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Abstract. In this paper, we show that the behaviour of weakly
nonlinear waves in a 2-layer model of baroclinic instability
on an f-plane with varying viscosity is determined by a sin-
gle, degenerate codimension three bifurcation. In the pro-
cess, we show how previous studies, using the method of
multiple scales to derive evolution equations for the slowly
varying amplitude of the growing wave, arise as special lim-
its of the general evolution description. A companion study
will extend the results to a β-plane.

1 Introduction

A rapidly rotating, stratified fluid with a horizontal tempera-
ture gradient, such as the atmosphere or oceans, can become
unstable to small, growing perturbations. These disturbances
draw their energy from the available potential energy of the
fluid, which is released by “rearranging” the fluid so that it is
in its state of minimum energy, with its isopycnals (lines of
constant density) or isentropes as close to horizontal as pos-
sible. In the atmosphere, a consequence of this rearrange-
ment is that warm air is transported poleward whilst cold air
moves towards the equator. An instability that can produce
this poleward transport of warm air is therefore able to trans-
form the available potential energy of the fluid into kinetic
energy, allowing a disturbance to grow. This form of insta-
bility is known as baroclinic instability.

The work presented in this paper is the first of a two-
part study which aims at unifying the results of the previous
multiple-scale studies of Moroz (1981) and Pedlosky (1970,
1971, 1987) of the instability of a single wave in a two-layer
model of baroclinic instability on an f -plane with varying
viscosity. Part II of the study extends the investigation to a β-
plane. Using a spectral model of baroclinic instability Love-
grove (1998), we show that the bifurcations observed in such
a model are the result of a single degenerate codimension-
three bifurcation or organising centre.

Correspondence to: P. L. Read

Many cases of baroclinic instability of geophysical inter-
est are typically found in a regime in which a small number
of spatial modes can give rise to dynamics of surprising com-
plexity. Previous studies of baroclinic flow in such regimes
(e.g. Lorenz, 1962; Pedlosky, 1970, 1971; Appleby, 1982;
Klein, 1990) have tended to make use of either numerical in-
tegrations of ordinary differential equations derived from a
spectral expansion of the governing equations of motion, or
of a multiple-scale derivation of the equations describing the
interactions between a single wave and the mean flow.

While the spectral model that we consider below repre-
sents the simplest possible truncation, and which therefore
has ramifications concerning comparisons with laboratory
models and other physical systems, it is hoped that such a
simplification will provide valuable insight into some aspects
of the behaviour of these more complex and realistic mod-
els. Moreover, such highly truncated systems have long been
used as paradigms for the study of weakly nonlinear baro-
clinic waves (e.g. see Klein, 1990, and references therein),
and exhibit many of the same qualitative features as found (at
least for weakly supercritical baroclinic flow) in laboratory
experiments (e.g. Hide and Mason, 1975; Hart, 1979; Read
et al., 1992; Früh and Read, 1997). While we have explic-
itly neglected interfacial Ekman layers and sidewall bound-
ary layers (Klein and Pedlosky, 1992; Mundt et al., 1995), so
as to facilitate comparison with a wide range of earlier mul-
tiple scales analyses, effects of internal friction have been
incorporated in a self-consistent manner (see Section 2.3).

The theoretical investigations presented in this paper use
the spectral approach, which is described in Section 2. Sec-
tion 3 summarises previous multiple-scale analyses, while
Section 4 describes the bifurcation structure on an f -plane.
Section 5 discusses two-parameter continuations and Section
6 the organising centre. The corresponding multiple-scale
derivation for the degenerate bifurcation is summarised in
Section 7 and we draw our conclusions in Section 8.
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Fig. 1. The two-layer model considered in this study: comprising
two immiscible fluids of densities ρ1 and ρ2 with ρ1 < ρ2. The
fluids are in relative motion, with velocities of +U/2 and −U/2
respectively. The channel has height D, length L and is rotating at
a constant angular velocity 	.

2 The 2-layer model

The 2-layer model considered is shown schematically in Fig-
ure 1. Two superposed fluids are confined to a rotating, rect-
angular channel, of height D, width L and of infinite length.
A Cartesian coordinate system, x ′, y ′ and z′, describes, re-
spectively, distances along the channel, across the channel
and vertically. The corresponding velocities are u ′

n, v′
n and

w′
n, where the subscript n = 1 refers to the upper layer and

n = 2 to the lower layer. The densities of the upper and lower
layers are ρ1 and ρ2, with ρ2 > ρ1. In the absence of motion,
the fluid layers have equal depths of D/2. The fluid is con-
fined vertically between two horizontal planes representing a
base and a lid. Dissipation is parameterised by Ekman layers
on these surfaces, together with an internal diffusion term.
In our analysis the kinematic viscosity within each layer is
assumed to be equal, in spite of the different fluid densities.

The analysis is carried out in a reference frame that is mov-
ing with the speed,

(
u′

1 + u′
2
)
/2, of the mean-flow. In this

frame, both the upper and lower layers appear to be in uni-
form motion along the channel, with velocities of +U/2 and
−U/2 respectively. This choice of reference frame differs
from that used in previous multiple-scale analyses of the two-
layer model (e.g. Pedlosky, 1987, and references therein),
where the reference frame is generally chosen to be one in
which the channel itself is stationary. This new choice of
reference frame does not cause any loss of generality in the
model. It merely changes the apparent velocities of any
waves that may form on the interface so that, for example,
a wave that might be described as moving at the speed of
the mean-flow, in the reference frame of previous multiple-
scale analyses, will appear stationary in the present reference
frame.

The various quantities in the spectral model are non-
dimensional with respect to the horizontal length scale L, the
vertical length scale D and the horizontal velocity scale U , a

suitable advective time scale being L/U .
Non-dimensional parameters defining the state of the flow

include

ε = U/ (f0L) ,

F = 2ρ2f
2
0 L

2/ [(ρ2 − ρ1) gD] ,

β = L2β ′/U,

r =
√

2νf0L

UD
,

where ε is the Rossby number, F is the internal Froude num-
ber, β ′ the ‘planetary’ vorticity gradient, β being its dimen-
sionless form, f0 is the reference value of the Coriolis pa-
rameter, g is the acceleration due to gravity and r the dis-
sipation parameter. The Rossby number measures the rela-
tive importance of inertial forces, compared with rotational
forces; the internal Froude number is a ratio of rotational to
buoyancy forces; β allows for a first-order variation in the
background rotation with cross-channel position and r mea-
sures the strength of Ekman friction, ν being the kinematic
viscosity. In this paper we set β = 0; Part II of our study will
reinstate β.

