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Abstract. The propagation of long, weakly nonlinear inter-
nal waves in a stratified gas is studied. Hydrodynamic equa-
tions for an ideal fluid with the perfect gas law describe the
atmospheric gas behaviour. If we neglect the termρ dw/dt
(product of the density and vertical acceleration), we come to
a so-called quasistatic model, while we name the full hydro-
dynamic model as a nonquasistatic one. Both quasistatic and
nonquasistatic models are used for wave simulation and the
models are compared among themselves. It is shown that a
smooth classical solution of a nonlinear quasistatic problem
does not exist for allt because a gradient catastrophe of non-
linear internal waves occurs. To overcome this difficulty, we
search for the solution of the quasistatic problem in terms of
a generalised function theory as a limit of special regularised
equations containing some additional dissipation term when
the dissipation factor vanishes. It is shown that such solutions
of the quasistatic problem qualitatively differ from solutions
of a nonquasistatic nature. It is explained by the fact that in
a nonquasistatic model the vertical acceleration term plays
the role of a regularizator with respect to a quasistatic model,
while the solution qualitatively depends on the regularizator
used. The numerical models are compared with some analyt-
ical results. Within the framework of the analytical model,
any internal wave is described as a system of wave modes;
each wave mode interacts with others due to equation non-
linearity. In the principal order of a perturbation theory, each
wave mode is described by some equation of a KdV type.
The analytical model reveals that, in a nonquasistatic model,
an internal wave should disintegrate into solitons. The time
of wave disintegration into solitons, the scales and amount of
solitons generated are important characteristics of the non-
linear process; they are found with the help of analytical and
numerical investigations. Satisfactory coincidence of simu-
lation outcomes with analytical ones is revealed and some
examples of numerical simulations illustrating wave disinte-
gration into solitons are given. The phenomenon of internal
wave mixing is considered and is explained from the point of
view of the results obtained. The numerical methods for in-
ternal wave simulation are examined. In particular, the influ-

ence of difference interval finiteness on a numerical solution
is investigated. It is revealed that a numerical viscosity and
numerical dispersion can play the role of regularizators to a
nonlinear quasistatic problem. To avoid this effect, the grid
steps should be taken less than some threshold values found
theoretically.

1 Introduction

The majority of large-scale atmospheric and ocean models, a
priori, assume a local hydrostatic equilibrium. The approx-
imation corresponding to this supposition consisting of the
term of a vertical acceleration is omitted is called a hydro-
static or quasistatic approximation. Richardson has sugges-
ted this simplification in 1922. One usually justifies the qua-
sistatic approach by a small ratio of vertical and horizontal
scales of large-scale fields;β will denote the ratio of vertical
and horizontal scales.

This justification seems quite convincing and is conven-
tional now. Nevertheless, some mathematical research re-
veals that the passage from a full hydrodynamic model to the
limit of a quasistatic model is absent (Long, 1965; Kshevet-
skii and Leble, 1985, 1988). The reason for this strange
phenomenon is concealed in equation nonlinearity. Within
the framework of a nonlinear hydrostatic model, at the wave
front, horizontal gradients ordinarily increase with time, to-
gether with vertical accelerations, which can reach infinite
values over time. That is, over time, depending on initial
conditions, the solution of a hydrostatic problem becomes
unexistant.

The unpleasant fact would be absent if the quasistatic ap-
proach was not used. It is necessary to keep only the vertical
acceleration term in the equations. Actually, it is an unjusti-
fied optimism. When developing a nonquasistatic model, we
encounter a number of specific mathematical difficulties.

Let us describe briefly some decisions, which should be
made when developing a nonquasistatic model. In such a
model exists a sound wave mode. Sound wave frequencies
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are huge in comparison with internal wave frequencies. The
sound waves represent a fast mode, while the internal waves
represent a slow mode. The error of any numerical method
is expressed through higher derivatives of the solution. The
greater these higher derivatives are, the greater the simulation
error. All fast-oscillating functions have large derivatives.
Therefore, high-frequency waves significantly contribute to
the error and prevent numerical simulating of a slow mode.

The difficulty described cannot be overcome at the ex-
pense of the diminution of difference of grid steps. On the
contrary, the diminution of grid steps can only contribute to
the aggravation of the outcome. Fortunately, mathematical
tools are able to overcome the difficulty described. Some
special numerical methods are indifferent in relation to a fast
mode (Kshevetskii, 1990, 1998). These methods may be
called uniformly converging methods because they meet the
requirement that the convergence is uniform inβ. The uni-
formly converging numerical methods are difficult ones, but
they have an advantage. The errors originated from a fast
mode are not accumulated over time. The methods allow
one to work with the equations as if the model is a hydro-
static one.

The obstacles described above do not exhaust all difficul-
ties. To describe the new difficulties easier, let us return to
the consideration of a quasistatic problem. As it has been
mentioned, a classical smooth solution of the nonlinear qua-
sistatic problem may be unexisting for larget . Such cases
are not rare, but it depends on initial conditions. We take an
interest in the fluid behaviour for larget . Therefore, it is nec-
essary somehow to restore correctness of the problem for all
t .

It is natural to try to restore the problem correctness via
a conventional reception, searching for a solution in terms
of generalised functions (Richtmyer, 1978). It is usual prac-
tice in a nonlinear theory. Often the generalised solution is
obtained as follows. At first, one adds into the equations a
special term with a preceding small parameter. The newly
modified equations are called regularised equations. Then
one solves the regularised equations and takes the limit when
the small parameter tends to zero; thus the term containing
the small parameter vanishes. If, in doing so, the limit solu-
tion exists, it is called a generalised solution of the problem
(Lions, 1969).

A shortcoming of the regularisation technique is that the
generalised solution obtained depends on the regularisation
used. In this sense, the solution is not unique. Therefore,
it is very important to take the regularisation correctly. The
small termρ ∂w/∂t in the nonhydrostatic model may be con-
sidered as a natural regularizator. This term, in fact, fulfills
the role of a regularizator because it ensures the existence of
a smooth solution. However, we immediately should notice
that in such conditions the effects of the numerical dissipa-
tion and numerical dispersion are able to play the role of a
regularizator, instead of the termρ ∂w/∂t . These numeri-
cal effects always take place in all numerical models due to
the finiteness of difference intervals. The competition be-
tween different regularizators is rather probable in this case

with the effects of the numerical dissipation and numerical
dispersion against the termρ ∂w/∂t . Various regularizators
result in various generalised solutions. Therefore, the situa-
tion requires detail study.

One can say that a nonquasistatic model is studied in the
paper. However, it is more correct to consider this investi-
gation differently. In this work, a usual quasistatic model is
considered and various regularisation techniques are investi-
gated. The nonquasistatic model is considered, but only as
one of the mathematically possible regularisations. This reg-
ularisation is more justified physically, and, consequently, is
examined more carefully.

It is necessary to notice that the issue of equation regulari-
sation is insufficiently developed for the present. As far as the
author can view the question, originally it was presumed that
parabolic regularisations are only physically admissible, and
that the solution weakly depends on the regularisation used.
Von Neumann and Richtmyer have suggested the parabolic
regularisation in 1950. Later, it was discovered that the so-
lution can depend on the regularisation used, but only dissi-
pation terms were allowed as regularizators (Samarskiy and
Popov, 1980). In the problem under consideration, a disper-
sion term plays the role of a regularizator. The situation is
unusual and the author could not carry out a mathematically
finished investigation adequate for all practical needs of geo-
physics. Nevertheless, in the paper some outcomes of sev-
eral test simulations illustrating efficiency of the constructed
mathematical model are shown. An effect of internal wave
mixing is considered as well, as it is mathematically associ-
ated with considered matters.

Dissipation effects are not taken into account. The prob-
lem under consideration is two-dimensional. The simplifica-
tions are not adopted because of essential difficulties. A more
complete model could take dissipation and three-dimension-
ality into consideration. However, within the framework of
the present research, the “superfluous” terms are cut off in
order to concentrate on the investigation of critical matters.

2 Basic equations and suppositions being used

The scale heightH of the atmosphere depends on heightz

above the Earth’s surface. At the height of 80–90 km the
ultimate velocity of internal wave propagation in the atmo-
sphere reaches a minimum. Therefore, the internal waves
with propagation velocities greater than

√
4(γ − 1)gHmin/γ

can not intercross the turbopause region and therefore they
propagate along the Earth’s surface horizontally. In relation
to these waves, one can consider the atmosphere as a wave-
guide.

To simplify the model, we consider a gas exponentially
stratified in density. We shall ensure wave-guide propaga-
tion of internal waves at the expense of the rigid cover con-
ditions: w(x, z = 0, t) = w(x, z = h, t) = 0. Hereh is an
effective thickness of the atmospheric wave-guide,w is the
vertical velocity,x andz are the horizontal and vertical co-
ordinates. The upper boundary condition qualitatively takes
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into account a wave reflection effect by the turbopause re-
gion. The lower boundary condition is natural.

We suppose that the atmospheric gas behaviour is gov-
erned by 2D hydrodynamic equations for an ideal fluid with
the perfect gas law:

dρ

dt
+ ρ∇ · V = 0, (1)

ρ
du

dt
= −

∂P

∂x
,

ρ
dw

dt
= −

∂P

∂z
− ρg,

cv

µ
ρ
dT

dt
= −P ∇ · V , P =

ρRT

µ
.

The labels are conventional; no special explanations are re-
quired. The boundary conditions have been noted above.

