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Abstract. The scientific problems posed by the Earth’s fluid
envelope, and its atmosphere, oceans, and the land surface
that interacts with them are central to major socio-economic
and political concerns as we move into the 21st century. It
is natural, therefore, that a certain impatience should prevail
in attempting to solve these problems. The point of this re-
view paper is that one should proceed with all diligence, but
not excessive haste: “festina lente,” as the Romans said two
thousand years ago, i.e. “hurry in a measured way.” The pa-
per traces the necessary progress through the solutions to the
ten problems:

1. What is the coarse-grained structure of low-frequency
atmospheric variability, and what is the connection be-
tween its episodic and oscillatory description?

2. What can we predict beyond one week, for how long,
and by what methods?

3. What are the respective roles of intrinsic ocean variabil-
ity, coupled ocean-atmosphere modes, and atmospheric
forcing in seasonal-to-interannual variability?

4. What are the implications of the answer to the previous
problem for climate prediction on this time scale?

5. How does the oceans’ thermohaline circulation change
on interdecadal and longer time scales, and what is the
role of the atmosphere and sea ice in such changes?

6. What is the role of chemical cycles and biological
changes in affecting climate on slow time scales, and
how are they affected, in turn, by climate variations?

7. Does the answer to the question above give us some trig-
ger points for climate control?

8. What can we learn about these problems from the atmo-
spheres and oceans of other planets and their satellites?
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9. Given the answer to the questions so far, what is the role
of humans in modifying the climate?

10. Can we achieve enlightened climate control of our
planet by the end of the century?

A unified framework is proposed to deal with these prob-
lems in succession, from the shortest to the longest time
scale, i.e. from weeks to centuries and millennia. The frame-
work is that of dynamical systems theory, with an empha-
sis on successive bifurcations and the ergodic theory of non-
linear systems. The main ideas and methods are outlined
and the concept of a modeling hierarchy is introduced. The
methodology is applied across the modeling hierarchy to
Problem 5, which concerns the thermohaline circulation and
its variability.

Key words. Climate dynamics, nonlinear systems, numeri-
cal bifurcations, mathematical geophysics

1 Introduction and motivation

1.1 The problems of the Earth’s fluid envelope and their
societal relevance

Humanity has had for centuries a disruptive as well as a ben-
eficial effect on its local environment: urban pollution and
changes in flora and fauna over large fractions of the Earth’s
surface go back to the rise of major civilizations in Africa, the
Americas, Asia and Europe several millennia ago. Increas-
ing industrialization and the spread of industrial methods to
agriculture, forestry and fisheries at the end of the 2nd mil-
lennium raise the possibility of the disruptive effects becom-
ing global in the next centuries. In order to assess whether, to
what extent, and in which ways we are modifying our global
environment, it is essential to understand how this environ-
ment functions. We take, therefore, a planetary view of the
Earth’s climate system, of the pieces it contains, and of the
way these pieces interact. This will allow us to understand
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how we might be acting on the individual pieces, and thus,
on the whole.

The global climate system is composed of a number
of subsystems: atmosphere, biosphere, cryosphere, hydro-
sphere and lithosphere, each of which has distinct charac-
teristic times, from days and weeks to centuries and millen-
nia (Ghil and Childress, 1987; Trenberth, 1992). The atmo-
sphere has a characteristic time of days-to-weeks in terms of
the life cycle of extratropical weather systems. The global
mixing of atmospheric trace gases, on the other hand, takes
one or more years. The meanders and rings of the major
wind-driven currents are the oceanic counterpart of weather
systems; their characteristic time is as short as months to
years. Temperature and salinity contrasts, on the other hand,
drive the oceans’ overturning circulation; its characteristic
time is as long as centuries to millennia. Snow cover and
sea ice have a huge seasonal cycle, as well as sub- and in-
terannual variability, while continental ice sheets take many
millennia to build up and at least centuries to collapse.

Each subsystem has therewith its own internal variability,
all other things being constant, over a fairly broad range of
time scales. These ranges overlap between one subsystem
and another. The interactions between the subsystems thus
give rise to climate variability on all time scales.

Can we hope to predict with confidence and eventually
control in a rational way the effects of human intervention in
this complex system? For humankind to survive and develop
in a sustainable way in such a complex global environment
as the climate system, we must at least understand the most
basic workings of this system.

We outline here the rudiments of the way in which dy-
namical systems theory is starting to provide such an under-
standing. This understanding proceeds through the study of
successively more complex flow patterns, for each time scale
mentioned in the Abstract and in this section so far. The main
features of dynamical systems theory (e.g. Smale, 1967;
Arnol’d, 1983) that are important for the study of climate
have been summarized by Ghil et al. (1991) and Ghil and
Robertson (2000). They involve essentially bifurcation the-
ory (e.g. Guckenheimer and Holmes, 1983) and the ergodic
theory of dynamical systems (Eckmann and Ruelle, 1985).

Even a sketchy review of recent progress on all ten prob-
lems goes well beyond the scope of this paper. We thus give
only an idea of the unified methodology that can help solve
all ten. The methodology is illustrated by applying it to a sub-
set of the problems. Problems 1–4 are merely touched upon,
while Problems 5 and 9 are treated in somewhat greater de-
tail.