A linear analysis of the full equations of motion (e.g.
James, 1977) shows that two principal types of instability
are possible in the two-layer model: pure baroclinic insta-
bility occurring at high rotation rates (low Rossby number);
and pure Kelvin-Helmholtz instability occurring at very high
Rossby number. A mixed mode instability occurs between
these two extremes (King, 1979). As the present study is
concerned primarily with baroclinic instability, the analy-
sis will be restricted to regions where the Rossby number
is very much less than unity (ε � 1). This restriction, part
of the quasigeostrophic approximation, acts as a low pass fil-
ter – preventing any high frequency waves, such as Kelvin-
Helmholtz waves, from appearing in the solution to the equa-
tions of motion. Note that, in addition to the requirement that
ε � 1, the quasigeostrophic approximation also requires that
the parameter β <∼ 1 (see Pedlosky, 1987, for a discussion).

2.1 The governing equations

We introduce barotropic and baroclinic streamfunctions, ψs

and ψd respectively, where

ψs = (ψ1 + ψ2) /2, ψd = (ψ1 − ψ2) /2. (1)

and define the barotropic and baroclinic velocities, Ud and
Us as

Us = (u1 + u2) /2, Ud = (u1 − u2) /2. (2)

(Recall that the reference frame was chosen so that u ′
1 = U/2

and u′
2 = −U/2, which implies that Ud = 1/2 and Us = 0.)

In this new form, the governing quasigeostrophic potential
vorticity equations are

∂

∂t
∇2ψs + β

∂ψs

∂x
+ J

(
ψs,∇2ψs

)
+ J

(
ψd,∇2ψd

)
= −r∇2ψs + r2ε∇4ψs, (3)
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∂

∂t

(
∇2 − 2F

)
ψd + β

∂ψd

∂x
+ J

(
ψs,∇2ψd

)
+ J

(
ψd,∇2ψs

)
+ 2FJ (ψd,ψs)

= −r∇2ψd + r2ε∇2
(
∇2 − 2F

)
ψd, (4)

where J is the usual Jacobian operator. In the above formula-
tion we have ignored the effects of interfacial Ekman friction,
since our objective here is to place the earlier multiple-scale
studies (in which such friction was absent) in context using
the spectral model. For the same reason, we also ignored
sidewall boundary layers. As pointed out e.g. by Hart (1986),
Mundt et al. (1995), and Polvani and Pedlosky (1988), how-
ever, the neglect of such factors can significantly influence
the subsequent dynamics.

2.2 Spectral expansion

Solutions are sought in which the streamfunctions are ex-
panded in series of Fourier modes:

ψs,d =
M∑

m=1

Xs,d
m cos lmy

+
N∑

n=−N
n
=0

M∑
m=1

Ws,d
nm exp (iknx) sin lny, (5)

where Ws,d
−mn =

(
W

s,d
mn

)∗
, k−m = −km, and the asterisk de-

notes complex conjugation. The first term on the right hand
side of equation (5) is the mean flow correction term; the sec-
ond term is the wave term. Equations (3) and (4) are solved
subject to boundary conditions which require the sidewalls
to be impermeable, so that the meridional velocity vanishes
at the sidewalls (see Pedlosky, 1987):

∂ψs,d

∂x
= 0 on y = 0, 1. (6)

To ensure the absence of unspecified energy flux through the
sidewalls (Phillips, 1954), we also require:

lim
X→∞

1

2X

∫ X

−X

∂2ψs,d

∂y∂t
dx = 0 on y = 0, 1. (7)

In addition, the channel is assumed to be periodic in the x-
direction. i.e.

ψs,d (x) = ψs,d (x + XT ) , (8)

where XT is the spatial period of the flow. These boundary
conditions require the azimuthal and meridional wavenum-
bers to be kn = 2nπ/α and lm = mπ , where α is the aspect
ratio (i.e. the ratio of cross-channel length to along-channel
length), which has been set to 6 for this study as this is ap-
proximately the value for a typical experimental annulus sys-
tem.

2.3 Dissipation parameterisation

The principal dissipation terms in equations (3) and (4) are
the Ekman layer parameterisations (the first terms on the right
hand side), although an internal dissipation term, parame-
terised by a potential vorticity diffusion (Lewis, 1992), is
also included. This second form of diffusion is often in-
cluded in numerical models, its purpose being to dissipate
energy that is transferred to high wavenumbers through wave
interactions. For example, in a spectral model two waves,
k2 and k1, can interact to produce waves with wavenumbers
(k2 − k1) and (k2 + k1). Energy is therefore transferred from
waves k2 and k1 to these product waves. If the truncation of
the spectral model is such that the product wave (k2 + k1)

is not represented, however, then the energy associated with
this wave will be aliased back into lower wavenumbers, close
to the truncation limit. The product wave is therefore a spu-
rious energy source.

A dissipation term that varies as ∇4 is more scale-selective
than a dissipation term that varies as ∇ 2 and therefore has a
stronger effect on shorter waves than the latter. As the pur-
pose of the internal dissipation is to remove the spurious en-
ergy source, it is chosen to vary as ∇ 4. This extra dissipa-
tion term differs slightly from the simple ∇ 2 dissipation term
usually used in studies of the two-layer model (e.g. Pedlosky,
1970), in which the dissipation is provided by Ekman layers
on the endwalls alone.

2.4 The truncated system

For this study, the truncation of equations (5) was chosen
to be at M = 1, and N = 1 so that only the first non-
constant terms in the expansion (5) were considered. This
is the simplest possible truncation, and describes the interac-
tion between one azimuthal wave and the mean flow. While
no attempt is made to justify this truncation physically, it is
hoped that such a simple model will provide a valuable first
step towards the bifurcation analysis of more complex mod-
els, involving wave-wave interactions, although we recognise
that our results may display some sensitivity to the level of
truncation (Klein and Pedlosky, 1986). Several studies have
investigated the effects of different levels of truncation, and
their principal conclusions are that, while the inclusion of
further wave modes can substantially alter the behaviour of
the system (Curry, 1978), altering the number of modes in
the mean-flow correction does not (Booty et al., 1982).

Substituting (5) into (3) and (4), we obtain the following
set of coupled, ordinary differential equations:

Ȧs = −-sAs + βsBs − (νs + γsXd) Bd,

Ḃs = −-sBs − βsAs + (νs + γsXd)Ad,

Ȧd = −-dAd + βdBd − (νd + γdXd) Bs, (9)

Ḃd = −-dBd − βdAd + (νd + γdXd)As,

Ẋd = −-̄Xd + γ̄ (AsBd − BsAd) ,

where the dot represents differentiation with respect to time,

As,d = Re
(
W

s,d
11

)
, and Bs,d = Im

(
W

s,d
11

)
. The various
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coefficients are given in Appendix A. The equation for Ẋs

has been omitted since it describes the simple exponential
decay of Xs . The equilibrium value of Xs is therefore always
zero and is consequently of little interest for this study.