We shall study, for the most part, long internal gravity wa-
ves; β = kx lz � 1 for long waves. Herek−1

x denotes a
characteristic horizontal scale of the wave. The vertical scale
is lz = min(k−1

z , H), wherekz is a typical value of a vertical
component of the wave vector. Using the dispersion relation
for internal gravity waves, one can easily deduce the estimate
ω

√
H/g ≈ kx lz = β � 1. The symbolsω andg denote

the wave frequency and gravity acceleration. With the help
of polarisation relations for internal waves, one can easily
obtain the following estimates:

u
√
GH

∼
w

β
√
gH

∼
1P

P0
∼
1ρ

ρ0
∼ σ

Here the parameter of nonlinearityσ = 1P/P0 � 1; 1P ,
1ρ are the amplitudes of the pressure and density variations
on account of wave propagation,P0, ρ0 are the background
pressure and density of the unperturbed atmosphere.

Some elementary estimates reveal that the vertical acceler-
ations of fluid particles are small for internal waves. It means
thatρ dw/dt ∼ ρ0β

2σg is much less than(ρ−ρ0)g ∼ σρ0g

and we can considerρ dw/dt in the third equation of system
(1) as small. In dimensionless variables, this term is of the
orderO(β2). All other linear terms are of the identical order
O(1). The nonlinear terms are of the ordersσ , σ 2, σβ2. If
we neglectρ dw/dt , we use a so-called quasistatic approx-
imation. This approximation is very popular in geophysics.
At present, it is a fundamental equation of the dynamic me-
teorology.

The curvature of the Earth’s surface, the Earth’s rotation,
and dissipation is not taken into account. Some estimates re-
veal that these effects are not of value to resolve for nonlinear
processes under consideration. Some notes concerning these
effects will be made below.

3 Analytical model of nonlinear internal gravity waves

Equations (1) are very complex ones. At present, such chal-
lenges may only be solved numerically. It is possible to solve
(1) by a Galerkin method (Fletcher, 1984). In the framework

of a Galerkin method, a solution is sought after as a gen-
eralised Fourier series with solution expansion on any com-
plete set of basis functions. For example, a solution of equa-
tions (1) for the horizontal velocity can be presented as the
generalised Fourier seriesu(x, x, t) =

∑
n2

n(x, t)Sn(z) on
some complete set of functionsSn(z). Here2n(x, t) are fac-
tors of the Fourier series. One can take the functionsSn(z)

arbitrarily, if they only form a complete set. It is very con-
venient in the problem under consideration to take anSn(z)

those functions arise at solving the linearized equations (1 )
by a method of separation of variables.

To be sure, the solution of system (1) can be written in
a linear approximation as

∑
n2

n(x, t)Sn(z) as well. In a
linear case, the solution can be constructed by a Fourier
method of separation of variables. In doing so, the product
2n(x, t) Sn(z) is often named an eigen-mode of the prob-
lem, wheren denotes the mode number. The functionsSn(z)

describe a vertical shape of the mode. The functionsSn(z)

satisfy some Sturm-Liouville boundary value problem on ei-
genvalues. This Sturm-Liouville problem automatically ari-
ses when solving the linearized equations (1) by a method of
separation of variables.

In a nonlinear case, we shall call the product
2n(x, t)Sn(z) a mode, by analogy to a linear theory.
To supplement the Galerkin method with some “valid”
simplifications based upon the smallness ofσ, β, then the set
of equations (1) can be rewritten with the errorO(σ 2

+ β4)

as follows (Kshevetskii and Leble, 1985, 1988):

2nt + cn2
n
x +

σ

2

∑
m,l

F nlm2
l2mx +

β2

2

(
γ − c2

n

γ − 1
c3
n2

n
xxx

+
γ + c2

n

γ − 1
c3
n2

−n
xxx

)
= 0. (2)

Some modern derivation of equations (2) is given in Ap-
pendix A.

The factorcn in (2) is the propagation velocity of mode
n in a linear approximation. The waves withn > 0 prop-
agate to the right and the waves withn < 0 propagate to
the left, c−n = −cn. F nlm are the constants defining the ef-
fectiveness of nonlinear interaction of modes. They are ex-
pressed by rather bulky integrals, whose integrands contain
functionsSn(z), Sl(z), Sm(z) and their derivatives. Equa-
tions (2) are written down in dimensionless variables. That
is, x is the dimensionless horizontal coordinate andt is time:
xdimens. = (H/β)xnondimens., tdimens. = β−1√H/gtnondimens..

The nonlinear terms in (2) are due to nonlinear terms in
(1). The dispersion terms(β2/2)(γ − c2

n)/(γ − 1)c3
n2

n
xxx

and(β2/2)(γ + c2
n)/(γ − 1)c3

n2
−n
xxx originate from the term

ρ0 ∂w/∂t contained in the third equation of system (1). They
take into account small deviations from the local hydrostatic
equilibrium. Let us consider explicitly why the third deriva-
tives have arisen there. To begin with, we make note that
there is no necessity to calculate the small terms precisely.
It is enough to use the principal order of a perturbation the-
ory. We can neglect nonlinear terms and the termρ ∂w/∂t
in (1) in the dominant order. At that time, we see thatw
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is written via2n(x, t) by means of a differentiation opera-
tion: w(x, z, t) =

∑
n(∂2

n(x, t)∂x)Sn(z) and2n(x, t) =

f n(x − cnt). The functionsf n are arbitrary at this approxi-
mation. Particular shapes ofSn(z) are not important for com-
mon reasoning and, consequently, the functionsSn(z) are not
written down here. One differentiation operation is contained
in ρ ∂w/∂t . In deriving (2), the third equation of system (1)
has to be differentiated one time with respect tox. So, the
third derivatives of2n have arisen in (2).

Applying σ = 0 andβ = 0, we shall come to a known
outcome of a linear theory of long internal waves: each wave
moden propagates with the eigen velocitycn without chang-
ing the form. Therefore, it is possible to say that equations
(2) describe the nonlinear wave as a system of modes; each
mode interacts with others.

Boundary conditions influence the functionsSn(z) and,
subsequently, nonlinear constantsF nlm. For any homoge-
neous boundary conditions, internal wave propagation is de-
scribed by equations such as (2). In this sense, the particular
aspect of boundary conditions is not important when we are
interested in qualitative nonlinear effects. It is known that
long internal gravity waves propagate almost horizontally.
So, if a long internal gravity wave has been excited not far
from the Earth’s surface, this wave reaches the wave guide
upper boundary only at large times:tdimens. ≈ h/(β

√
gH).

Therefore, system (2) is suitable also to model non-wave-
guide propagation of internal waves, but only until waves
have reached the heighth. We see that the boundary con-
ditions do not influence the outcomes critically. For this rea-
son, we have made only a slight consideration of the choice
of boundary conditions.

If we neglect the interaction of various wave modes and
if we take only one of them presuming that only one wave
mode was originally excited, we shall obtain a KdV model
of nonlinear internal waves. The KdV model has been sug-
gested for the studying of nonlinear internal waves in the mid
1960’s, in a stationary variant of the KdV equation (Long,
1965; Benjamin, 1966). Between 1970 and 1980, this model
was developed and was adjusted to explain various atmo-
spheric and ocean processes. In contrast to the classical KdV
model, equations (2) allows one to consider immediately a
number of wave modes. Each of them interacts with the oth-
ers. Although equations (2) do not containz, the vertical
wave propagation is taken into account in the model just as
it takes place in Fourier or Calerkin methods. The history
of development of a KdV model of internal waves is given
briefly in Appendix B. Some references to primary sources
are given there as well.

As system (2) is of extreme interest from a physical point
of view, attempts were undertaken repeatedly to integrate
(2) precisely. At present, some precise integrable cases are
found for two- and three-wave systems. One can be found
in (Gürses and Karasu, 1996, 1998), with exhaustive infor-
mation on exact integrable KdV systems and a number of
references.

In the papers by the author and Leble (1985, 1988), some
nonsingular perturbation theory was developed to solve (2),

and an approximate solution to this system was obtained.
The approximate solution is:

2n(x, t) ≈ 2n0(x, t)−
σ

2

∫ t

0

∑
m,l

m6=n 6=l

F nlm2
l
0

(
x − cn(t − t ′), t ′

)
2m0x

(
x − cn(t − t ′), t ′

)
dt ′

−
β2

2

∫ t

0

γ + c2
n

γ − 1
c3
n2

−n
0xxx(x − cn(t − t ′), t ′) dt ′. (3)

The functions2l0(x, t) are solutions of Korteweg-de Vries
type equations (Lamb, 1980), such as

2n0t + cl2
n
0x +

σ

2
F nnn2

n
02

n
0x

+
β2

2

(
γ − c2

n

γ − 1
c3
n

)
2n0xxx = 0. (4)

The initial conditions are posed so:2n0(x,0) = 2n(x,0).
On the right of (3), the addend takes into account nonlin-

ear interaction of various modes. The nonlinear interaction
of each wave mode with itself is taken into account imme-
diately by2n0(x, t). The approximate solution takes into ac-
count various mode interactions and mode self-actions with
inequality in rights. It takes place because each mode is in
charge with respect to others; it loosens the interactions of
the different modes. The interactions of various modes be-
come apparent only at impacts of modes when wave carriers
are intersected. At the same time, the nonlinear self-actions
of modes continuously take place and are loosened by noth-
ing. Therefore, they give the effects that are more essential.
In Kshevetskii and Leble (1985, 1988), it was shown that the
contributions of interaction of modesn,m are proportionate
to σ/(cn − cm). For higher modes, the residuals|(cn − cm)|

are small and the mode interactions are already necessary
for taking into account in the principal order of the perturba-
tion theory. The last term in the right-hand side of (3) takes
into account some small dispersion effects. In principle, this
term can be excluded, having made some appropriate com-
pensatory amendments in2n0(x,0).