In Sect. 2, we describe the climate system’s dominant
balance between incoming solar radiation and outgoing ter-
restrial radiation. This balance is consistent with the exis-
tence of multiple equilibria of surface temperatures (Held
and Suarez, 1974; Ghil, 1976; North et al., 1981). Such
multiple equilibria are also present for other balances of cli-
matic actions and reactions. Thus, the thermal driving of the
mid-latitude westerly winds is countered by surface friction
and mountain drag (Charney and DeVore, 1979; Ghil et al.,

1991). These forces play an important role in solving Prob-
lem 1 and, hence, Problem 2. Multiple equilibria typically
arise from saddle-node bifurcations of the governing equa-
tions (Ghil, 1994). Transitions from one equilibrium to an-
other may result from small and random pushes, a typical
case of minute causes having large effects in the long term.

In Sect. 3, we describe the ocean’s overturning circulation
between cold regions, where water is heavier and sinks, and
warm regions where it is lighter and rises. Understanding this
circulation, the forces that affect it and its resulting variabil-
ity is the objective of Problem 5. The effect of temperature
on the water’s mass density and hence, motion, is in compe-
tition with the effect of salinity: density increases, through
evaporation and brine formation, compete further with de-
creases in salinity and density through precipitation and river
run-off. These competing effects can also give rise to two
distinct equilibria (Stommel, 1961; Marotzke et al., 1988). In
the present-day oceans, a thermohaline circulation prevails,
in which the temperature effects dominate. About 50 million
years ago, a halothermal circulation may have formed, with
salinity effects dominating (Broecker et al., 1985; Kennett
and Stott, 1991). In a simplified mathematical setting, these
two equilibria arise by a pitchfork bifurcation that breaks the
problem’s mirror symmetry (Quon and Ghil, 1992; Thual
and McWilliams, 1992).

On shorter time scales, of decades-to-millennia (Martin-
son et al., 1995), oscillations of intensity and spatial pat-
terns in the thermohaline circulation seem to be the domi-
nant mode of variability (Chen and Ghil, 1995). We show
how interdecadal oscillations in the ocean’s circulation arise
by Hopf bifurcation (Quon and Ghil, 1995; Chen and Ghil,
1996).

In Sect. 4, we discuss the implications of multiple equilib-
ria and interdecadal oscillations for our understanding of the
effects that human activities might have on the climate sys-
tem (Problem 9). The system’s predictability in the absence
of such effects (Problems 2 and 4) is presented (Lorenz,
1963a, 1969; Ghil et al., 1985, 1991; Ghil and Jiang, 1998).
Tentative conclusions are drawn about the identification and
optimization of human effects on the climate system (Prob-
lem 10).

1.2 Connections to Hilbert’s mathematical problems

Before launching into the ambitious enterprise described so
far, we need to clarify the way in which these problems of
atmospheric, oceanic and climate dynamics differ from, but
also resemble, those posed by David Hilbert (1862-1943;
see Weyl, 1944, and Reid, 1970) one hundred years ago for
mathematics. First of all, in mathematics, one knows at least
when a problem is solved, i.e. a conjecture is proved or dis-
proved, once and for all. Errors may creep into a very lengthy
and complicated mathematical proof, but the correctness of
such a proof is, with notable exceptions, decidable at least in
principle. The exceptions arise from the fundamental issues
raised by Hilbert’s (1900) first two problems that concern the
completeness and compatibility of the arithmetic axioms (see
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also G̈odel, 1940).
This is not the case for problems in the physical sci-

ences, in general, and those of the geosciences, in particular.
Hilbert’s sixth problem concerned, in fact, the mathemati-
cal treatment of the axioms of physics (see Corry, 1997), but
progress in the sciences, unlike in mathematics, occurs to a
large extent by inductive rather than deductive reasoning. In
the sciences, a problem, such as Problems 3 and 4 listed in
the Abstract, can only be answered based on observations
available at a particular time. Given such observations, one
solution among two or more that are being proposed may ap-
pear more satisfactory than another. As additional evidence
in the form of observations or detailed computer simulations
(Ghil and Robertson, 2000) becomes available, new solutions
can be found and a better one can be selected (Kuhn, 1970).

The problems mentioned here are thus proposed as long-
term challenges to geoscientists working on the Earth’s fluid
envelope. It is hoped that better solutions than those currently
available will be found over the next decades. In particular, it
is very important to have a coherent and self-consistent idea
of a satisfactory set of solutions to Problems 1 through 9 in
order to arrive at a well informed solution to Problem 10.
The similarity with Hilbert’s problems lies primarily in the
two interrelated facts that (i) the problems cannot be solved
in complete separation from each other; and (ii) ideas and
methods developed in order to solve one problem can be im-
mensely useful in solving others, as well.

2 Energy-balance models and the modeling hierarchy

2.1 Climate dynamics and the global environment

Climate dynamics is a modern scientific discipline that en-
compasses and extends beyond atmospheric and ocean dy-
namics. This view of the classical discipline of climatology
first emerged about 40 years ago (Pfeffer, 1960). At this turn
of the century, climate dynamics studies the variability of the
atmosphere-ocean-cryosphere-biosphere-lithosphere system
on time scales longer than the life span of individual weather
systems and shorter than the age of our planet.

When defined in these broad terms, the variability of the
climate system is characterized by a power spectrum that has
three components. The first is a “warm-coloured” broadband
component, with power increasing from high to low frequen-
cies. The second is a line component associated with purely
periodic forcing, both annual and diurnal. The third repre-
sents a number of broad peaks that might arise from external
forcing that is not purely periodic (e.g. orbital changes or so-
lar variability), from internal oscillations, or from a combi-
nation of the two (Mitchell, 1976; Ghil and Childress, 1987,
Ch. 11; Ghil and Le Treut, 1999).