3 Multiple-scale studies

In multiple-scale analyses of the two-layer model (e.g. see
Pedlosky, 1970, 1971; Moroz, 1981) the quasigeostrophic
potential vorticity equations are usually written in terms of
streamfunctions for layer 1 and layer 2. The total stream-
function for each layer is then

ψn = ψ(0)
n + φn, n = 1, 2, (10)

where ψ(0)
n = −uny is the streamfunction for the basic state

and φn represents a perturbation to the basic state. One seeks
solutions to the quasigeostrophic potential vorticity equations
in the form

φ1 = ReAeik(x−ct) sin ly, φ2 = ReγAeik(x−ct) sin ly (11)

where l is the cross-channel wavenumber, k is the along-
channel wavenumber of the disturbance, A is the amplitude
of the wave in the upper layer, and γA is the amplitude of
the wave in the lower layer, γ being a (possibly) complex pa-
rameter; c = cr + ici , where cr represents the along-channel
wave speed and ci describes the growth (or decay) rate of the
wave amplitude. One of the model parameters (usually the
vertical shear, Ud , or the Froude number, F ) is chosen as the
principal bifurcation parameter, (11) is then substituted into
the quasigeostrophic potential vorticity equations and solved
for the case of marginal stability, i.e. when ci = 0. Small
perturbations, δ, from the state of marginal stability are then
studied by seeking a series solution of the form

φn = |δ| 1
2 φ(0)

n + |δ|φ(1)
n + |δ| 3

2 φ(2)
n + . . . . (12)

A new slow timescale, T = δ
1
2 t , is also introduced, although

other scalings are possible. Other parameters, such as β or
r , are also scaled as powers of the supercriticality parameter.
Equating successive powers of δ and removing secular terms
then leads to a set of ordinary differential equations gov-
erning the evolution of the amplitude of the growing distur-
bance. Since δ is assumed to be small, this places restrictions
on the size of any other parameters (such as β and r) that may
have been scaled on δ. The scaling of β and r must therefore
be varied in order to examine different regions of the (r, β)

parameter plane, giving rise to different multiple-scale ap-
proximations. These various approximations are summarised
in Table 1 and will now be discussed.

3.1 Instability on an f -plane

3.1.1 Strongly dissipative systems: r = O(1)

Pedlosky (1970) performed a multiple-scale analysis of sl-
owly-varying wave-trains in a strongly dissipative two-layer

system. The bifurcation parameter was the vertical shear, Ud ,
and δ was given by Ud −Uc = δ where δ � Uc, and Uc, the
critical value of Ud for which a shear-flow was stable for all
Ud < Uc, was given by

Uc = rK

kn
(
2F − K2

)1/2 . (13)

The corresponding value for cr was found to be cr = Us =
(u1 + u2) /2, which is independent of the wavenumber kn.
The f -plane model is therefore non-dispersive. 1 Defining a
strongly dissipative system to be one in which r ≈ O (1),
Pedlosky (1970) showed that the evolving wave amplitude
satisfies

Ȧ = A − AV, V = |A|2, (14)

where the dot here denotes differentiation with respect to the
slow time, T = δt , A is the amplitude of the wave present
on the interface between the two fluids and V is the mean-
flow correction. The details of the coefficients in the equation
have been omitted, but may be found in Pedlosky (1970) and
Moroz (1981). A = 0 is always a fixed point of equation
(14), and corresponds to the axisymmetric flows observed in
rotating annulus experiments such as those of Früh and Read
(1997).

As Ud increases, the trivial solution loses stability via a
pitchfork bifurcation to a wave, travelling at the mean-flow
speed on the fluid interface, and corresponds to the steady
wave flows seen in rotating annulus experiments. The final
state, in which the equilibrium wave has achieved its maxi-
mum amplitude, is independent of the initial state of the sys-
tem (apart from its phase).

3.1.2 Inviscid systems: r = 0

Pedlosky (1970) also derived the multiple-scale approxima-
tion for the inviscid system, r = 0, on an f -plane. Here, the
bifurcation parameter was taken to be F , with the supercriti-
cality parameter F defined by F − Fc = F , where F � Fc,
and Fc = K2/2 is the critical Froude number.

The multiple-scale approximation yields

Ä = A − AV, V̇ = ˙|A|2. (15)

Once again, the trivial solution is always a fixed point of the
equations. However, in the inviscid system, the trivial so-
lution loses stability, not to a stationary wave but to a modu-
lated wave that varies with time. Pedlosky does not comment
on the nature of the bifurcation from the trivial solution to the
oscillatory motion.

3.1.3 Weakly dissipative systems: r = O(δ1/2)

Pedlosky (1971) extended his multiple-scale analysis to the
weakly dissipative regime, again using F as the supercriti-

cality parameter, and taking r ≈ O(F 1
2
)
. In this case he

1Recall that the spectral model was analysed in a reference
frame moving at the speed of the mean-flow. Consequently, in this
frame, the f -plane waves would appear to be stationary.
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β = 0 β = O
(
F1/2

)
β = O (1)

Ä = A − AV Ä = A − cȦ − AV Ä = A −AV

V̇ = ˙|A|2 V̇ = ˙|A|2 V = ˙|A|2
r = 0

T = |F |1/2t T = |F |1/2t T = |F |1/2t

Pedlosky (1970) Moroz (1981) Pedlosky (1970)

Ä = A − Ȧ − AV Ä = cA − cȦ − AV Ȧ = A −AV

V̇ = ˙|A|2 + |A|2 − V V̇ = ˙|A|2 + |A|2 − V V̇ = |A|2

r = O
(
F1/2

)
T = |F |1/2t T = |F |1/2t T = |F |t

Pedlosky (1971) Fowler et al. (1982) Moroz (1981)
Gibbon & McGuinness (1982)

Ȧ = A − AV Ȧ = cA − AV Ȧ = cA − cAV

V = |A|2 V = |A|2 V = |A|2
r = O (1)

T = |δ|t T = |δ|t T = |δ|t

Pedlosky (1970) Moroz (1981) Romea (1977)

Table 1. Summary of previous multiple-scale approximations, showing their location on the [r, β]-plane. A is the amplitude of the interfacial
wave, V is the mean-flow correction. c denotes a complex coefficient, and following Moroz (1981), the details of the coefficients have been
omitted. The slow-time is given by T , while t denotes the ‘original’ unscaled time. (Table after Moroz, 1981.) The supercriticality
parameters, δ and F are defined in the text.

obtained

Ä = A − Ȧ − AV,

V̇ + V = ˙|A|2 + |A|. (16)

Gibbon and McGuinness (1982) and Pedlosky and Fren-
zen (1980) later showed independently that equations (16)
reduce to the equations originally derived by Lorenz (1963)
to describe two-dimensional convection in a horizontal layer
of fluid heated from below:

Ẋ = −σX + σY,

Ẏ = RX − Y − XZ, (17)

Ż = −bZ + XY,

where R is the Rayleigh number, σ is the Prandtl number of
the fluid, and b is the aspect ratio of the system. In contrast
to the simple bifurcations present for the strongly dissipa-
tive and the inviscid systems, the Lorenz equations exhibit
a large number of different bifurcations, leading to compli-
cated behaviour (e.g. Sparrow, 1982). This raises two main
questions. Firstly, how are the bifurcations in the different
multiple-scale approximations related to one another? Sec-
ondly, where do these bifurcations “come from”?