4 Analysis of the analytical solution

It is well known that att → ∞, the wave described by a
KdV equation disintegrates into solitons and a wave tail of a
comparatively small amplitude propagates behind the basic
soliton wave (Lamb, 1980). The internal waves are approx-
imately described by equations of a KdV type. Hence, in-
ternal gravity waves should behave like waves governed by a
KdV equation: att → ∞, they should disintegrate into sev-
eral soliton waves with a small-amplitude wave tail propagat-
ing behind. Main wave energy accumulates in the head part
consisting of solitons. By understanding the internal wave
behaviour, we can now formulate some questions of physi-
cal interest. The time of wave disintegration into solitons,
the scales and amount of solitons generated are important
characteristics of the nonlinear process. The physical sense
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of these soliton waves is of interest as well. What do these
solitons represent? Are they vortices, domains of increased
or decreased pressure, something similar to a high-frequency
sound wave, or something other? Now we put aside these
questions, and we undertake the investigation of some ex-
treme cases of interest.

The caseβ = 0 is analytically analysable as well. More-
over, this case is of special interest because it answers a so-
called quasistatic approach; the quasistatic equation is used
now as a fundamental equation of the atmosphere. Richard-
son has offered the quasistatic approximation in 1922. In
terms of primitive equations (1), this approximation means
that the termρ dw/dt in the equation for a vertical momen-
tum is omitted, and the third equation of system (1) turns into
a quasistatic one

∂P

∂z
+ ρg = 0.

In dimensionless variables, the small discarded termρ dw/dt

is of the orderO(β2). The limit β → 0 is also interesting
because it corresponds to

tdimens. =
1

β

√
H

g
tnondimens. → ∞.

That is, studying the limit, we can see also what happens for
largetdimens..

In terms of equations (2), atβ = 0 we have a system of
quasilinear equations:

2nt + cn2
n
x +

σ

2

∑
m,l

F nl,m2
l2mx = 0 (5)

With the errorO(σ 2), this system is equivalent to the hy-
drodynamic equations in the quasistatic approximation. It is
well known that some waves governed by quasilinear equa-
tions are able to break. More precisely, the solution may
become ambiguous over time. Taking this note into account,
the equations (5) were carefully investigated in Kshevetskii
and Leble (1985, 1988) and Kshevetskii (1998). The condi-
tion of wave breaking isF nnn2

n(x, t = 0) ≥ 0. (This condi-
tion can be obtained directly from (3), (4 ).) The primitive-
ness of this condition reveals that the wave breaking cannot
be an unusual event. If we assume that positive and nega-
tive values of2n(x, t = 0) are equiprobable, then, roughly
speaking, the wave breaking must occur in one half of the
events, at a large enought . The wave breaking demonstrates
the fact that an unambiguous smooth solution (classical solu-
tion) of the nonlinear quasistatic problem may be nonexistant
since somet = tbreaking. Also, we come to a surprising con-
clusion: attdimens. → ∞, the solution of the hydrodynamic
equations (1) does not tend in general to reach the state of a
mechanical equilibrium.

The smooth, classical solution of the nonlinear quasistatic
problem does not exist for allt . To overcome this difficulty, it
is natural to try to consider the solution in terms of the theory
of generalised functions (Richtmyer, 1978). For nonlinear
equations, one ordinarily calculates it in the following way

(Lions, 1969). At first, one adds into the equations any small
term ensuring the existence of a smooth solution for allt (5).
This additional term is especially selected. The special term
is called a regularizator and the revised equations are named
regularised equations. When we have solved the regularised
problem, we direct the factor preceding the small additional
term to zero, and the term entered disappears. If, in doing so,
the limit of the smooth solution of the regularised equations
exists for allt , this limit is called a generalised solution of
the problem. To be sure, the generalised solution obtained
in such a way in general is not smooth. The shortcoming of
the approach is that it is possible to get various generalised
solutions for the same initial problem, by using various reg-
ularizators. Therefore, a correct choice of the regularizator
is of great importance. The choice is determined by not only
some mathematical means, but also for physical reasons as
well.

Let us analyse our problem. We know that
∣∣2nxxx∣∣ → ∞ at

the point of wave breaking. Thereby, neglect ofβ2

2

(
γ−c2

n

γ−1 c
3
n

2nxxx

)
is inadmissible. The dispersionβ

2

2

(
γ−c2

n

γ−1 c
3
n2

n
xxx

)
just prevents wave breaking, and it ensures the existence of a

smooth solution. Therefore, the small dispersion termsβ2

2 ·(
c2
n

γ−1c
3
n2

n
xxx

)
play the role of regularizators. The derivation

of equations (2) reveals that the termsβ
2

2

(
γ−c2

n

γ−1 c
3
n2

n
xxx

)
in

(2) originate fromρ0 ∂w/∂t in (1). Hence, one must con-
sider the termρ dw/dt in (1) as a natural regularisator.

We are going to solve hydrodynamic equations numeri-
cally, and the note we now will make is important. We have
understood that a classical solution of the quasistatic prob-
lem does not exist for allt . We account for this fact by the
absence of the termρ dw/dt at this approximation. How-
ever, a classical solution for a nonquasistatic problem may
be nonexistant as well. For example, a shock wave cannot be
interpreted as a classical solution. Thus, in any case some
regularisation of the gas dynamics equations (1) is neces-
sary. When we integrate gas dynamics equations numeri-
cally, the regularisation is frequently carried out implicitly.
So, in computational methods of thorough calculations (Go-
dunov scheme, McCormack scheme, etc.), a “scheme vis-
cosity” is used as a regularizator. We elucidate what we call
a “scheme viscosity”. Any difference method always gives
some consequences of finiteness of grid steps; these are so-
called numerical dissipation and numerical dispersion. These
numerical effects are parasitic ones. But, at the same time,
they play the role of regularizators for a nonlinear problem,
ensuring solution existence and uniqueness. These vanishing
computational effects are necessary. However, the problem
under consideration is unique. In the problem, the competi-
tion of various regularizators is possible: the effects of a nu-
merical dissipation and numerical dispersion against the term
ρ dw/dt . Various regularizators lead to various solutions. To
be sure, in a numerical method for nonlinear internal waves,
the termρ dw/dt should take a role as a main regularizator
for internal waves, but the effects of a numerical dispersion
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and numerical dissipation should “concede”. It is difficult
to ensure realisation of this requirement because usually the
term ρ dw/dt is very small, while both the numerical dis-
persion and numerical dissipation are ineradicable due to the
finiteness of difference grid steps.

Now we understand the problem specifically, and we are
able to formulate some research purposes:

1. To construct a computational model of propagation of
nonlinear internal gravity waves in a stratified gas.

2. To investigate a quasistatic limit.

3. To study experimentally the influence of various regu-
larizators on the solution behaviour.

4. To validate the numerical model quality with the help of
some special tests based upon the analytical model.

5. To investigate numerically the disintegration of internal
gravity waves into solitons.

6. To make use of obtained results to explain some physi-
cal phenomena.

The order of these topics will differ from the sectional or-
der for the sake of convenience.

5 Numerical simulation of nonlinear wave propagation

5.1 The numerical model

Penencko (1985), Peckelis (1988), Tapp and White (1976)
and Klemp (1978) constructed nonquasistatic nonlinear
models of atmospheric processes. In view of the complexity
of the considered equations, some methods of decomposition
were widely used to solve them. The models created were
not specially aimed at the study of nonlinear internal waves.
They were not tested with this class of solutions. Therefore,
without additional investigation, it is difficult to tell which
method is better for solving the problem.

Let us note some delicacies of numerical integration of gas
dynamics equations which originate from the specificity of
the problem under consideration.

a) We are interested in internal gravity waves, but acous-
tic waves exist in a compressible fluid as well. Acous-
tic waves are excited due to nonlinear effects, as well
as through the approximations in numerical methods.
Acoustic waves are capable of generating significant er-
rors at numerical simulations, even if the wave ampli-
tudes are small ones. In reality, the approximation error
of any numerical method is expressed through the sim-
ulation of some higher derivatives of the solution. The
acoustic wave frequencies are high and, respectively,
the higher derivatives are great. We amplify the pre-
vious statement: we are interested in periods that are
longer than the internal gravity wave quasiperiods. The
periods are huge in comparison to the acoustic wave

quasiperiods. The numerical simulation errors have the
possibility of accumulating for very long time. Eventu-
ally, the numerical solution can essentially differ from
the exact one, even if the numerical method is stable.
Thereby, we can only hope for some special numeri-
cal methods in which the errors associated with acoustic
waves are not accumulated.

b) It follows from the analytical theory that, at greater time
periods, the solution behaviour is strongly dependent on
the ratio between the dispersion termρ ∂w/∂t (product
of the density and vertical acceleration of fluid parti-
cles) and nonlinear terms. All the terms mentioned are
small for the problem under consideration. Therefore,
with the intension of investigating nonlinear effects, we
should make the simulation errors even smaller.

c) An artificial or numerical dissipation is always used to
stabilize the numerical simulation of nonlinear gas dy-
namics. A vanishing numerical dissipation is necessary
in order to regularise an acoustic mode of the solution.
The specificity of the problem under consideration is
that the numerical dissipation can render a huge influ-
ence on internal gravity waves. Let us consider a mo-
del example. By adding a small artificial dissipation
νBn2nxxx into a KdV equation we convert this equation
into a KdV-Burgers equation:

2nt + cn2
n
x + σan2n2nx + β2bn2nxxx

+ νBn2nxx = 0 (6)

The dispersion term in (6) is aboutβ2bnAλ−3, and the
dissipation term is of order ofνBnAλ−2; A is the wave
amplitude andλ is the wavelength. We see that, for
sufficiently long waves, the dissipation term is much
greater than the dispersion term becauseλ−3 vanishes
faster thanλ−2 at λ → ∞. WhenνBn2nxx is greater
thanβ2bn2nxxx , the disintegration into solitons will not
take place. In this case the dissipation termνBn2nxx
plays the role of a regularizator and some waves such as
a shock wave will be generated instead of disintegration
into solitons. We take only an interest in long internal
waves and there is a real danger in obtaining an erro-
neous outcome. Therefore, the numerical dissipation is
only allowed if the one is brought in some special way
so that it does not influence the internal gravity waves.

