
probes (rp≥6 nm). The predicted concentration of CN is ∼20% greater than observed due to the
diffusion of the CN to cloud droplets. The dashed curves show the predicted to observed ratio
with inclusion of the effect of Brownian diffusion of CN to cloud droplets and represent 1 min to
1 h of in-cloud time. When Brownian diffusion is taken into account it becomes apparent that
few, if any, CN should be observed in the air detraining from the cloud; evidence of new particle
formation.
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