The spectral approach leads to a single set of spectral am-
plitude equations describing the behaviour of the two-layer
model over the entire (r, β)-plane, and should therefore be
capable of reproducing all the different forms of behaviour
described by the various multiple-scale approximations – if
the two approaches are to be consistent. A study of the spec-
tral amplitude equations should therefore reveal the mecha-
nisms by which one multiple-scale approximation “blends”
into a neighbouring approximation. The differences between
the mechanisms involved in inviscid and viscous bifurcations
will also be discussed. More recent results describing the
effects of symmetry on different bifurcations have been re-
ported (see Lovegrove, 1998, and references therein). The
present study will therefore try to exploit such results to ex-
plain the differences observed between the behaviour of the
two-layer model on an f -plane and (in Part II of the study)
on a β-plane. It is also possible to do a more detailed inves-
tigation of the bifurcations in the two-layer model than has
been possible previously. It is hoped that the net result of this
investigation will be to provide a coherent, global account of
the origins of the bifurcations in the two-layer model which,
in the process, draws together the different multiple-scale ap-
proximations and places them in context.
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4 Bifurcations on an f -plane

We now study the bifurcations of the spectral amplitude equa-
tions (9) when β = 0, for both a strongly and a weakly dissi-
pative system, using standard techniques of numerical solu-
tion continuation and numerical integration. To perform this
analysis, the underlying symmetry of the spectral amplitude
equations must be determined by defining the action of the
O (2) symmetry group on the space of the spectral ampli-
tude equations and by showing that they are equivariant with
respect to this action.

It is possible to define the action of the symmetry group
O (2) on the space of the full complex spectral amplitude
equations as

a rotation s : (X, Y ) →
(
Xeiη, Y eiη

)
,

a reflection ρ : (X, Y ) → ± (
X∗, Y ∗) , (18)

where X and Y are complex. Any set of equations of the
form ẋ = f (x) which satisfies the following equivariance
relations

f (sx) = sf (x) , f (ρx) = ρf (x) (19)

has the following properties: (i) under the action of s, any
solution x0 of the original set of equations may be multiplied
by a factor eiη to obtain a new solution to the equations; and
(ii) under the action of ρ, the complex conjugate of any so-
lution of the original set of equations is also a solution to the
equations.

Physically, the action of s may be thought of as represent-
ing the along-channel symmetry of the two-layer model, the
angle η representing the spatial phase, φ, of the solution.
Equivariance under the action of s means, therefore, that
there is no preferred along-channel position for a stationary
wave to form on the interface; any wave is equivalent to an-
other, up to a translation along the channel. As shown below,
φ is constant on an f -plane. Equivariance under the action of
ρ indicates that any wave may be reflected in a plane cutting
across the channel to give another solution to the equations.

The f -plane spectral equations are equivariant under the
action of both s and ρ and therefore they possess O (2) sym-
metry.

We show that the spectral amplitude equations are capable
of reproducing the behaviour of the strongly dissipative and
the weakly dissipative multiple-scale approximations of Ped-
losky (1970, 1971). Furthermore, examining the bifurcations
of the spectral amplitude equations in the two-dimensional
(r, F )-parameter plane will allow a quantitative boundary to
be placed on the range of validity of both the strongly dissi-
pative and the weakly dissipative multiple-scale approxima-
tions. The principal bifurcations of the spectral amplitude
equations will be seen to converge as r → 0, meeting at a
degenerate bifurcation, or organising centre, on the inviscid
f -plane axis which has a codimension of at least two. To
examine the structure of the organising centre, we perform
an unfolding close to the organising centre so as to preserve

the O (2) symmetry. To third order, this unfolding is equiva-
lent to the Lorenz equations, indicating that Lorenz-like be-
haviour arises naturally as a consequence of the organising
centre on the inviscid f -plane axis. Furthermore, it will be
shown that, as r increases, the fourth-order contributions to
the unfolding become important. It is the presence of these
additional terms which allow the spectral amplitude equa-
tions to capture the dynamics of both the strongly and the
weakly dissipative multiple-scale approximations. The un-
folding of the organising centre will then give rise to the set
of equations (15), derived by Pedlosky (1970) for the case of
an inviscid f -plane.

4.1 One-parameter continuations

4.1.1 The spectral amplitude equations on an f -plane

The bifurcation analyses for the spectral equations (9) were
performed at two values of r , the dissipation parameter: r =
0.2 (representing a strongly dissipative system) and r = 0.02
(representing a weakly dissipative system). The choice of
these values of r will be justified later (see Section 5).

The Froude number, F , was chosen to be the bifurcation
parameter for these analyses, since this was the control pa-
rameter chosen by Pedlosky (1971) in his analysis of the
weakly dissipative system. F is also a convenient control pa-
rameter for experiments since changing the Froude number,
whilst holding r at a relatively constant value, is straightfor-
ward to realise in a laboratory setting, thereby allowing an
easy comparison between theory and experiment. For both
of these analyses, the Rossby number, ε, was held fixed at a
value of ε = 0.05 for consistency with the quasigeostrophic
approximation (i.e. requiring ε � 1). The mean-flow pa-
rameters Us and Ud were taken to be 0 and 0.5 respectively,
corresponding to the situation in which the two fluid lay-
ers are moving with equal and opposite velocities (so that
u1 = +0.5 and u2 = −0.5).

In order to simplify the bifurcation analyses, the equations
(9) were written in their complex form:

Ẋ = −-sX +
(

1 + γs

νs
Z

)
Y,

Ẏ = −-dY + νs (νd + γdZ)X, (20)

Ż = −-̄Z − γ̄

2νs

(
XY ∗ + YX∗) ,

where β has been set to zero, and

(X, Y,Z) = (As + iBs,−iνs (Ad + iBd) ,Xd). (21)

Note that, in these equations, the time is not a slow time as in
the multiple-scale approximations of Section 3 and that none
of the parameters have been assumed to be small.