Understanding the climatic mechanism or mechanisms
that give rise to a particular broad peak or set of peaks repre-
sents a fundamental goal of climate dynamics across all the
time scales implicit in our ten problems. The regularities are
of interest in and of themselves, for the order they create in

our sparse and inaccurate observations. They also facilitate a
prediction for time intervals comparable to the periods asso-
ciated with a given regularity (Ghil and Childress, 1987, Sec.
12.6; Ghil and Jiang, 1998).

The climate system is highly complex, with its main sub-
systems having very different characteristic times, and the
specific phenomena involved in each one of the climate prob-
lems listed in the Abstract are quite diverse. It is inconceiv-
able, therefore, that a single model could successfully be
used to incorporate all the subsystems, capture all the phe-
nomena, and solve all the problems. Hence, the concept of
a hierarchy of climate models, from the simple to the com-
plex, has been developed about a quarter of a century ago
(Schneider and Dickinson, 1974).

The methods of dynamical systems theory have been ap-
plied first to simple models, starting about forty years ago
(Stommel, 1961; Lorenz, 1963a, b; Veronis, 1963, 1966).
More powerful computers now allow their application to
fairly realistic and detailed models of the atmosphere (Strong
et al., 1995; Keppenne et al., 2000), ocean (Jiang et al., 1995;
Speich et al., 1995; Chen and Ghil, 1996; Dijkstra, 2000; Di-
jkstra and Ghil, 2001). We start, therefore, by presenting
such a hierarchy of models.

This presentation is interwoven with that of the successive
bifurcations that lead from simple to more complex solution
behaviour for each climate model. Useful tools for compar-
ing model behaviour across the hierarchy and with observa-
tions are provided by ergodic theory. Among these, advanced
methods for the analysis and prediction of uni- and multi-
variate time series play an important role (Ghil and Vautard,
1991; Plaut et al., 1995; Ghil et al., 2001). Their applications
to Problems 3 and 5 will also be mentioned here.

2.2 Radiation balance and energy-balance models (EBMs)

At present, the best developed hierarchy exists for atmo-
spheric models; we summarize this hierarchy following Ghil
and Robertson (2000). Atmospheric models were originally
developed for weather simulation and prediction on the time
scale of hours to days (Thompson, 1961). Currently, they
serve in a stand-alone mode or coupled to oceanic and other
models to solve all of the Problems 1–10 mentioned in the
Abstract.

The first rung of the modeling hierarchy for the atmo-
sphere is formed by zero-dimensional (0-D) models, where
the number of dimensions, from zero to three, refers to the
number of independent space variables used to describe the
model domain, i.e. to physical-space dimensions. Such 0-D
models essentially attempt to follow the evolution of global
surface-air temperatureT as a result of changes in global
radiative balance (Crafoord and Källén, 1978; Ghil and Chil-
dress, 1987, Sect. 10.2):

c
dT

dt
= Ri − Ro, (2.1.a)

Ri = µQo{1 − α(T )}, Ro = σm(T )T
4
. (2.1.b, c)
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Fig. 1. Bifurcation diagram for the solutions of an energy-balance
model (EBM). Annual mean temperatureT vs. fractional change
of insolation at the top of the atmosphereµ. The arrows pointing
up and down at aboutµ = 1.4 indicate the stability of the branches:
towards a given branch if it is stable and away if it is unstable.
The other arrows show the hysteresis cycle that global temperatures
would have to undergo for a transition from the upper stable branch
to the lower one and back. The angleγ gives the measure of the
present climate’s sensitivity to changes in insolation (after Ghil and
Childress, 1987).

HereRi andRo are incoming solar radiation and outgoing
terrestrial radiation. The heat capacityc is that of the global
atmosphere, plus that of the global ocean or some fraction
thereof, depending on the time scale of interest: one might
include only inc the ocean mixed layer when interested in
subannual time scales, but the entire ocean could be included
in c when studying paleoclimate. The rate of change ofT

with time t is given bydT /dt , while Q0 is the solar radia-
tion received at the top of the atmosphere,σ is the Stefan-
Boltzmann constant, andµ is an insolation parameter, equal
to unity for present-day conditions. To have a closed, self-
consistent model, the planetary reflectivity or albedoα and
greyness factorm have to be expressed as functions ofT ;
m = 1 for a perfectly black body and 0< M < 1 for a grey
body, such as planet Earth.

There are two kinds of one-dimensional (1-D) atmospheric
models, for which the single spatial variable is latitude or
height, respectively. The former are so-called energy-balance
models (EBMs: Budyko, 1969; Sellers, 1969) which con-
sider the generalization of the model (2.1) for the evolution

of surface-air temperatureT = T (x, t), for example,

c(x)
∂T

∂t
= Ri − Ro + D. (2.2)

Here the terms on the right-hand side can be functions of
the meridional coordinatex (latitude, co-latitude, or sine of
latitude), as well as of timet , and temperatureT . The hor-
izontal heat-flux termD expresses heat exchange between
latitude belts; it typically contains first and second partial
derivatives ofT with respect tox. Hence, the rate of change
of local temperatureT with respect to time also becomes a
partial derivative,∂T /∂t .