Careful research of various numerical schemes in the as-
pects listed is fulfilled in Kshevetskii et al. (1990) and Kshe-
vetskii (1995). The research includes a mathematical proof
of a convergence theorem (in a linear approximation) as well
as some special investigations of the obstacles listed. It was
shown that all numerical schemes of the first order of ac-
curacy (explicit and implicit) are usable to simulate internal
wave propagation only if the time step is much less than 3
sec. Otherwise, finiteness of the time step essentially in-
fluences the numerical solution obtained. The last undesir-
able effect originates from the nonlinearity of the equation in
some special way (see a).
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Among the numerical methods of the second order of ac-
curacy, some numerical schemes that are more suitable are
present. However, it was shown (Kshevetskii, 1995) that the
time stepτ as well the steph1 along a horizontal coordinate
must satisfy inequalities:

τ � 4

√
H

g
, h1 �

√
2H. (7)

Otherwise, numerical effects of dissipation or dispersion will
play the role of a regularizator of the nonlinear problem in-
stead of the termρ dw/dt . This will considerably change
the behaviour of the nonlinear internal gravity waves and is
inadmissible. We note the uncommonness of this statement.
Such subtle questions were not formerly considered in the
literature.

Careful numerical experiments have revealed that even
computer roundings essentially influence the numerical solu-
tion. The effects of computer roundings are well known, but
they seldom are important in practice. Their present impor-
tance can be explained by two circumstances. First, we solve
the problem for large intervals of heights (0−100 km), while
the atmospheric gas density is exponentially decreasing with
height. Secondly, we are interested in the behaviour of at-
mospheric parameters for large time spans. The influence of
rounding errors can be imperceptible during one hour. Nev-
ertheless, the effect becomes significant for large time spans,
because small rounding errors are accumulated over time. To
avoid the rounding error effect, the calculations were organ-
ised in a special way. At each integrating step, the wave com-
ponents in relation to the background pressure, density, and
temperature were calculated as preliminary ones and then the
pressure, density and temperature were calculated by means
of adding the wave components to the background values.

Due to the research, some special numerical models were
constructed. In a linear quasistatic approximation, the nu-
merical scheme developed is analogous to the scheme sug-
gested by Yudin and Gavrilov (1985), but is slightly advan-
ced. Some special grid of the type “cross” (Samarskiy and
Popov, 1980) has been used in order that the difference equa-
tions are more exact. In addition, the grid “cross” is con-
venient because it easily allows the inspecting realisation of
conservation laws.

The numerical scheme constructed is very similar to the
two-step Lax-Wendroff scheme (Richtmyer and Morton,
1967). Therefore, it is convenient to describe the algorithm
peculiarities by starting with this known scheme. Lax and
Wendroff considered the hydrodynamic conservation laws

rt + (q(r))x + (s(r))z = 0.

Herer is a vector function, whose components are the den-
sity, momentum density and energy density. Lax and Wen-
droff have approximated these conservation laws as follows:

r
j+1
i,k − r

j
i,k

τ
+

q
j+ 1

2

i+ 1
2 ,k
(r)− q

j+ 1
2

i− 1
2 ,k
(r)

h1

+

s
j+ 1

2

i,k+ 1
2
(r)− s

j+ 1
2

i,k− 1
2
(r)

h2
= 0.

Hereτ is a time step,h1, h2 are spatial steps that are hori-
zontal and vertical. A deviation from the usual gas dynamics
equations considered by Lax and Wendroff, we take into con-
sideration the gravity in the equation for momentum density.
With the point of view of numerical methods, this deviation
does not entail any serious difficulties.

More importantly, the mathematical difference of our
scheme in comparison to the classical one is that an implicit
approximation is used at the first half-step:

2
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2
i,k − r

j
i,k
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+
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j+ 1
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i,k+ 1
2
(r)− s

j+ 1
2

i,k− 1
2
(r)

h2
= 0.

It certainly complicates the computations. However, this pe-
culiarity of the scheme is very important. (The errors origi-
nating from the acoustic waves are not only accumulated in
the difference schemes of such a structure.)

The numerical scheme constructed has one additional dif-
ference from the classical Lax-Wendroff scheme. One can
use the numerical scheme to simulate processes in which si-
multaneously, both internal gravity waves and acoustic waves
take part. We already noted that a vanishing dissipation is
necessary as a regularizator for acoustic waves. However,
this numerical dissipation must not influence internal grav-
ity waves. It is reasonable to enter the numerical dissipa-
tion for acoustic waves by using “downstream differences”
for approximating spatial derivatives ind(ρw)/dt . This ap-
proximation introduces some additional effects of a vanish-
ing nonlinear dissipation. However, the resulting numerical
dissipation renders minimum influence on internal gravity
waves because the termd(ρw)/dt is very small for internal
gravity waves. The numerical scheme as it stands contains
two various selectively operating regularizators.

We note especially that no additional addends are into-
duced into the equations. All useful qualities of the method
are achieved in conventional receptions, but at the expense
of successful selection of difference approximations and use
of sufficiently small steps of the difference grid. Some small
amendments improving dispersion relation and diminishing
scheme sensitivity to the choice of grid steps were made as
well.

The opinion proposed on numerical methods is not a sub-
stitute for conventional approaches in consideration of dif-
ference methods; it only supplements them. The research
of stability and convergence has been carried out, but they
are not considered here. We have considered and compared
among themselves only stable numerical methods.
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Fig. 1. Propagation of a soliton. The height is equal 98 km. Prop-
agation of the wave having an opposite sign at zero time is repre-
sented for comparison by a dotted line.

5.2 Comparison of analytical and numerical models

We shall show here some outcomes of numerical simulation
of nonlinear internal waves and we shall compare them with
the analytical model. The background parameters were se-
lected for the Earth’s atmosphere conditions (100 km). For
simplification, the scale heightH is a constant (H = 8 km),
dissipation effects are not taken into account. The boundary
conditions of a rigid cover are imposed at the Earth’s surface
and at the height 100 km.

The analytical model shows that wave modes behave qua-
si-independently, if the wave amplitude is sufficiently small.
Therefore, the example of a one-mode wave is sufficient to
verify analytical outcomes. At that, it reveals the essence of
nonlinear processes in the best way. The first mode of inter-
nal waves was selected for tests. In the analytical model, for
simplification, we have neglected the nonlinear interaction of
this mode with others. Within the framework of the analyt-
ical model, the considered wave propagates strictly horizon-
tally. To be sure, the numerical hydrodynamic model takes
into account all nonlinear effects.

In the analytical model, the hydrodynamic functions are
expressed through2n as follows:

u(x, z, t) = 2n(x, t)

·(A1 sin(kzz)+ B1 cos(kzz))exp
( z

2H

)
,

w(x, z, t) = −cn
∂

∂x
2n(x, t) sin(kzz) exp

( z

2H

)
,

1P (x, z, t) = gH2n(x, t)

· (A2 sin(kzz)+ B2 cos(kzz)) exp
(
−
z

2H

)
ρ00 ,

1ρ(x, z, t) = 2n(x, t)

· (A3 sin(kzz)+ B3 cos(kzz)) exp
(
−
z

2H

)
ρ00 ,

A1 =
cng(2 − γ )

2(c2
n − γgH)

, A2 =
c2
n(γ − 2)

2H(γgH − c2
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,
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Fig. 2. Propagation of a soliton. The height is equal 82 km. Prop-
agation of the wave having an opposite sign at zero time is shown
for comparison by a dotted line.

A3 =
c2
n − 2gH(γ − 1)

2H(c2
n − γgH)

, B1 =
γgHkzcn

γgH − c2
n

,

B2 =
c2
nγ kz

γgH − c2
n

, B3 =
c2
nkz

−c2
n + γgH

,

c2
n =

4(γ − 1)gH

γ (1 + 4kz2H 2)
.

Hereu andw are the horizontal and vertical velocities;1P ,
1ρ are the wave components to the background pressure
P0(z) = ρ0(z)gH and the background densityρ0(z) =

ρ00 exp(−z/H); ρ00 is the density at the Earth’s surface;
kz = nπ/(waveguideheight) is a vertical component of the
wave vector. For the first mode,n = 1.

The Korteweg-de Vries equation (4) for the mode withn =

1, in dimensional variables, looks like

2nt + 1.03
√
gH2nx − 212

√
g

H
2n2nx

+ 0.478H 2
√
gH2nxxx = 0. (8)

In order to allow for no errors in the test example, all calcu-
lations were carried out with the help of the Derive program.
If the initial condition of the Korteweg-de Vries equation (8)
is as follows

2n(x,0) = −
6N(N + 1) 0.478H 3

212L2
cosh−2

(
x − x0

L

)
, (9)

then exactlyN solitons will be generated att → ∞ (Lamb,
1980). We will use this fact for our tests.