It can be seen that the trivial solution, (X, Y,Z) = (0, 0, 0),
representing a situation in which the interface between the
two fluid layers is flat, is always a fixed point of equations
(20). This trivial solution will lose stability when the real
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ing the effect of increasing the Froude
number at r = 0.2. The trivial solution
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pitchfork bifurcation at F = 6.59.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

2 4 6 8 10 12 14

B
ar

oc
lin

ic
 w

av
e 

co
m

po
ne

nt
, B

d

Froude number (F)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

2 4 6 8 10 12 14

M
ea

n 
fl

ow
 c

or
re

ct
io

n,
 X

d

Froude number (F)

Fig. 3. Bifurcation diagrams showing
the effect of increasing F at r = 0.2 for
(a) the baroclinic wave component, Bd ,
and (b) the mean-flow correction Xd .
The key is the same as that in Figure 2.

part of any eigenvalue λj of the Jacobian matrix of linearisa-
tion for small perturbations becomes positive, where

λ2
1,2 + (-s + -d) λ1,2 + -s-d − νsνd = 0,

λ2
3,4 + (-s + -d) λ3,4 + -s-d − νsνd = 0, (22)

λ5 = −-̄.

The repeated eigenvalues result from the fact that X, Y and Z

are complex variables. Since -̄ is directly proportional to r ,
λ5 < 0 for all nonzero values of r and z is a stable manifold.
It can also be seen that, at -s-d = νsνd , two real eigenval-
ues λ1 and λ3 pass through zero and the trivial solution loses
stability to a wave-like disturbance on the interface. Since
the two eigenvalues involved in this bifurcation are real, the
bifurcating solution does not vary with time and so repre-
sents a stationary wave. The remaining eigenvalues, λ2 and
λ4, remain real and negative.
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Fig. 6. Period of the unstable orbit
born in the subcritical Hopf bifurcation
at F = 6.17. Observe that the period
becomes infinite as the unstable orbit
approaches the trivial solution at F =
5.56.

4.2 Bifurcations in a strongly dissipative system (r = 0.2)

4.2.1 Solution continuation

Solution continuation was made using the numerical con-
tinuation software AUTO86 by Doedel (1981) and Doedel
and Kernevez (1986). Unfortunately AUTO86 is unable to
cope with the situation in which two real eigenvalues become
zero simultaneously. At the time this work was undertaken,
AUTO86 was the only facility available to us, and so we had
to adopt the procedures outlined here. In order to perform nu-

merical solution continuations, therefore, the variablesX and
Y were taken to be real, and so only one eigenvalue passes
through zero in the initial bifurcation. This will be justified
later in Section 4.4 and gives rise to

Ȧs = −-sX + (νs + γsZ)Bd,

Ḃd = −-dBd + (νd + γdZ)As, (23)

Ż = −-̄Z − γ̄ (AsBd) .

The results of this solution continuation are summarised
in the form of a bifurcation diagram in Figure 2, showing the
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barotropic wave component, As , as a function of the Froude
number. The initial point on the solution curve was taken
to be the trivial solution at F = 1.0. Increasing the Froude
number causes the stable axisymmetric flow to become un-
stable to a stable, stationary wave in a pitchfork bifurcation
at F = Fpf = 6.59. Since the variables are restricted to
being real, two stationary wave solutions are actually cre-
ated in the pitchfork bifurcation and these are shown as two
nontrivial branches in Figure 2. The fact that there are two
solutions results from the symmetry of equations (23) under
reflection (As, Bd) → −(As, Bd), which will be discussed
in more detail in Section 4.4. The amplitude of the equilib-
rium stationary wave grows as F increases. The correspond-
ing bifurcation diagrams for the baroclinic wave, Bd , and the
mean-flow correction, Xd , are shown in Figure 3.

4.2.2 Numerical integration

The solution continuation revealed that there were only two
possible solutions to the spectral amplitude equations in the
strongly dissipative regime: the trivial solution, and a sta-
tionary wave solution. These two solutions were verified by
initial-value numerical integrations of the full spectral ampli-
tude equations (20), in which Bs and Ad , the imaginary parts
of X and Y , were always set to zero initially to reflect the
same assumption used in the solution continuation; namely,
that X and Y were real.

Thus for r = 0.2, the restricted set of spectral ampli-
tude equations (23) reproduces the simple pitchfork bifurca-
tion encountered in the Landau-Stuart equation, derived by
Pedlosky (1970) as the multiple-scale approximation to be-
haviour in a strongly dissipative two-layer model.

4.3 Bifurcations in a weakly dissipative system (r = 0.02)

4.3.1 Solution continuation

As in the previous section, the numerical solution continua-
tion in the weakly dissipative system was performed on the
restricted set of equations (23) in order to allow AUTO86
to proceed past the initial bifurcation. The dissipation pa-
rameter was fixed at r = 0.02 and, once again, the results
are summarised in the form of a bifurcation diagram for the
barotropic wave component, As , in Figure 4.

The solution continuation was initialised on the trivial so-
lution at F = 1. As in the strongly dissipative system, in-
creasing F caused the axisymmetric flow to become unsta-
ble to a stable stationary wave in a pitchfork bifurcation, this
time at the slightly lower value of Fpf = 5.49. In this case,
however, the stationary wave underwent a Hopf bifurcation
at F = 6.17. Using AUTO86, we were able to switch solu-
tion branches and show that this Hopf bifurcation was sub-
critical, which immediately raised a question as to the origin
of the unstable orbit involved in the Hopf bifurcation. Using
AUTO86 to trace out the branch of periodic orbits, the ampli-
tude of the unstable periodic orbit was found to increase as F
decreased. At F = 5.56, the amplitude of the periodic orbit

(a) F = 4.0

(b) F = 5.5

(c) F = 6.16

Fig. 7. Three initial value numerical integrations performed in the
weakly dissipative regime at r = 0.02. (a) shows the stable trivial
solution at F = 4.0. (b) shows the stable fixed point, corresponding
to a stationary wave at F = 5.5. (c) shows the strange attractor at
F = 6.16.

had become so large that it passed through the fixed point on
the axis, denoting the original (now unstable) trivial solution.
This can be observed as the close approach of the branch of
unstable periodic orbits to the trivial solution in Figure 4 and
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(a) F = 6.5 (b) F = 6.26

(c) F = 6.24 (d) F = 6.233

Fig. 8. A series of numerical integrations performed at r = 0.02. (a) shows the existence of a stable symmetric orbit at F = 6.5. (b) shows
that the symmetric orbit was replaced by an asymmetric orbit at F = 6.26. This orbit subsequently period-doubles to produce (c) a period-2
orbit at F = 6.24 and (d) a period-4 orbit at F = 6.233.

Figure 5.
The period of this unstable orbit was computed as a func-

tion of F and was found to increase rapidly as F → 5.56,
suggesting that the unstable orbit was created in a homoclinic
bifurcation at F = 5.56. This is similar to the situation en-
countered in the Lorenz equations (17) at R = 13.96. It will
be seen in Section 4.4, however, that there is a crucial differ-
ence between the two cases.