The first striking results of theoretical climate dynamics
were obtained in showing that slightly different forms of
Eq. (2.2) could have two stable steady-state solutions, de-
pending on the value of the insolation parameterµ (see
Eq. (2.1b)) (Held and Suarez, 1974; Ghil, 1976; North et al.,
1981). This multiplicity of stable steady states or physically
possible “climates” of our planet can be explained in its sim-
plest form in the 0-D model (2.1). This simple explanation
resides in the fact that for a fairly broad range ofµ-values
aroundµ = 1.0 the curves forRi andRo as a function ofT
intersect in 3 points. One of these corresponds to the present
climate (highestT -value), and another one corresponds to an
ice-covered planet (lowestT -value); both of these are stable,
while the third one (intermediateT -value) is unstable. To
obtain this result, it suffices to assume thatα = α(T ) is a
piecewise-linear function ofT , with high albedo at low tem-
perature, due to the presence of snow and ice, and low albedo
at highT , due to their absence, whilem = m(T ) is a smooth,
increasing function ofT that attempts to capture in its sim-
plest form the “greenhouse effect” of trace gases and water
vapor (Ghil and Childress, 1987, Ch. 10).

The bifurcation diagram of such a 1-D EBM is shown in
Fig. 1. It displays the model’s mean temperatureT as a func-
tion of the fractional changeµ in the insolationQ at the top
of the atmosphere. The ‘S’-shaped curve in the figure arises
from two back-to-back saddle-node bifurcations. The normal
form of the first such bifurcation is

Ẋ = µ − X2. (2.3a)

HereX stands for a suitably normalized form ofT andẊ ≡

dX/dt is the rate of change ofX, whileµ is a parameter that
measures the stress on the system, in particular, a normalized
form of the insolation parameter.

The upper-most branch corresponds to the steady-state so-
lution X = +

√
µ of Eq. (2.3a) and is stable. It matches

rather well the Earth’s present-day climate forµ = 1.0, more
precisely, the steady-state solutionT = T (x; µ) of the full
1-D EBM (not shown) matches closely the annual mean tem-
perature profile from instrumental data over the last century
(Ghil, 1976).

The intermediate branch starts out at the left as the second
solution,X = −

√
µ, of Eq. (2.3a) and is unstable. It blends

smoothly into the upper branch of a coordinate-shifted and
mirror-reflected version of (2.3a), for example,

Ẋ = µ − µo + (X − Xo)
2. (2.3b)
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This branch,X = Xo +
√

µ0 − µ, is also unstable.
Finally, the lowermost branch in Fig. 1 is the second

steady-state solution of Eq. (2.3b),X = Xo −
√

µ0 − µ,
and it is also stable. It corresponds to an ice-covered planet
the same distance from the Sun as the Earth.

The fact that the upper-left bifurcation point in Fig. 1 is
so close to present-day insolation values created great con-
cern in the climate dynamics community in the mid-1970s,
when these results were first obtained. Indeed, much more
detailed computations (see Sect. 2.3 below) confirmed that
a reduction of about 2–5% of insolation values would suf-
fice to precipitate Earth into a “deep freeze” (Wetherald and
Manabe, 1975). The great distance of the lower-right bifur-
cation point from present-day insolation values, on the other
hand, suggests that one would have to nearly double atmo-
spheric opacity for the the Earth’s climate to jump back to
more comfortable temperatures.

2.3 Other atmospheric processes and models

The 1-D atmospheric models in which the details of radia-
tive equilibrium are investigated with respect to a height
coordinatez (geometric height, pressure, etc.) are often
called radiative-convective models (Manabe and Strickler,
1964; Ramanathan and Coakley, 1978; Charlock and Sell-
ers, 1980). This name emphasizes the key role that convec-
tion plays in vertical heat transfer. While these models pre-
ceded historically EBMs as rungs on the modeling hierarchy,
it was only recently shown that they too can exhibit multi-
ple equilibria (Li et al., 1997; Rennó, 1997; Ide et al., 2001).
The word (stable) “equilibrium,” here and in the rest of this
paper, refers simply to a (stable) steady-state of the model,
rather than to true a thermodynamic equilibrium.

Two-dimensional (2-D) atmospheric models also have two
types according to the third space coordinate which is not ex-
plicitly included. Models that resolve explicitly two horizon-
tal coordinates on the sphere or on a plane tangent to it tend
to emphasize the study of the dynamics of large-scale atmo-
spheric motions (see Sec. II in Ghil and Robertson, 2000).
They often have a single layer (Charney and DeVore, 1979;
Legras and Ghil, 1985) or two (Lorenz, 1963b; Reinhold and
Pierrehumbert, 1982). Those that resolve explicitly a merid-
ional coordinate and height are essentially combinations of
EBMs and radiative-convective models and emphasize there-
with the thermodynamic state of the system, rather than its
dynamics (Saltzman and Vernekar, 1972; MacCracken and
Ghan, 1988; Gallée et al., 1991; Berger et al., 1998).

Yet another class of “horizontal” 2-D models is the exten-
sion of EBMs to resolve zonal, as well as meridional surface
features, in particular, land-sea contrasts (Adem, 1970; North
et al., 1983; Chen and Ghil, 1996). We shall see in Sect. 3.2
how such a 2-D EBM is used, when coupled to an oceanic
model, to help solve Problem 5.

Additional types of 1-D and 2-D atmospheric models are
discussed and references to these and to the types discussed
above are given by Schneider and Dickinson (1974) and by
Ghil and Robertson (2000), along with some of their main

applications. Finally, to encompass and resolve the main at-
mospheric phenomena with respect to all three spatial coor-
dinates, general circulation models (GCMs) occupy the pin-
nacle of the modeling hierarchy (Randall, 2000).