The propagation of one soliton simulated by direct numer-
ical integration of hydrodynamic equations is shown in Figs.
1, 2. The wave disturbance after 313 minutes is shown by a
solid line on the right. For a comparison, the similar wave,
but of an opposite sign at the initial instant, is represented in
the same figures by a dashed line. This wave dampens slowly
over the course of time, while the soliton keeps the amplitude
essentially better. The numerical outcomes certainly agree
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Fig. 3. Propagation of a 4-soliton wave. The height is equal 66
km. For comparison, a dotted line displays propagation of the wave
having an opposite sign at zero time.

with the analytical ones. Nevertheless, some parasitic small-
amplitude waves are observed. Probably, one can explain it
by the fact that the analytical soliton solution is only an ap-
proximate one. The nonlinear effects are feeble, but the wave
amplitude is also small. Unfortunately, now we know of no
analytical solutions for internal waves of considerable ampli-
tudes.

The disintegration of a nonlinear internal wave into soli-
tons is a very bright physical process. The propagation of
a disintegrating 4-soliton wave is shown in Figs. 3, 4. The
initial conditions had been taken so that precisely four soli-
tons were eventually generated (that is,N = 4 in (9)). The
initial conditions are shown on the left by a solid line and the
wave after 313 minutes is represented on the right. We see
that three solitons were generated at the instant shown in the
figures. The outcomes of numerical experiments are in an
acceptable consent with the outcomes of analytical research
(Kshevetskii and Leble, 1985, 1988; Kshevetskii, 1998).

When one keeps in mind the typical atmospheric waves,
then the wave amplitude may be considered as a bit exces-
sive. The amplitude of the horizontal velocity is equal to
150 m/s at the height 98 km, while actually the wind at less
than 150 m/s is more probable for these heights. However,
in our test example we have not taken into consideration the
dependence ofH onz. This dependence would lead to a par-
tial wave reflection from the mesopause region and, conse-
quently, the actual wave amplitude would be less. We could
use the 4-soliton wave of a smaller amplitude by taking the
parameterL smaller. This parameter is a free one, and we
have selected it to facilitate the numerical simulation. It is
more difficult technically to carry out numerical experiments
with waves of smaller amplitudes. Supposing we have used
the initial conditions for the 4-soliton wave with the ampli-
tude smaller byp times, then the scaleL of the 4-soliton
wave would be larger by

√
p times. The time of disintegra-

tion of such a wave would be longer byp
√
p times. It com-

plicates the research because the danger of numerical error
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Fig. 4. Propagation of a 4-soliton wave. The height is equal 98 km.

accumulation is increasing. At the same time, such updating
of the initial conditions can provide no new outcomes. The
less the wave amplitude is, the more precisely the analytical
theory works. It is evident.

The wave disintegration is a corollary of nonlinearity. To
demonstrate it, the propagation of the wave having an oppo-
site sign in initial conditions is shown by a dashed line in
Fig. 3. We see that wave disintegration does not happen in
this case. It confirms the outcome obtained analytically. The
steepness of this wave increases not at the wave front, but at
the back. This perfectly agrees with the analytical outcomes
as well.

Notwithstanding coincidence of many details, the analyti-
cal formulas are somewhat rough. They display the vertical
wave structure inaccurately. The amplitude of the numeri-
cal solution grows with height faster than the amplitude of
the analytical one. Probably, we would achieve better co-
incidence of outcomes if we had taken into consideration,
in the analytical formulas, the nonlinear effects of induced
perturbation of other modes by our mode, at the expense of
nonlinear effects (Kshevetskii and Leble, 1985, 1988).

It is possible to see in consideration of the analytical for-
mulas that each soliton of the first wave mode is a vortex.
Therefore, one can interpret the disintegration into solitons
as a disintegration of an initial vortex into more small-scale
vortexes.

A characteristic wave tail similar to turbulence is left be-
hind the principal wave. It fails to explain this wave tail by
numerical effects, because the grid steps are much less than
the typical scale of oscillations in the tail. This wave turbu-
lent tail is not the tail described by a non-soliton solution of a
KdV equation, because the wave tail propagates too slowly.
It is known that the internal waves of short vertical scales
have small propagation velocities. The wave tail consists of
such short waves along the vertical. The reasons for the wave
tail generation are not quite understood; this effect is not yet
investigated.

An indented nonsmooth horizontal structure of the wave
tail is of interest. It is not simply wave oscillations. These
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Fig. 5. Wave propagation corresponding to the same initial condi-
tions as in 4-soliton case, but in a quasistatic model. The height is
equal 84 km. No regularization is utilized. The wave is wrecked.

are nonsmooth or almost nonsmooth waves. The wave tail
consists of small-scale vortices. It is possible to put for-
ward the following hypothesis explaining the tail irregular-

ity. The dispersion constantsβ
2

2

(
γ−c2

n

γ−1 c
3
n

)
are very small for

short waves along the vertical. The wave tail consists of such
waves. The constants are small of the orderO(β2/n3), n is
the mode number,n is large because short waves along the
vertical are considered. The less the values of the dispersion
constants are, the shorter the solitons generated through dis-
integration. That is, if one accepts that the tail consists of
solitons of higher modes, then the solitons in the tail should
be of very small horizontal scales. We concluded that short
waves along the vertical have to become short along the hor-
izontal, at the expense of wave disintegration. It takes place
in Figs. 3, 4 actually: the generation of some nonstationary
structure consisting of a number of small vortices remaining
behind the head wave.

The quasistatic approach is very popular in atmospheric
models because essentially it simplifies simulation. How-
ever, the analytical theory reveals that the solution of a non-
linear quasistatic problem can be nonexistant for somet . To
verify this conclusion, some special numerical experiments
were carried out. The term of vertical acceleration in hy-
drodynamic equations was discarded, and then the equations
were solved numerically. In Fig. 5, the behaviour of the
same wave as in the 4-soliton case is shown, but within the
framework of a quasistatic approach. Some time later, dur-
ing “normal evolution”, the wave collapses and a simulation
emergency stop arises.

Usually one achieves correctness of such nonlinear prob-
lems by means of adding some vanishing artificial (or nu-
merical) dissipation. Under our prognoses, such a method
of problem regularisation should result in the wave like a
shock wave. We cannot bypass this interesting and intrigu-
ing subject. The outcome of a numerical simulation of non-
linear internal waves with the quasistatic model regularised
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Fig. 6. Propagation of the wave corresponding to the same initial
conditions as in 4-soliton case, but in a quasistatic model. A van-
ishing artificial dissipation was used as a regularizator. A “shock
wave” is formed. The height is equal 84 km.

with a vanishing artificial viscosity is shown in Fig. 6. The
initial conditions are the same as in the case with four soli-
tons. The vanishing dissipation has completely stabilised the
wave behaviour and the wave behaves similarly to a shock
wave. However, the trajectories of liquid particles are differ-
ent ones. A shock wave is a wave of compression and the
particles move perpendicularly to the shock wave wavefront.
In the present case, we observe a propagating vortex and, at
the wave front, the particles move in parallel to the wave-
front. In the course of time, the vortex is strongly deformed
on the front. Disintegration of this vortex into small-scale
vortexes does not take place within the approach under con-
sideration.

The solution obtained is independent of the artificial vis-
cosity factor and one can consider it as one of several possi-
ble generalised solutions of a quasistatic problem. The hy-
drodynamic equations, in their initial form, are very difficult
for the intuitive understanding of the nature of this gener-
alised solution. Equations (5) allow one to explain perfectly
“mathematical effects”. So, the generalised solution obtained
is nothing else but a generalised solution of the set of equa-
tions (5), which is obtained from the solution of the set of
equations

2nt + cn2
n
x +

σ

2

∑
m,l

F nl,m2
l2mx + ν

∑
m

Kn
m2

m
xx = 0,

Kn
n < 0, (10)

by means of passage to the limitν → 0. We can easily
write down an approximate analytical solution of this set of
equations. The approximate solution looks like (3), (4), but
the Korteweg-de Vries equation (4) must be replaced by the
Burgers equation

2n0t + cl2
n
0x +

σ

2
F nnn2

n
02

n
0x + νKn

n2
n
0xx = 0.

It is well known that ifF nnn2
n(x,0) ≥ 0 and also if2n(x,0)

is a compactly supported disturbance, then the solution of
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a Burgers equation provides the wave like a shock wave at
ν → 0. We observe such a wave in the numerical experiment
conducted.

From the mathematical point of view, the generalised so-
lution obtained is faultless. However, a qualitative difference
from the solution of a nonquasistatic problem is obvious. An-
other regularizator (artificial viscosity instead of dispersion)
has generated an other generalised solution of the nonlinear
problem. If we have not particularly analysed the subtle situ-
ation with equation regularisation and if we have not under-
taken some special measures to guard against the numerical
effects, then we would easily obtain such a “solution” even
with a nonquasistatic model. For example, the investigation
has shown that an implicit scheme of the first order of accu-
racy inevitably produces the same outcome, even if only the
incredibly severe constraintτ � 3 sec (Kshevetskii, 1995)
is not satisfied.