4.3.2 Numerical integrations

The first set of integrations, shown projected onto the
(As, Bd )-plane in Figure 7, illustrate the transition to chaos.
Note that these integrations all contain transient behaviour.
Figure 7 shows that, for F < Fpf = 5.49, the trivial solution
was stable (Figure 7a). As F was increased through Fpf a
stable fixed point appeared (Figure 7b), followed by the cre-
ation of a strange attractor giving rise to chaotic behaviour at
F = 6.16 (Figure 7a). Note that, as in the Lorenz equations,
the strange attractor was created before the subcritical Hopf
bifurcation at F = 6.17 was reached.

A second set of integrations, shown in Figure 8, illustrates
the behaviour of the spectral amplitude equations at higher
values of the Froude number. A symmetric periodic orbit
was found to exist for all values of F > 6.4 (Figure 8a). De-
creasing F caused this symmetric orbit to be replaced by an
asymmetric orbit (Figure 8b) in a symmetry-breaking bifur-
cation and then to undergo a series of period doubling bifur-
cations. The first two of these are shown in Figures 8c and
8d.

Thus when r = 0.02, the restricted set of spectral am-
plitude equations can reproduce the Lorenz-like behaviour
of the weakly dissipative multiple-scale approximation de-
rived by Pedlosky for a weakly-dissipative two-layer model.
We next generalise these results to the full, complex, spectral
amplitude equations (20).

4.4 Generalisation to complex behaviour

Although, in the restricted spectral amplitude equations (23),
the initial bifurcation from the trivial solution took the form
of a pitchfork bifurcation, in the full complex spectral ampli-
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tude equations (20), the initial bifurcation occurred when two
real eigenvalues passed through zero. Knobloch (1996) has
described this as a pitchfork of revolution, a Hopf bifurca-
tion where the frequency of the bifurcating periodic solution
is required to be zero. In phase space, a Hopf bifurcation
(which corresponds to a steady wave whose phase may be
constant or time-dependent) leads to a limit cycle, while the
pitchfork of revolution leads to a continuum of fixed points
distinguished only by their spatial phase, φ, which, for the
case of the two-layer model, may be defined as

φ = arctan

(
Bs

As

)
= arctan

(
Bd

Ad

)
+ constant. (24)

Note that equation (24) is undefined when either As and Bs ,
or Ad and Bd are zero, so that there is only a distinct spatial
phase when there is a disturbance on the fluid interface. In a
Hopf bifurcation, φ varies with time, while φ is constant in a
pitchfork of revolution.

Numerical integrations performed at (r, F ) = (0.2, 7.0)

show that the amplitude, |X| =
√(

A2
s + B2

s

)
, of the barotro-

pic wave equilibrates to the same value in each layer, whereas
φ is different. Moreover, after an initial transient, φ is con-
stant with time in each case. Together, these results suggest
that solutions to the full, complex spectral amplitude equa-
tions on an f -plane are distinguished only by their spatial
phase.

The pitchfork of revolution arises because of the underly-
ing symmetry group of equations (20). Because the f -plane
equations possess O (2) symmetry, the results of the bifur-
cation analyses performed previously can be generalised to
the case where X and Y are complex, simply by multiply-
ing by an arbitrary phase factor. Therefore, the fixed point
created in the initial bifurcation in the restricted real system
(23) actually represents a continuum of fixed points in the full
complex system (20). By analogy, the limit cycle involved in
the Hopf bifurcation at (r, F ) = (0.02, 6.17) is actually a
continuum of limit cycles distinguished solely by their spa-
tial phase. This continuum of limit cycles forms a torus in
phase space, which corresponds to a quasi-periodic or two-
frequency, amplitude-modulated travelling wave. Hence, the
Hopf bifurcation encountered in the restricted system, where
X and Y were real, actually corresponds to a bifurcation to
an invariant torus in the full complex system. One of the
frequencies involved in this torus bifurcation represents the
rate of change of φ. As has been shown, φ is constant on
an f -plane and this frequency is therefore zero. This also
means that the homoclinic bifurcation (in which the period
of oscillation becomes infinite) encountered in the full spec-
tral amplitude equations represents a torus becoming homo-
clinic to the trivial solution, i.e. in which the amplitude of
the modulated travelling wave shrinks to zero, giving way to
another state. This is in contrast to the situation occurring
in the Lorenz equations in which the homoclinic bifurcation
represents a simple limit cycle becoming homoclinic to the
trivial solution.

5 Two-parameter continuations

To investigate the differences in behaviour between the
weakly dissipative system and the strongly dissipative sys-
tem, it was necessary to perform a two-parameter continu-
ation of the bifurcations encountered in the weakly dissipa-
tive system. This involved tracing out curves of the bifurca-
tion points encountered in the one-parameter continuations
in the weakly dissipative regime, in the (r, F ) plane. The
curve of pitchfork bifurcations, calculated analytically from
the eigenvalues given in equation (22) and Appendix A, is

U2
d k

2
n

(
2F − K2

)
= r2K2[1 + 2rε

(
K2 + F

)
+ r2ε2K2

(
K2 + 2F

)
]. (25)

In the absence of horizontal momentum diffusion (i.e. using
the Rossby number, ε, as an indicator of the strength of the
∇4 diffusion term and letting ε → 0) this equation simplifies
to

F = Fpf = K2

2
+ r2K2

2U 2
d k

2
n

, (26)

which is equivalent to Pedlosky’s condition for the stability
of a two-layer flow on an f -plane (Pedlosky, 1970), given by
equation (13).

AUTO86’s two-parameter continuation facility was used
to trace out the curves corresponding to the Hopf and ho-
moclinic bifurcations. It should be noted, however, that
AUTO86 does not have the capability of calculating the two-
parameter continuation of a homoclinic bifurcation directly.
Instead, one must use the two-parameter continuation of a
periodic orbit of sufficiently high period to approximate the
homoclinic bifurcation. This was done by selecting an orbit
with a period of T = 990 as a proxy for the homoclinic orbit,
and following it in the (r, F )-plane.

The curves of the pitchfork, Hopf and homoclinic bifur-
cations are shown in Figure 9. Also shown are the one-
parameter solution continuations performed in Sections 4.2
and 4.3, for the strongly and weakly dissipative systems re-
spectively. Two features immediately become apparent from
this figure. The first is the funnel-shaped curve of the bifur-
cation lines, as r increases. The second is that all the bifur-
cation lines appear to meet at a point on the inviscid axis,
r = 0.