Ghil and Robertson (2000) also describe the separate hi-
erarchies that have grown over the last quarter of a century
in modeling the ocean, and the coupled ocean-atmosphere
system. More recently, an overarching hierarchy of Earth-
system models that encompass all the subsystems of interest
(atmosphere, biosphere, cryosphere, hydrosphere and litho-
sphere) has been developing. Eventually, the partial results
about each subsystem’s variability, as outlined in this section
and the next one, will have to be verified from one rung to
the next of the Earth-system modeling hierarchy. No reliable
solution to Problem 10 is conceivable, at least at the present
time, without the full use of such a hierarchy.

2.4 Climate sensitivity

The results of climate simulations with GCMs, whether at-
mospheric or coupled, are often interpreted in terms of the
understanding gained from 0-D or 1-D EBMs. Wetherald
and Manabe (1975), using a simplified sectorial GCM, con-
firmed the dependence of mean zonal temperature on the in-
solation parameterµ (the normalized “solar constant”) ob-
tained for 1-D EBMs (see Ghil and Childress, 1987, Ch. 10).
These authors could not confirm the presence of the interme-
diate, unstable branch or of the “deep-freeze” stable branch
in Fig. 1 with their GCM, due to the model’s computational
limitations. But the parabolic shape of the upper, present-
daylike branch near the upper-left bifurcation point in our
figure (Eq. 2.3a) was well supported by their GCM simula-
tions.

In fact, the sensitivity tanγ = (dT /dµ)|µ=1.0 of global
temperatureT to changes inµ near the present-day climate
(see Fig. 1) equals about 1K per 1% change in the insolation
for both EBMs and GCMs. Many studies of climate-change
response to increases in greenhouse trace-gas concentrations
use, therefore, a linearized version of Eq. (2.1),

c
dT

dt
= −λT + Q, (2.4a)

λ =

l∑
i=1

λi, Q =

J∑
j=1

Qj , (2.4b, c)

to interpret the results of detailed GCM simulations.
Such interpretations focus on the roles of the different

feedbacksλi , positive (λi < 0) or negative (λi > 0), and heat
sources,Qj > 0, or sinks,Qj < 0 (e.g. Schlesinger and
Mitchell, 1987; Cess, et al., 1989; Li and Le Treut, 1992).
These interpretations are limited, therefore, to equilibrium or
quasi-equilibrium responses. The complete study of the hu-
man effects on changes in climatic variability requires the
use of models that reproduce natural variations in a satisfac-
tory manner, rather than simulating only equilibria and sim-
ple transients (Ghil and Le Treut, 1999). We proceed, there-
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Table 1. Thermohaline circulation (THC) oscillations (adapted from Ghil, 1994)

Time scale Phenomena Mechanism

Interdecadal 3-D, wind-driven + - Gyre advection (Weaver et al., 1991, 1993).
thermohaline circulation - Localized surface-density anomalies due

to surface coupling (Chen and Ghil, 1995, 1996).

Centennial Loop-type, Atlantic-Pacific circulation Conveyor-belt advection of high-latitude density
anomalies (Mikolajewicz and Maier-Reimer, 1990).

Millennial Relaxation oscillation, with “flushes” and Bottom-water warming, due to high-latitude
superimposed decadal fluctuations freshening and its braking effect

(Marotzke, 1989; Chen and Ghil, 1995).

fore, with a description of internal variability that arises in
the context of solving Problem 5.

3 Interdecadal oscillations in the oceans’ thermohaline
circulation

3.1 Theory and simple models

Historically, the thermohaline circulation (THC) was first
among the climate system’s major processes to be studied
using a very simple mathematical model. Stommel (1961)
formulated a two-box model and showed that it possessed
multiple equilibria.

A sketch of the Atlantic Ocean’s THC and its interactions
with the atmosphere and cryosphere on long time scales is
shown in Fig. 2. These interactions can lead to climate os-
cillations with multi-millennial periods, such as the Hein-
rich events (Ghil, 1994, and references therein), and are
summarized in the figure’s caption, following Ghil et al.
(1987). An equally schematic view of the global THC is
provided by the widely known “conveyor belt” diagram (e.g.
Broecker, 1991). The latter diagram does not commonly in-
clude the THC’s interactions with water in its gaseous and
solid phases, which our figure does include.

Basically, the THC is due to denser water sinking, lighter
water rising, and water-mass continuity closing the circuit
through near-horizontal flow between the areas of rising and
sinking. This is roughly the oceanic equivalent of the atmo-
sphere’s Hadley circulation, with two notable differences:

i) The ocean water’s densityρ is a function of tempera-
ture T and salinityS, while that of the air depends on
temperature and humidity.

ii) Water sinks in and near fairly concentrated regions of
intense convection, currently located primarily in high
latitudes, and rises diffusely over the rest of the ocean.
Air, on the other hand, does rise most intensely in cu-
mulus towers, but overall, the areas of net rising and
sinking air in a Hadley cell are quite comparable in ex-
tent when viewed on the synoptic and planetary scales.

The effects of temperature and salinity on the ocean wa-
ter’s density,ρ = ρ(T , S), oppose each other: the density

ρ decreases with increasingT and increases with increasing
S. It is these two effects that give the thermohaline circula-
tion its name, from the Greek words forT andS. In high
latitudes,ρ increases as the water loses heat to the air above
and, if sea ice is formed, as the water underneath is enriched
in brine. In low latitudes,ρ increases due to evaporation but
decreases due to heat flux in the ocean.