Let us discuss briefly the applicability of obtained results
to the actual atmospheric waves. In the investigated model, a
temperature stratification and dissipation is not taken into ac-
count. The dissipation effects are negligible in the real atmo-
sphere below 100 km, but exponentially increase with height,
and are very significant above 250 km (Gossard and Hook,
1978; Dikiy, 1969). The analytical model and outcomes ob-
tained reveal that the modes behave quasi-independently at
sufficiently small amplitudes. Using several of these quasi-
independent modes, we could have even simulated vertical
wave propagation, down to the upper boundary. Analogy to
the Fourier method is relevant here. Therefore, it is hardly
probable that the upper boundary condition or dissipation
being increased with height, can considerably influence the
results obtained. The investigated nonlinear effects should
evince one’s force irrespectively of the boundary conditions.
In particular, the nonlinear disintegration of internal waves
into solitary waves of smaller scales must take place in the
real atmosphere.

In the paper, nonlinear waves in an incompressible fluid
were not particularly studied, but these waves correspond to
the limit γ → ∞. The approximation of an incompress-
ible fluid is usually utilized to describe ocean waves. There-
fore, the author hopes that the results obtained can be use-
ful for understanding the ocean waves as well. Furthermore,
now the KdV model is actively used in oceanology for the
study of internal waves and interpretation of observations.
The KdV model seems to be a convenient one to describe
ocean waves because ocean waves propagate within a natural
wave-guide. When considering atmospheric waves, we have
applied the single-mode analytical KdV model for qualita-
tive understanding of atmospheric nonlinear processes. We
do not lay claim to a quantitative description of atmospheric
nonlinear waves with such a simple model. In consideration
of ocean waves, the elementary analytical model can give
quite a good quantitative consent.

6 The KdV model and internal wave mixing

In oceanology, it is known that a smooth internal gravity
wave can suddenly break up, generating a spot, inside which
a turbulent fluid intermixing takes place. This effect is fre-
quently named “internal wave mixing”. We now consider the
internal mixing from the point of view of equations (2), and
we shall analyse the conditions when the effect takes place.

Formula (3) gives an approximate solution of (2). Uncou-
pled KdV equations (4) lie in the basis of (3). Let us take
initial conditions analogous to (9)

2n0(x,0) = −αn cosh−2
(
x − x0

Ln

)
, (11)

where

αn = −

6N(N + 1)H 3β2 γ−c2
n

γ−1 c
3
n

L2
nσF

n
nn

. (12)

The formulas (11), (12) can be interpreted as follows: if ini-
tial conditions look like (11), then the amountN of solitons
to be generated may be derived from (12). It is clear that, for
fixedαn andLn, the lesscn the more solitons will be gener-
ated. Ifcn → 0, thenN → ∞. The integrals

∫
+∞

−∞
2ndx are

conservative values for equation (4) . Therefore, ifN → ∞,
then the soliton scales tend to zero. That is, ifcn is very
small, then a huge number of extremely small-scale solitons
will be generated. Each soliton formed gives a vortex. There-
fore, the physical phenomenon under study is the same, be-
cause a smooth initial wave disintegrates into a huge number
of small vortexes. The constantscn are of the orderh/(nπ),
wheren is the wave mode number andh is the wave-guide
depth. Consequently, the limitcn → 0 is equivalent to the
limit n → ∞. We see that only short waves along the verti-
cal, that is, such thatH/lz � 1, can disintegrate into many
small-scale solitons. The symbollz designates a typical ver-
tical scale of the wave. Due to the short vertical wave scales,
the processes happening far from wave-guide boundaries, in
the body of the fluid, weakly depend on the boundary condi-
tions.

McEwan (1983) investigated experimentally the effect of
“internal wave mixing”. In Fig. 7, a common picture of the
considered phenomenon is shown; it is borrowed from McE-
wan (1983).

According to the estimates made above, the effect takes
place only for short waves along the vertical. Let us check
whether this requirement is satisfied at the conditions of
McEwan’s experiment (1983). In McEwan’s experiment,
(gρ−1dρ/dz)1/2 ≈ 1.23c−1, and the tank depthl was equal
to 25 cm. Hence,H ≈ 6 m, andkz ≥ π/l ≈ 4 m−1. We
see thatkzH > 20 in McEwan’s experiment. Doubtlessly,
McEwan dealt with short waves along the vertical.

We consider nonlinear effects for modes with largen. As
noted above, the effect of the interaction of modesn andm
is proportionate to(cn − cm)

−1. Whenm = n + 1 and at
n → ∞, the fraction denominator(cn − cn+1) is a small of
the orderO(n−2). We have neglected above the interactions
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Fig. 7. Idealisation of a mixing event in a continuous stratification.
(a) Overturning. (b) Development of interleaving microstructure.
(c) Static stability is restored, but microstructure is preserved.(d)
Gravitation to equilibrium has changed the surrounding density be-
tween extremum isopycnals.

of various modes and, in order that this simplification will be
correct, we have to requireαn ∼ c2

n/g ∼ n−2. Fortunately,

the dispersion coefficientsβ
2

2

(
γ−c2

n

γ−1 c
3
n

)
vanish very quickly

at n → ∞, asc3
n ∼ (

√
g/H(h/n))3 → 0. It rescues our

idea: the amountN of solitons generated is determined only
by a relationship between the nonlinearity and the dispersion,
and will be huge, because the nonlinearity considerably sur-
passes the dispersion. One can consider the idea as a “mathe-
matical explaining” of internal wave mixing. Unfortunately,
the considered model does not lead to simple and convenient
working formulas. We can only suggest qualitative depen-
dencies of the scalelx and quantityN of generated solitons
on parameters of the disintegrating wave:

lx ∼

√
(lz)3

A
, N ∼

√
AL2

l3z
.

Herelz is a vertical scale of the broken up wave;A is a mean
amplitude of displacement of the fluid particles,L is a hori-
zontal scale of the broken up wave.

We can supplement McEwan’s outcomes with some qual-
itative notes:

• If H → ∞ (or, this is the same, ifg → 0), thencn → 0,
and the effect of wave disintegration can take place as

well. It depends on initial conditions. WhenH → ∞,
the internal gravity waves turn into some stationary flow
in homogeneous liquid. Hence, a fluid stratification in
itself is not a reason for wave disintegration. The strati-
fication only provides a bright observation of the effect.

• We try to formulate some abstract mathematical models
of the phenomenon. The phenomenon exists because
hydrodynamic equations have the following structure

N̂(
∂

∂t
,
∂

∂x
) θ(x, t) = ε D̂θ(x, t). (13)

HereN̂ is a nonlinear operator, such that a smooth so-
lution of the equation̂N(∂/∂t, ∂/∂x)θ(x, t) = 0 does
not exist for somet = t1; ε � 1; andε D̂θ(x, t) is a
small dispersion term which plays the role of a regular-
izator. The small dispersion term ensures the existence
of a differentiable solution of equation (13), but this dif-
ferentiable solution is quickly varying. The lessε is,
the faster the solution varies. We have written spatially
one-dimensional equations, but it is not important. All
remaining conditions are the important ones.

• We have described above some difficulties of numerical
integration of hydrodynamic equations. These difficul-
ties in many respects follow from the fact that the basic
equations have the structure (13). We see that the addi-
tion of some small dispersion or dissipation terms into
the equations can change the wave behaviour consider-
ably. This sensitivity in relationship to terms containing
higher derivatives takes place because a smooth solution
of the equation̂N(∂/∂t, ∂/∂x)θ(x, t) = 0 does not ex-
ist for somet = t1. We deal with certain specific cases
of a nonlinear system instability.

7 Conclusions

1. Hydrostatic and nonhydrostatic numerical hydrodyna-
mic models of nonlinear internal wave propagation are
developed. Also, an analytical model is developed and
is used to explain nonlinear wave behaviour.

2. The nonlinear disintegration of internal waves into so-
litary waves of smaller scales is simulated. The com-
parison of the outcomes of numerical simulation with
analytical ones has shown qualitative consent. For ex-
ample, the quantity of solitons generated is displayed
precisely.

3. Numerical experiments have confirmed that a quasista-
tic approximation leads to gradient catastrophe.

4. Influence of various regularizators on the quasistatic so-
lution is investigated. Numerical experiments have re-
vealed that a nonlinear catastrophe in the quasistatic
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model is prevented with the help of a vanishing ar-
tificial or numerical dissipation, but the solution ob-
tained qualitatively differs from the solution of a non-
quasistatic problem for large time spans. The small
term ρ ∂w/∂t in nonhydrostatic hydrodynamic equa-
tions plays the role of a natural dispersion regularizator,
with respect to a quasistatic problem.

5. The analytical model qualitatively explains the effects
of internal wave mixing. It is shown that the effect
takes place for internal short waves along the vertical,
and that stratification is not a reason of the phenomenon.
The same nonlinear mechanism acts in a homogeneous
liquid, producing extremely small-scale vortexes from
some large-scale flows.

Appendix A The derivation of equations for wave modes

In this appendix the derivation of equations (2) is given. We
shall deduce here some equations, more commonly compared
with (2), which take into account not only nonlinearity, but
also the influence of a weak dissipation on wave propagation.
Let principal equations be 2D gas dynamics equations taking
into account the gravity force:

∂ρ

∂t
+ ρ(∇ · v) = 0,

cv
dT

Dt
= −RT (∇ · v)+

k

ρ
∇ · (k∇T ),

ρ
dv

dt
= −∇P − ρg + ∇(η∇ · v),

P =
ρ

µ
RT,

HereP is the pressure;ρ is the density;T is the temperature;
v = {u,w} is a vector of the gas velocity with projections
u,w onto axesx, z; cv is an isochoric molar thermal capacity
of the gas;µ is a molar weight of the gas.R is the universal
gas constant;η is a viscosity coefficient of the gas;k is the
thermal conductivity.g is the gravity acceleration. The axis
z is upward.