5.1 Quantitative boundaries

The first observation, concerning the shape of the bifur-
cation curves, explains the transition between the strongly
and the weakly dissipative behaviour observed in the full
spectral amplitude equations. It also explains the apparent
discrepancy between the behaviour observed in these two
cases. The strongly dissipative multiple-scale approximation
is valid only when r ≈ O (1), while the weakly dissipative

analysis is valid only when r ≈ O
(
F 1

2

)
. At the transition
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between these two approximations, one might therefore ex-
pect F ≈ 1. Figure 9 shows the two-parameter continuations
for the pitchfork, Hopf and homoclinic bifurcations overlaid
with the curve F ≈ 1.

As homoclinic bifurcations are not present in the Landau-
Stuart equation (the normal form for a Hopf bifurcation) de-
rived for the strongly dissipative multiple-scale system, this
approximation is not valid for homoclinic behaviour within
the critical region. Conversely, for the weakly dissipative
multiple-scale approximation to be valid, both the Hopf and
the homoclinic bifurcations must be contained within the crit-
ical region. As neither the Hopf nor the homoclinic curves
lie within the critical region for r > 0.07, one might con-
clude that the strongly dissipative multiple-scale approxima-
tion is valid in this region. Similarly, it would seem that the
weakly-dissipative multiple-scale approximation is valid for
0 < r < 0.03, where both curves lie within the critical re-
gion. This observation shows how the strongly dissipative
multiple-scale description emerges naturally from the weakly
dissipative multiple-scale description as the dissipation pa-
rameter is increased: the former is an approximation to the
latter. One of the advantages of the spectral amplitude equa-
tions can also be seen: their range of validity is not restricted
to particular values of the dissipation parameter, r , and so
one can capture all the bifurcations present in the one-wave
system, regardless of the value of r .

5.2 Bifurcation on the inviscid axis

The second observation, concerning the apparent meeting of
the pitchfork, Hopf and homoclinic bifurcation curves on
the inviscid axis, is more subtle. Consider the full com-
plex spectral amplitude equations (20) with r = 0, so that
-s = -d = -̄ = 0 to give

Ẋ = Y + γs

νs
YZ,

Ẏ = νsνdX + νsγdXZ, (27)

Ż = − γ̄

2νs

(
XY ∗ + YX∗) .

As for the dissipative f -plane equations, the trivial solution
is always a fixed-point of the equations and its linear stability
to small exponentially varying perturbations is determined by
the eigenvalues

λ2
1,2 − νsνd = 0, λ2

3,4 − νsνd = 0, λ5 = 0. (28)

In contrast to the situation in which r 
= 0, one of the eigen-
values, λ5, is now zero for all values of F , while the real parts
of the four remaining complex eigenvalues are all nonzero
provided νsνd 
= 0. Substituting for νs and νd from Ap-
pendix A, we get

U2
d k

2
n

2F − K2

2F + K2

= 0. (29)

Clearly, (29) is violated when F = Fc = K2/2, where the
real parts of the four complex eigenvalues, λ1 . . . λ4, pass
through zero simultaneously. Fc is precisely the critical value
of the Froude number, derived by Pedlosky (1970), at which
an inviscid flow on an f -plane becomes unstable.

6 The organising centre

6.1 Normal form reduction

An analysis of the highly degenerate bifurcation described
above is made easier if equations (27) are put into normal
form. Guckenheimer and Holmes (1983) and Wiggins (1990)
both provide a full account of the theory of normal form
calculations. While normal form calculations are straight-
forward, but tedious to perform manually, the process may
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easily be coded up using MAPLE. The calculation of reso-
nant terms, in particular, is easy to implement as the opera-
tor, LJ (·), may be written in matrix form. Full advantage of
MAPLE’s linear algebra routines may then be taken and the
calculation of the resonant terms reduces to calculating the
left eigenvectors of zero, for LJ (·). Similarly, calculation
of the explicit form of the change of variables, described by
equation (21), is greatly simplified by using a computer.

6.2 The normal form of the degenerate bifurcation

In order to simplify the calculation of the normal form for the
degenerate, inviscid bifurcation, we will once again require
the variables x, y and z to be real. The vector field described
by the inviscid equations is therefore defined in the space,
IR3, which is spanned by the standard vectors( 1

0
0

)
,

( 0
1
0

)
,

( 0
0
1

)
. (30)

In addition, we will simplify the coefficients in the inviscid
equations by rewriting equations (27) as

ẋ = y + ayz,

ẏ = bxz, (31)

ż = cxy,

where

a = γs/νs , b = νsγd , c = −γ̄ /(2νs) , (32)

so that the normal form, up to fourth order, is

ẋ = y,

ẏ = bxz + bc

2
x3 − 2bac

3
x3z − ba2xz3, (33)

ż = 0,

which is structurally unstable to perturbations (see e.g. Guck-
enheimer and Holmes, 1983, for a discussion of structural
stability). The addition of an x 2-term to the ż-equation, for
example, will certainly change the behaviour of the system.
In order to examine the consequences of such small perturba-
tions, it is necessary to consider an unfolding of the normal
form by adding parameter-dependent perturbations. For such
a highly degenerate bifurcation, the construction of a univer-
sal unfolding can be difficult. Here we discuss one possible
unfolding in which only perturbations which influence the
O (2) symmetry of the original system are included. This
unfolding, however, will not be universal.

6.3 An unfolding of the degenerate bifurcation

Wiggins (1990) showed that, for a vector field in which all
resonant terms are present, the universal unfolding of a non-
hyperbolic point with Jacobian J is given by J + B, where
B is a matrix satisfying[
B∗, J

] = 0, (34)

and ∗ denotes the adjoint of B. For a non-hyperbolic point

J =
( 0 1 0

0 0 0
0 0 0

)
, (35)

and

B =
( 0 0 0
µ1 µ2 µ3
µ4 0 µ5

)
, (36)

where {µ1, µ2, µ3, µ4, µ5} ∈ IR, so that the unfolding is
given by( 0 1 0
µ1 µ2 µ3
µ4 0 µ5

)
. (37)

Inclusion of µ3 and µ4 would, however, violate the reflection
symmetry ρ, defined in equations (18). A more suitable can-
didate for a universal unfolding which preserves the original
symmetry of the system is therefore( 0 1 0
µ1 µ2 0
0 0 µ5

)
, (38)

and the normal form equations then become

ẋ = y,

ẏ = µ1x + µ2y + bxz+ bc

2
x3 − 2bac

3
x3z

− ba2xz3, (39)

ż = µ5z.

Wiggins’ approach assumed that no crucial resonant terms
were “missing” from the normal form. This is not the case
here, since a straightforward calculation shows that x 2 and
xz are both resonant in the ż-equation. The inclusion of
these terms, as additional perturbations to equation (39),
may therefore be warranted. The case for the inclusion of
a second-order term in the ż-equation is further strengthened
by noting that the full spectral amplitude equations (20), in-
clude xy in the ż-equation. Here, only the x 2 term will be
included in the ż-equation. A more general analysis, how-
ever, might include the xz term as well.