For the present climate, the temperature effect is com-
monly assumed to be stronger than the salinity effect. Ocean
water is observed to sink in certain areas of the high-latitude
North Atlantic and Southern Oceans, with very few, limited
areas of deep-water formation elsewhere, and to rise every-
where else. Thus, the adjective “thermohaline” indicates that
T is more important thanS by placing “thermo” before “ha-
line”. During some remote geological times, deep water may
have formed in the global ocean near the equator; such an
overturning circulation of the opposite sign to that prevail-
ing today has been dubbed halothermal,S beforeT (e.g.
Kennett and Stott, 1991; see, however, Bice and Marotzke,
2001). The quantification of the relative effects ofT andS

on the oceanic water masses’ buoyancy in high and low lat-
itudes is far from complete, especially for paleocirculations;
the association of the latter with salinity effects that exceed
the thermal ones is thus rather tentative.

Stommel (1961) considered a two-box model, with two
pipes connecting the two boxes. He showed that the sys-
tem of two nonlinear, coupled ordinary differential equa-
tions (ODEs), which govern the temperature and salinity dif-
ferences between the two well-mixed boxes has two stable
steady-state solutions, distinguished by the direction of flow
in the upper and lower pipe. Stommel’s paper was primarily
concerned with distinct local convection regimes, and hence
vertical stratifications, for example, in the North Atlantic and
Mediterranean (or Red Sea). Today, we primarily think of
one box as representing the low latitudes and the other one
as representing the high latitudes in the global THC.

The next step in the hierarchical modeling of the THC is
that of 2-D meridional plane models (see Sect. I.B of Ghil
and Robertson, 2000), in which the temperature and salin-
ity fields are governed by coupled nonlinear partial differ-
ential equations with two independent space variables, for
example, latitude and depth. Given boundary conditions for
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Fig. 2. Diagram of an Atlantic meridional cross section from North Pole (NP) to South Pole (SP), showing mechanisms likely to affect the
thermohaline circulation (THC) on various time scales. Changes in the radiation balanceRin − Rout are due, at least in part, to changes in
the extent of the northern hemisphere (NH) snow and ice cover,V , and how they affect the global temperature,T ; the extent of the southern
hemisphere ice is assumed constant, to a first approximation. The change in hydrologic cycle expressed in the termsPrain − Pevap for the
ocean andPsnow− Pabl for the snow and ice is due to changes in ocean temperature. Deep-water formation in the North Atlantic Subpolar
Sea (North Atlantic Deep Water: NADW) is affected by changes in ice volume and extent, and regulates the intensityC of the THC; changes
in Antarctic Bottom Water (AABW) formation are neglected in this approximation. This, in turn, affects the system’s temperature, and is
also affected by it (after Ghil et al., 1987).

such a model that are symmetric about the equator, as are the
equations themselves, one expects a symmetric solution in
which water either sinks near the poles and rises everywhere
else (thermohaline), or sinks near the equator and rises ev-
erywhere else (halothermal). These two symmetric solutions
would correspond to the two equilibria of Stommel’s (1961)
box model.

In fact, Fig. 3 shows that symmetry breaking can oc-
cur, leading gradually from a symmetric two-cell circulation
(Fig. 3a) to an antisymmetric one-cell circulation (approxi-
mately achieved in Fig. 3c). In between, all degrees of dom-
inance of one cell over the other are possible, with one such
intermediate state shown in Fig. 3b. A situation lying some-
where between Figs. 3b and c seems to resemble most closely
the meridional overturning diagram of the Atlantic Ocean in
Fig. 2.

This symmetry breaking can be described by a pitchfork
bifurcation (e.g. Guckenheimer and Holmes, 1983):

Ẋ = µ − X3. (3.1)

HereX stands for the amount of asymmetry in the solution,
so thatX = 0 is the symmetric branch, andµ is a parameter
that measures the stress on the system, in particular, a nor-
malized form of the buoyancy flux at the surface. Forµ < 0
the symmetric branch is stable, while forµ > 0, the two
branchesX = ±

√
µ inherit its stability.

Thus, Figs. 3b and c both lie on a solution branch of the 2-
D THC problem for which the left cell dominates, i.e. North

Atlantic Deep Water extends to the Southern Ocean’s po-
lar front, as it does in Fig. 2. According to Eq. (3.1), an-
other branch exists whose flow patterns are mirror images
in the rectangular box’s vertical symmetry axis (the “equa-
torial plane”) of those in Figs. 3b and c. The existence of
this second branch was verified numerically by Quon and
Ghil (1992; their Fig. 16). Thual and McWilliams (1992)
considered more complex bifurcation diagrams for a similar
2-D model and showed the equivalence of such a diagram
for their 2-D model and a box-and-pipe model of sufficient
complexity (see also Dijkstra and Ghil, 2001).

3.2 Bifurcation diagrams for GCMs

Bryan (1986) was the first to document the transition from
a two-cell to a one-cell circulation in a simplified ocean
GCM with idealized, symmetric forcing, in agreement with
the three-box scenario of Rooth (1982). Manabe and Stouf-
fer (1999), among others, questioned, however, the realism
of more than one stable THC equilibrium by using coupled
ocean-atmosphere GCMs. The situation with respect to the
THC’s pitchfork bifurcation (3.1) is thus subtler than it was
with respect to Fig. 1 for radiative equilibrium. In Sect. 2,
atmospheric GCMs confirmed essentially the EBM results.
Climbing the rungs of the modeling hierarchy for the THC,
however, yields contradictory results that are still in need of
further clarification.