The problem under consideration is characterised by small
dimensionless parameters:

σ =
1T

T0
, β = τ

√
g/H ,

ν(z) =
η(z)

βHρ0(z)
√
gH

,

�(z) =
k(z)µ

cvβρ0(z)H
√
gH

.

Here1T is the amplitude of temperature variation at wave
propagation;τ is the wave quasiperiod;ρ0(z) is the nonper-
turbed density;T0 is the nonperturbed temperature that is as-
sumed be a constant;H = RT0/(gµ) is the scale height.

After transformation to dimensionless variables

t ′ = β

√
g

H
t , x′

=
βx

H
, z′ =

z

H
,

φ′
=
T − T0

T0
, ψ ′

=
ρ − ρ0

ρ0
,

u′
=

u

σ
√
gH

, w′
=

w

σβ
√
gH

,

the basic equations are brought to the form

ψ ′

t ′ − w′
+ w′

z′ + u′

x′

= −σ(ψ ′

x′u
′
+ ψ ′

z′w
′
+ ψ(w′

z′ + u′

x′)),

u′

t ′ + ψ ′

x′ + φ′

x′ = −σ((1 + σψ ′)(u′u′

x′ + w′u′

z′)

+ (ψ ′φ′)x′)+ νu′

z′z′ ,

ψ ′

z′ + φ′

z′ + ψ ′
= −σ(φ′ψ ′)z′

− β2(1 + σψ ′)(w′

t ′ + σ(u′w′

x′ + w′w′

z′)),

φ′

t ′ + (γ − 1)(u′

x′ + w′

z′) = −σ [φ′

x′u
′
+ φ′

z′w
′

+ (γ − 1)(φ′u′

x′ + φ′w′

z′)] +�φ′

z′z′ , (A1)

convenient for applying of a perturbation theory. Let us sup-
ply these equations with the boundary conditions:

w′(x′, z′ = 0, t ′) = w′(x′, z′ = h, t ′) = 0,

whereh is the wave-guide height. It is possible to give vari-
ous physical interpretations of the boundary conditions im-
posed. Keeping in mind the atmospheric waves, then the
lower boundary condition takes into account impermeability
of the Earth’s surface. The upper boundary condition qual-
itatively takes into account the wave reflection effect taking
place through diminution ofH(z) at the heights 80–90 km in
the real Earth atmosphere. In reality, this wave reflection is
not full and is not essential for each wave mode. We some-
what overstate this effect. Selecting the boundary conditions,
we not only took into account the conditions of the real at-
mosphere, but also made an effort to provide an analytical
solvability of the nonlinear problem for initial conditions of
a rather broad class.

We hope that the essence of many nonlinear effects is de-
termined by the equation structure, and is not dramatically
dependent on boundary conditions. If we had used some
other boundary conditions, ensuring wave-guide wave prop-
agation, then we would deduce some analogous model equa-
tions conterminous in letter with (A3). At last, with our
model we might simulate free wave propagation in semi-
infinite space as well. In this case, we should lift the upper
boundary a little higher, so that this boundary has not enough
time to influence the processes taking place near the ground.
Such a method is quite admissible for finite times.

To simplify writing, we further omit the primes at the di-
mensionless variables. Supposingσ = β = ν = � = 0 in
(A1), we obtain the equations of a principal approximation.
At this approximation, a general solution to the problem can
be constructed with the help of a Fourier method of the sep-
aration of variables. As this method is widely known, we
do not describe the calculations, but rather write down the
outcome in some special form, as a sum of right-hand and
left-hand waves:

u =

∞∑
n=1

un(x, z, t)+

−∞∑
n=−1

un(x, z, t), (A2)
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w =

∞∑
n=1

wn(x, z, t)+

−∞∑
n=−1

wn(x, z, t),

φ =

∞∑
n=1

φn(x, z, t)+

−∞∑
n=−1

φn(x, z, t),

ψ =

∞∑
n=1

ψn(x, z, t)+

−∞∑
n=−1

ψn(x, z, t),

un(x, z, t) = 2n(x, t)

·(Sn(z)A1,n + B1,nS
′
n(z)) exp

( z
2

)
,

wn(x, z, t) = −
∂

∂x
2n(x, t) · cn Sn(z) exp

( z
2

)
,

φn(x, z, t) = 2n(x, t)

·(Sn(z)A2,n + B2,nS
′
n(z)) exp

( z
2

)
,

ψn(x, z, t) = 2n(x, t)

·(Sn(z)A3,n + B3,nS
′
n(z)) exp

( z
2

)
,

A1,n =
cn

2

(
1 −

2 − c2
n

γ − c2
n

)
,

A2,n = −
2 − c2

n

γ − c2
n

·
γ − 1

2
,

B1,n =
γ cn

γ − c2
n

, B2,n =
c2
n

γ − c2
n

,

A3,n = 1 −
2 − c2

n

γ − c2
n

, B3,n =
c2
n

γ − c2
n

,

cn =

√
4
γ − 1

γ

1

1 + 4k2
n

, kn > 0,

c−n = −cn, kn =
nπ

h
,

Sn(z) = sinkn z, S′
n =

dSn(z)

dz
,

Here the functions2n satisfy the hyperbolic equation

2nt + cn2
n
x = 0.

The wave modes with positive numbers are waves propagat-
ing to the right, and the wave modes with negative numbers
are waves propagating to the left. The vertical structure of
each wave mode is fixed, but the solution as a whole takes
into account a vertical propagation of waves.

Whenσ 6= 0, β 6= 0, ν 6= 0,� 6= 0, equations (A1) are
nonlinear ones. Because ofσ � 1, β � 1, ν � 1,� � 1,
the right-hand sides of the equations (A1) are small ones. It
is possible to spread out the description of wave processes
in terms of wave modes to nonlinear case. We shall calcu-
late it with the help of a Galerkin method, combining this
method with a perturbation theory. A Galerkin method uses
the expansion of a desired solution into a series of a complete

set of functions. The choice of the complete set of functions
used is almost unrestricted. It is advantageous to keep a wave
mode concept in the nonlinear theory. Therefore, we shall
use those eigenfunctions ofz which have arisen in the prob-
lem with σ = β = ν = � = 0. That is, we will use the
vector-functions
(Sn(z)A1,n + B1,nS

′
n(z)) exp( z2)cn

cn Sn(z) exp( z2)
(Sn(z)A2,n + B2,nS

′
n(z)) exp( z2)

(Sn(z)A3,n + B3,nS
′
n(z)) exp( z2)


of z as a basis for expansion of the desired solution
ψ(x, z, t)

u(x, z, t)

w(x, z, t)

ϕ(x, z, t)


into a Fourier series.

Let 2n(x, t) denote the series coefficients. In this way,
we search for a solution of the nonlinear problem in form
(A2), similar to a linear theory. Now, however, the functions
2n(x, t) have to satisfy some nonlinear equations. Within
the framework of a Galerkin method, the derivation of equa-
tions for2l(x, t) is based on the orthogonality relations for

basis functions. The wave modes


un

wn

φn

ψn

 and


um

wm

φm

ψm


are orthogonal to each other form 6= n in the sense that

〈 un

wn

φn

ψn

,

um

wm

φm

ψm

〉
=

∫
∞

−∞

∫ h

0

(
unum + β2wnwm+

+φnφm
1

γ − 1
+ ψnψm

)
exp−

z

2
dz dx = 0

atn 6= m. Here the design〈·, ·〉 on the left denotes the scalar
product introduced and the definition of the scalar product is
written out on the right.

At first, we substitute initial objects ( A2) into (A1). Then
we multiply the first equation byψ l , the second equation
by ul , the third equation bywl , and the fourth byφl(γ −

1)−1. The results are multiplied by exp(−z/2). Then we
add together the outcomes and integrate overx from −∞ up
to ∞ and overz from zero up toh. The operations made
are equivalent to scalar multiplication of equations (A1) by

ul

wl

φl

ψ l

. Let us calculate the integrals overz. With the help

of integrating by parts with respect tox we come to∫
∞

−∞

2l
(
2lt + cl2

l
x +

σ

2

∑
m,l

Alm,n2
n2mx

+
σ

2

∑
m,n

B lm,n2
m2nt + . . .

)
dx = 0
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Here the symbolscl , Alm,n, B
l
m,n denote some constants

which have arisen after integration overz. Because of ar-
bitrary dependence of2l on x, the term within the square
brackets is equal to zero.

We have obtained some equations. These equations are
practically equivalent to the original hydrodynamic equa-
tions. (If we did not take into consideration dissipation ef-
fects, the equations would be equivalent.) It is useful to
modify slightly these equations. We see that the relation
2lt + cl2

l
x ≈ 0 is valid. We shall use this relation in the

form 2lt ≈ −cl2
l
x to exclude all small terms with time-

derivatives. For example,β22t tx ≈ β2c2
l2xxx . Therefore,

we obtain the set of equations:

2lt + cl2
l
x +

σ

2

∑
m,l

F ln,m2
n2mx

+
1

2
β2

(
γ − c2

l

γ − 1
c3
l2

l
xxx +

γ + c2
l

γ − 1
c3
l 2

−l
xxx

)

+
1

2
ν0

∑
n

K l
n2

n
= 0. (A3)

The small parameterν0 = sup0≤z≤h (�(z), ν(z)) is entered
for convenience, in order thatK l

n = O(1). The factors
F lk,m, K l

n are cumbersome ones, and consequently they are
not written here. They are readily calculated with the help of
any program of analytical evaluations.