We therefore investigate the unfolding of

ẋ = y,

ẏ = µ1x + µ2y + bxz+ bc

2
x3 − 2bac

3
x3z

− ba2xz3, (40)

ż = µ5z + µ6x
2.

To third order, this unfolding is identical to a form of the
Lorenz equations considered by Rychlik (1990) (see also
Robinson, 1989). Rychlik used this form to prove that the
Lorenz equations contain a strange attractor. This unfolding
means that close to the inviscid bifurcation, where terms of
fourth and higher order are small enough to be ignored, per-
turbations to the inviscid bifurcation in the spectral amplitude
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equations can give rise to Lorenz-like behaviour. This places
a more formal limit (that r must be small enough to allow
the fourth-order terms in the normal form expansion to be
neglected) on the range of r for which the weakly dissipative
multiple-scale approximation is valid.

When the dissipation parameter is larger, the fourth-order
terms in equation (40) cannot be neglected. Note that all of
these fourth order terms contain the coefficient a, which is
the coefficient of the non-resonant yz term in the ẋ compo-
nent of the spectral amplitude equations (20). This implies
that if this term were absent, the spectral amplitude equa-
tions would be exactly equivalent to the Lorenz equations
and therefore to the weakly-dissipative multiple-scale equa-
tions derived by Pedlosky. The presence of this yz term
is therefore a crucial difference between the spectral am-
plitude equations and the weakly-dissipative multiple-scale
equations.

As r increases, the fourth-order terms in the unfolding be-
come important and consequently the yz term becomes more
important to the dynamics of the system. This means that the
interaction between the baroclinic wave, y, and the mean-
flow correction, z, becomes more important in supplying en-
ergy to the barotropic wave, x, and may be regarded as a
physical explanation for the differences in the behaviour of
strongly and weakly dissipative systems.

Recall that, in constructing the unfolding (40), x and y

were assumed to be real. In addition, this unfolding was con-
structed to preserve the O (2) symmetry of the system. As
has been shown previously, this implies that the behaviour
deduced above still holds for the case when x and y are com-
plex. The analytical construction of an unfolding that breaks
the O (2) symmetry of the system is more difficult and is
outside the scope of the present study. In Part II, however,
numerical methods will be used to examine the effects of
breaking this symmetry by including a β-effect.

7 Derivation of the inviscid multiple-scale equations

The connection between the spectral amplitude equations and
the strongly and weakly dissipative multiple-scale approxi-
mations on an f -plane has been shown. The relation between
the spectral amplitude equations and the f -plane, inviscid
multiple-scale approximation of Pedlosky (1970), given in
equation (15) has not, so far, been established. Consider the
unfolding of the inviscid normal form, truncated at third or-
der:

ẋ = y,

ẏ = µ1x + µ2y + bxz + bc

2
x3, (41)

ż = µ5z + µ6x
2.

Setting the unfolding parameters µ2, µ5 and µ6 to zero,
and making the change of variables z → −z − c

2x
2, the

normal form now becomes

ẋ = y,

ẏ = µ1x − bxz, (42)

ż = −cxy,

representing a small perturbation to the inviscid bifurcation.
Eliminating y gives

ẍ = µ1x − bxz,

ż = − c

2
˙(x2
)
, (43)

which is the equivalent of equation (15), derived by Pedlosky
(1970).

8 Discussion

In this paper, the spectral amplitude equations for the two-
layer f -plane model were used to examine the differ-
ences between the multiple-scale approximations of Ped-
losky (1970, 1971) for different dissipative regimes. This
was possible because the derivation of the spectral amplitude
equations does not require any restriction to be placed on the
size of the dissipation parameter, r , thereby giving the spec-
tral amplitude equations validity over the range 0 ≤ r ≤ 1.
The spectral amplitude equations were shown to reproduce
the behaviour observed in both the strongly and the weakly
dissipative multiple-scale approximation when the spectral
variables x and y were restricted to being real. It was
then shown that, because the full complex spectral amplitude
equations were equivariant under the action of the O (2)-
symmetry group, the results from the real system could be
generalised to the complex case.

In addition, it was shown that the strongly dissipative mult-
iple-scales approximation arises naturally from the weakly
dissipative multiple-scale equations. Also, a quantitative cri-
terion for deciding when the strongly dissipative approxima-
tion holds was found to be r > 0.07, while the weakly dissi-
pative approximation is valid for 0 < r < 0.03.

The bifurcations present in the weakly dissipative limit
were shown to originate in a degenerate bifurcation on the
inviscid axis and, close to this degenerate bifurcation, fourth-
order terms in the normal form expansion of the inviscid
spectral equations may be ignored. Small O (2)-symmetry-
preserving perturbations to this third-order normal form then
give rise to the Lorenz equations, producing the dynam-
ics associated with the weakly dissipative multiple-scale ap-
proximation. Further away from this degenerate bifurca-
tion, fourth-order terms in the normal form expansion be-
come important. This corresponds to the transition from
weakly to strongly dissipative behaviour. A subset of the
symmetry-preserving perturbations was then shown to pro-
duce the equations discovered by Pedlosky (1970).

In contrast to the earlier study of Klein and Pedlosky
(1992), who found that the inclusion of interfacial Ekman
layers or potential vorticity damping tended to suppress am-
plitude vacillations and chaotic dynamics, the inclusion here
of ∇4 internal friction does not suppress chaotic behaviour.
In some respects, this parallels the results of Mundt et al.
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(1995), who found that viscous E 1/4 sidewall boundary lay-
ers were instrumental in causing a transition to baroclinic
chaos.

In Part II we reinstate the β-effect and explore the resulting
changes to the bifurcation scenarios when β 
= 0.

Appendix A Coefficients of the Single-wave model

The coefficients to equations (9) and (20) are:

K2 = k2
1 + l21 (A1)

-s = r
[
1 + rεK2

]
(A2)

-d = rK2(
K2 + 2F

) [1 + rε
(
K2 + 2F

)]
(A3)

-̄ = rl21(
l21 + 2F

) [1 + rε
(
l21 + 2F

)]
(A4)

βs =
[
β

K2 − Us

]
k1 (A5)

βd =
[

β(
K2 + 2F

) − Us

]
k1 (A6)

νs = Udk1 (A7)

νd = Ud

(
K2 − 2F

)
(
K2 + 2F

)k1 (A8)

γs = 16k1
3

6K2
(A9)

γd = 16k1
(
k2

1 − 2F
)

6
(
K2 + 2F

) (A10)

γ̄ = 32Fk1

3
(
l21 + 2F

) (A11)
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