Internal variability of the THC, with smaller and more reg-
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Fig. 3. Stream-function fields for a 2-D, meridional plane THC
model with so-called mixed boundary conditions: the temperature
profile and salinity flux are imposed at one horizontal boundary of
the rectangular box, while the other three boundaries are imper-
meable to heat and salt.(a) Symmetric solution for low salt-flux
forcing; (b, c) increasingly asymmetric solutions as the forcing is
increased (from Quon and Ghil, 1992).

ular excursions than the huge and completely irregular jumps
associated with bistability, was studied intensively in the late
1980s and the 1990s. These studies placed themselves on
various rungs of the modeling hierarchy, from Boolean de-
lay equation models (so-called “formal conceptual models”:
Ghil et al., 1987; Darby and Mysak, 1993) through box mod-
els (Welander, 1986) and 2-D models (Quon and Ghil, 1995)
to ocean GCMs. A summary of the different kinds of os-
cillatory variability found in the latter appears in Table 1.
Additional GCM references for these three types of oscil-
lations are given by McWilliams (1996). Such oscillatory
behaviour seems to match more closely the instrumentally
recorded THC variability (see Sect. 3.3 below), as well as

the paleoclimatic records for the recent geological past (see
Ghil, 1994), than bistability.

The interaction of the (multi-)millennial oscillations with
variability in the surface features and processes shown in
Fig. 2 is discussed by Ghil (1994). Chen and Ghil (1996),
in particular, studied some of the interactions between atmo-
spheric processes and the THC. They used a so-called hy-
brid coupled model to depict a (horizontally) 2-D EBM (see
Sect. 2.3) coupled to a rectangular-box version of the North
Atlantic rendered by a low-resolution ocean GCM. This hy-
brid model’s regime diagram is shown in Fig. 4a. A steady
state is stable for high values of the coupling parameterλao

or of the EBM’s diffusion parameterd. Interdecadal oscil-
lations with a period of 40–50 years are self-sustained and
stable for low values of these parameters.

The self-sustained THC oscillations in question are char-
acterized by a pair of vortices of opposite sign that grow
and decay in quadrature with each other in the ocean’s up-
per layers. Their centers follow each other counterclockwise
through the northwestern quadrant of the model’s rectangular
domain. Both the period and the spatio-temporal character-
istics of the oscillation are thus rather similar to those seen
in a fully coupled GCM with realistic geometry (Delworth et
al., 1993).

The transition from a stable equilibrium to a stable limit
cycle, via Hopf bifurcation, in Chen and Ghil’s hybrid cou-
pled model is shown in Fig. 4b. The physical characteris-
tics of the oscillatory instability that leads to the Hopf bi-
furcations have been described in further detail by Colin
de Verdìere and Huck (1999), using both a four-box ocean-
atmosphere and a number of more detailed models.

3.3 Interannual and interdecadal climate variability

Human intervention in the workings of the climate on
the global scale (Problem 9) is most likely to occur on
time scales comparable to those of major socio-economic
changes. The latter typically take place at this turn of the
century on interannual to interdecadal time scales. The so-
lution to Problem 9 is thus clearly predicated, at least, on
satisfactory solutions to Problems 3 and 5.

The best known climatic regularities on the interan-
nual time scale are the quasi-biennial and low-frequency
(4–5-year) component of the El-Niño/Southern-Oscillation
(ENSO) phenomenon (Rasmusson et al., 1990; Neelin et al.,
1998). A particularly appealing explanation of these two
spectral peaks that also allows for the broadband spectrum
in the 1–10-year band is given by the Devil’s staircase mech-
anism (Jin et al., 1994, 1996; Tziperman et al., 1994; Saun-
ders and Ghil, 2001). This broadband spectral background is
consistent with the occurrence of major warm events in the
tropical Pacific every 2–7 years.

This mechanism is most easily explained in two steps.
First, it is by now well accepted that the coupled ocean-
atmosphere system in the tropical Pacific exhibits a self-
sustained oscillation with a period of 2–3 years for mean-
annual conditions. Second, this self-sustained oscillation in-
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teracts with the seasonal cycle in insolation and it frequency-
locks, preferentially to an integer multiple of the forcing pe-
riod: 2, 3, 4 or 5 years. Jumps between these broad inte-
ger steps in the Devil’s staircase, as well as between nar-
rower steps associated with rational periods, such as 4/3
years (≈ 16 months), occur as the result of atmospheric,
higher-frequency “noise.” This mechanism is described fur-
ther and compared with other scenarios of interannual vari-
ability and with the observational evidence in Sec. III of Ghil
and Robertson (2000); see also Ch. 5 of Dijkstra (2000).

A fairly satisfactory, albeit partial, solution to Problem 3
is thus at hand, insofar as we understand ENSO’s spectral
regularities. No complete consensus has been achieved, how-
ever, as yet, on the relative role of weather noise and coupled-
mode nonlinearities in ENSO’s irregularity, i.e. the irregular
occurrence of major warm events.

Ghil and Vautard (1991) described statistically significant
regularities in the interdecadal band of climatic variability.
Broad peaks of roughly 13–15 and 23–27 years have been
since confirmed in various records, both instrumental (Plaut
et al., 1995; Moron et al., 1998) and paleoclimatic. The evi-
dence for these interdecadal peaks is reviewed by Ghil et al.
(2001). The interdecadal oscillations in the THC reviewed in
Sect. 3.2 above are a plausible mechanism for these peaks,
but not yet generally accepted as such. We are thus making
good progress on Problem 5, but do not expect a fully self-
consistent solution in less than 2-3 decades.