The F lk,m, K l
n are coefficients of Fourier series as well;

and, at variation of indexes, they behave as regular Fourier
series coefficients. If all indexes are fixed, except one, and if
this one selected index tends towards infinity, then the coeffi-
cientsF lk,m,K l

m will not decrease more slowly than inversely

to this index. The functions2l are nothing else but coeffi-
cients of a generalised Fourier series. Therefore they have to
decrease atl → ∞ as well. Hence, one can break off the set
of equations, taking into consideration perhaps a lot, but a
finite number of wave modes. Being prudent enough, we can
break off the line-up of equations, even if only a few wave
modes were originally excited. At such a breaking off, we
neglect the effects of the mutual generation of wave modes.
In particular, if we neglect dissipation effects and if we take
into account only one wave mode, we shall obtain a KdV
model of internal waves (Leonov, 1976; Ostrovskiy, 1979,
1986; Segur and Hammack, 1982).

With the errorO(σ 2
+ν2

0 +β4), the equations deduced are
equivalent to the primitive hydrodynamic equations. How-
ever, some boundary effects stipulated by viscosity and ther-
mal conductivity are not taken into consideration because
we used the basis of a nonviscous problem. In addition, we
have excluded acoustic waves from consideration. They were
eliminated when we had used the relation2lt ≈ −cl2

l
x for

the simplification of the terms aboutβ2.
An approximate solution to (A3) can be constructed with

the help of a nonsingular perturbation theory. The approx-
imate solution is constructed as follows. At first, a usual
perturbation theory series in parametersσ , β2, ν0 is written
down. Evidently, in the first order of the perturbation theory

we have the problem withσ = β = ν0 = 0. Its general
solution is2l(x, t) = 2l0(x − cl t). In the following order of
the perturbation theory, the corrections proportionalσ , β2,
ν0 are taken into account. Some of these corrections are sec-
ular ones att → ∞; they grows ast grows. Hence the usual
perturbation theory is usable only for time spans ofO(1).
To get rid of the secular terms in the perturbation theory, the
equation terms generating the secular terms of the perturba-
tion theory are taken into consideration in the starting order
of a new perturbation theory. Then the starting equations be-
come more complicated ones, but the new perturbation the-
ory gives an approximate solution applicable for longt . This
approximate solution is

2l(x, t) � 2l0(x, t)−

∫ t

0

[
σ

2

∑
m,n

m6=n6=l

F ln,m2
n
0(x − cl(t − t ′), t ′)2m0x(x − cl(t − t ′), t ′)

+
β2

2

γ + c2
l

γ − 1
c3
l 2

−l
xxx(x − cl(t − t ′), t ′)

+
ν0

2

∑
m6=l

K l
m2

m
0 (x − cl(t − t ′), t ′)

]
dt ′ (A4)

Here the functions2l0(x, t) are solutions of independent Kor-
teweg-de Vries equations with damping

2l0t + cl2
l
0x +

σ

2
F ln,m2

l
02

l
0x

+
β2

2

(
γ − c2

l

γ − 1

)
c3
l2

l
0xxx +

1

2
ν0K

l
l2

l
0 = 0 (A5)

The initial conditions are posed so:2l0(x, 0) = 2l(x,0).
The first term of the integrand in (A4) takes into account

nonlinear interaction of various modes. The addend of this
integrand takes into account the “dispersion-stipulated” in-
teraction with the wave propagating in the opposite direc-
tion. In fact, this addend may be excluded from (A4), having
made some small suitable corrections in the initial functions
2l0(x,0). The last term of the integrand takes into account
the interaction of various modes through dissipation. This in-
teraction takes place because the basis functions utilized are
not eigen-functions to the dissipative problem.

The quality of approximation (A4), (A5) was checked by
means of comparison of these formulas with the numerical
solutions of (A3) (Kshevetskii and Leble, 1985, 1988). Sat-
isfactory concurrence of the analytical formula to the numer-
ical outcomes was shown.

We see that the interactions of various modes are insignif-
icant in the principal order; these effects are of the following
order of smallness. For this reason, a simple KdV model is
effective. The investigation of various mode interactions was
not planned in the present paper; we describe these effects
only briefly. The interactions of various wave modes result
in phase shifts of collided solitons and in feeble energy inter-
change between wave modes (Kshevetskii and Leble, 1985,
1988). Phase shifts of collided solitons were computed in
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Kshevetskii and Leble, (1985, 1988). The effects of the inter-
action of wave modesn,m are proportionate toσ/(cm− cn).
For higher modes the residuals|cm− cn| become small ones.
Therefore, the effects of the interaction of various modes can
be considerable for higher modes, and then the approximate
solution constructed loses a force. Equations (A3), however,
are valid in any case.

Appendix B Development of the KdV model of nonlin-
ear internal waves

The roots of the analytical model under consideration lies
in the pioneer paper by Long. In 1965, Long investigated
the propagation of stationary, weakly nonlinear long inter-
nal waves in a wave duct filled with an incompressible fluid
stratified by gravity. In a linear long wavelength approxi-
mation the wave considered was described by the formula
2n(x−cnt)·S

n(z). Herecn is the wave speed. In this approx-
imation, there are no restrictions on the dependence of2n

on (x − cnt). The functionSn(z) describes the vertical wave
structure. The functionSn(z) and parametercn are an eigen-
function and eigenvalue of some Sturm-Liouville boundary
value problem. We shall not write out this problem here, as
its exact shape is not important. The function2n(x − cnt)

describes the horizontal wave structure. The Sturm-Liouville
problem has an innumerable set of solutions, consequently
all functions are supplied with indexes. The index shows the
wave mode number. Long has shown that, if we take into
consideration weak effects of nonlinearity and dispersion, the
function2n(x−cnt) of argument(x−cnt) now does not stay
be any. Its form is governed by the stationary Korteweg-de
Vries equation:

(c̃n − cn)2
n
ξ + σan2n2 n

ξ + β2bn2
n
ξ ξ = 0. (B1)

Here parameter̃cn denotes the nonlinear wave propagation
velocity,ξ = x − c̃nt , c̃n > cn, σ andβ are small amplitude
and dispersion parameters. The constantsan, bn depend on
the considered wave mode. They also depend on the wave-
guide depth and density stratification scale. The influence
of nonlinear effects on the vertical wave structure was not
considered by Long.

If we use a soliton solution of equation (B1), we shall
obtain a so-called solitary internal gravity wave. Long has
made the note that the solitary wave is absent atβ = 0.
That is, equation (B1) has no physically interpreted solutions
for β = 0. Thus, Long for the first time, has made the ob-
servation that a quasistatic approach changes radically some
solutions to the nonlinear problem, even if long waves are
considered.

Later, Benjamin has generalised Long’s outcomes to the
case of stationary wave propagation in a stratified incom-
pressible fluid with a free surface (Benjamin, 1966). Many
papers of interest were published since then. In 1975, Peli-
novskiy and Romanova have shown that a stationary Korte-
weg-de Vries equation describes the propagation of nonlin-
ear internal gravity waves in a stratified gas. Later, Panchev

and Evtimov have given other derivation of the stationary
KdV equation for internal gravity waves propagated in the
equatorial atmosphere (1978).

In 1976, Leonov has deduced a non-stationary, two-di-
mensional Korteweg-de Vries equation describing the propa-
gation of one excited wave mode. The horizontal structure of
that wave is time-dependent; at initial instant it may be given
by any function.

In this appendix, we pursued the purpose to remind the
reader of the KdV model of internal waves. Because of
this direction, unfortunately many advanced papers were not
mentioned. For example, Rid and Su (1984) investigated the
interaction of internal wave solitons. Equations (2) are not
only possible generalisations of classical outcomes by Long
and Benjamin. Ostrovskiy has deduced some other generalis-
ing set of equations. The equations by Ostrovskiy are similar
to the equations of a small-depth water (Ostrovskiy, 1986).
Gear and Grimshaw have created the KdV model improve-
ment at the expense of taking into account nonlinear terms
of the following order of smallness (1983). Meisen, Kamp
and Sluijter have deduced a Benjamin-Davis-Ono equation
for internal waves (1990). The achievements in the study of
ocean soliton waves have been expounded in the in depth-
review by Ostrovskiy and Stepanyants (1989). Huthnance
has made a review on research of internal tides (1989). Lamb
numerically investigated the solitary internal wave generated
at intersection by a tidal force stream of a finite amplitude
bank edge (Lamb, 1994).

The papers by Koop and Butler (1982), Segur and Ham-
mack (1982) and Buckreev and Gavrilov (1983) are devoted
to experimental verification of soliton models of internal
waves (KdV, Benjamin-Ono, nonlocal KP and other models).
On unanimous inference of the authors of the experiments,
the KdV model is the most exact one. (Only single-mode
models were considered.) However, this conclusion has been
made under some concrete conditions. It is hardly probable
that this conclusion has no exceptions.

Notwithstanding obvious favour of analytical models, they
all have some common shortfalls. All the analytical models
are asymptotic ones. Roughly speaking, it means that they
“work” only in the case where the small parameters of the
theories are sufficiently small. The concept of a “sufficient
smallness” is vague to some extent, but it is very difficult to
deduce an exact estimate of the model error. Now only an ex-
periment can answer the question of applicability of the ana-
lytical model to a particular event. A number of simplifying
suppositions is another shortfall of analytical models. Some
simplifying suppositions are not desirable from the physical
point of view, but it fails to advance in analytical modelling
without them.
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