4 Concluding remarks

We have cast a bird’s-eye view on selected problems among
the ten formulated in the Abstract. This view has clearly em-
phasized strong interconnections between them, both pair-
wise and all around. Unified methods of solution are pro-
vided by dynamical systems theory. Each problem requires
the use of a model hierarchy for its solution.

To conclude, we briefly address Problem 9. More pre-
cisely, we ask whether the impact of human activities on
the climate is observable and identifiable in the instrumental
records of the last century-and-a-half and in recent paleocli-
mate records? The answer to this question depends on the
null hypothesis against which such an impact is tested.

The current approach that is generally pursued assumes
essentially that past climate variability is indistinguishable
from a stochastic red-noise process (Hasselmann, 1976),
whose only regularities are those of periodic external forcing
(Mitchell, 1976). Given such a null hypothesis, the official
consensus of IPCC (1995) tilts towards a global warming ef-
fect of recent trace-gas emissions, which exceeds the cooling
effect of anthropogenic aerosol emissions.

Atmospheric and coupled GCM simulations of the trace-
gas warming and aerosol cooling buttress this IPCC consen-
sus. The GCM simulations used so far do not, however, ex-
hibit the observed interdecadal regularities described at the
end of Sect. 3.3. They might, therewith, miss some important
physical mechanisms of climate variability and are, there-

a) Regime diagram

b) Bifurcation diagram

Fig. 4. Dependence of THC solutions on two parameters in a hybrid
coupled model (HCM); the two parameters are the atmosphereo-
cean coupling coefficientλao and the atmospheric thermal diffusion
coefficientd. (a) Schematic regime diagram. The full circles stand
for the model’s stable steady-states, the open circles for stable limit
cycles, and the solid curve is the estimated neutral stability curve
between the former and the latter.(b) Hopf bifurcation curve at
fixed d = 1.0 and varyingλao; this curve was obtained by fitting a
parabola to the model’s numerical-simulation results, shown as full
and open circles (from Chen and Ghil, 1996).

fore, not entirely conclusive.

As northern hemisphere temperatures were falling in the
1960s and early 1970s, the aerosol effect was the one that
caused the greatest concern. As shown in Sect. 2.2, this
concern was bolstered by the possibility of a huge, highly
nonlinear temperature drop if the climate system reached the
upper-left bifurcation point of Fig. 1.

The global temperature increase through the 1990s is cer-
tainly rather unusual in terms of the instrumental record of
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the last 150 years or so. It does not correspond, however, to
a rapidly accelerating increase in greenhouse-gas emissions
or a substantial drop in aerosol emissions. How statistically
significant is, therefore, this temperature rise, if the null hy-
pothesis is not a random coincidence of small, stochastic ex-
cursions of global temperatures with all, or nearly all, the
same sign?

The presence of internally arising regularities in the cli-
mate system with periods of years and decades suggests the
need for a different null hypothesis. Essentially, one needs
to show that the behaviour of the climatic signal is distinct
from that generated by natural climate variability in the past,
when human effects were negligible, at least on the global
scale. As discussed in Sects. 2.1 and 3.3, this natural vari-
ability includes interannual and interdecadal cycles, as well
as the broadband component. These cycles are far from be-
ing purely periodic. Still, they include much more persistent
excursions of one sign, whether positive or negative in global
or hemispheric temperatures, say, than does red noise.

Ghil and Jiang (1998) showed that on the seasonal-to-
interannual time scale, climate predictability is greatly en-
hanced by the presence of these regularities. This is the case
not only when the predictability is measured against the clas-
sical benchmark of a red-noise process of first-order auto-
regressive type (Hasselmann, 1976; Mitchell, 1976; IPCC,
1995). It is also the case when measured against a purely
chaotic, albeit deterministic process, such as that governed
by Lorenz’s (1963a) model.

The answer to the global warming problem on the inter-
decadal time scale on which we are posing this problem is
comprised of two parts. First, we need to describe and un-
derstand climate variability on this time scale as well as on
the interannual time scale, in particular its regularities, i.e.
solve Problems 3 and 5. Once that is done, a prediction with
known error bars on the interdecadal time scale will be pos-
sible (see Plaut et al., 1995).

With these results in hand, we should be able to proceed to
the second part of the answer. Can we identify with measur-
able certainty deviations of the current record from predic-
tions based on past natural variability? If so, such deviations
have to be attributed to new causes. The “suspects” clearly
include human effects, and attribution to them will become
thereby both easier and more reliable.

At the same time, one hopes that the applications of dy-
namical systems theory to the global socio-economic sys-
tem and to population dynamics will have made considerable
progress (Keilis-Borok and Śanchez Sorondo, 2000). With
this in mind, a rational approach to predicting and controlling
the coupled system formed by all living beings on this planet
and their physico-chemical environment would become fea-
sible by the end of this century.
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Gödel, K., The Consistency of the Axiom of Choice and of the Gen-
eralized Continuum Hypothesis, Princeton Univ. Press, Prince-
ton, 1940.

Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynam-
ical Systems and Bifurcations of Vector Fields, Springer-Verlag,
New York, 453, 1983.

Hasselmann, K., Stochastic climate models, Part I: Theory. Tellus,
28, 473–485, 1976.

Held, I. M. and Suarez, M. J., Simple albedo feedback models of
the ice caps, Tellus, 26, 613–629, 1974.

Hilbert, D., Mathematische Probleme, Göttinger Nachrichten, [see
also Archiv d. Mathematik u. Physik, 3 (1), 44–63 and 213–237,
1901; French transl. by M. L. Laugel, Sur les problèmes futurs
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