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Abstract. The concept of the generalized entropy is
analyzed, with the particular attention to the definition
postulated by Tsallis [J. Stat. Phys. 52, 479 (1988)].
We show that the Tsallis entropy can be rigorously ob-
tained as the solution of a nonlinear functional equa-
tion; this equation represents the entropy of a complex
system via the partial entropies of the subsystems in-
volved, and includes two principal parts. The first part
is linear (additive) and leads to the conventional, Boltz-
mann, definition of entropy as the logarithm of the sta-
tistical weight of the system. The second part is mul-
tiplicative and contains all sorts of multilinear prod-
ucts of the partial entropies; inclusion of the muttiplica-
tive terms is shown to reproduce the generalized en-
tropy exactly in the Tsallis sense. We speculate that
the physical background for considering the multiplica-
tive terms is the role of the long-range correlations sup-
porting the “macroscopic” ordering phenomena (e.g.,
formation of the “coarse-grained” correlated patterns).
We prove that the canonical distribution corresponding
to the Tsallis definition of entropy, coincides with the
so-called “kappa” distribution which appears in many
physical realizations. This has led us to associate the
origin of the “kappa” distributions with the “macro-
scopic” ordering {“coarse-graining”) of the system. QOur
results indicate that an application of the formalism
based on the Tsallis notion of entropy might actually
have sense only for the systems whose statistical weights,
2, are relatively small. (For the “coarse-grained” sys-
tems, the weight €2 could be interpreted as the number of
the “grains”.) For large {2 (i.e., £ -+ oo}, the standard
statistical mechanical formalism is advocated, which im-
plies the conventional, Boltzmann definition of entropy
as lnfl.

Correspondence to: A. V. Milovanov

1 Introduction

The concept of entropy plays a fundamental role in sta-
tistical mechanics and information theory. The standard
definition of the entropy § for a discrete probability dis-
tribution reads [see, e.g., Landau and Lifshitz (1970)]

0
SH{pll == pilnp (1)

i=1

where {1 is the total number of the possible (microscopic)
states, and {p;} are the associated probabilities obeying
Z?:l pi = 1. Entropy S[{pi}] is extremized in the case
of equiprobability, 1.e., p; = 1/Q for all 1 = ], ..., ), this
immediately recovers the Boltzmann expression

SE —1nQ. (2)

Considerable advances in the theory of dynamical sys-
tems [Sinal (1972)] that have lead to a beginning of a dy-
namical formulation of statistical mechanical problems
{Ruelle (1978), Eckmann and Ruelle (1985), Gaspard
and Dorfman (1995)], especially for nonequilibrium sys-
tems, near or far from equilibrium, opened new per-
spectives of the thermodynamic concepts [Paladin and
Vulpiani (1987), McCauley (1990), Badii and Politi
(1997)]. In this context, the importance of a generalized
entropy [Badii and Politi (1997), Schroeder (1991)]
was recognized, particularly in describing the mecha-
nisms for the transition to chaos [Paladin and Vulpiani
(1987)].

A suitable realization for a generalized entropy was
found by the Hungarian mathematician Renyi [see, e.g.,
Renyi {1955), Renyi (1970)] who introduced the fol-
lowing expression based on the moments of order ¢ of
the probabilities p; [cf. Eq. (1}]:
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Here, g is a real number; for ¢ — 1, definition (3) re-
covers the standard expression (1). The Renyi entropy
SE[{p:}] is a practical tool for analyzing temporal in-
termittency in chaotic systems [Paladin and Vulpiani
(1987)], i.e., the type of motion when a regular behav-
lor in phase space for long times is interrupted by ran-
domly distributed bursts of strong chaoticity. In the
case of equiprobability (p; = 1/Q for all 1 = 1,...,),
the entropy S(f [{p:}] is reduced to the Boltzmann form
SB = InQ independently of q.

An intriguing generalization of entropy (1) was pro-
posed by Daroczy (1970) and later revived by Tsallis
(1988). Tsallis (1988) postulated for the entropy

! Q
55[{171-}] = =1 [1 - ZP?} (4)

where ¢ is a real number, and Z?:l p = 1.

It is straightforward to verify [Tsallis (1988)] that
ST[{p:i}] is extremized, for all values of ¢, in the case
of equal probability distribution, i.e., p; = 1/Q for all
1=1,...,8, nelding

A
Sq - 1—yq ' (5)
Expression (5) is reduced to the Boltzmann expression
5% = InQ only in the limit ¢ — 1. The entropy Sg
given by Eq. (3) diverges if ¢ < 1 and saturates at
1/(g—1) if ¢ > L, in the limiting case of 2 = cc.

Much theoretical effort has been made in the recent
years to prove or disprove the physical relevance of the
Tsallis definition of entropy (4),(5). On one hand, the
properly generalized formulation of the Ehrenfest theo-
rem and Jaynes duality relations [Plastino and Plastino
{1993}], fluctuation-dissipation theorem [da Silva et al.
{1993), Rajagopal (1996)], and Bogolyubov inequal-
ity [Plastino and Tsallis (1993)] has been proposed.
The validity of the H—theorem for the Tsallis entropy
(4),(5) was analyzed by Mariz (1992) and Ramshaw
{1993ab). The generalized microcanonical and canon-
ical distributions were discussed in the original paper of
Tsallis (1988), and for quantum statistics, by Buyukkilic
and Demirhan {1993). In the meantime, the Tsallis def-
inition (4),(5) still lacks the proper probabilistic sub-
stantiation and observes certain characteristics that may
cause a concern; amongst them is the allowed viola-
tion of the second law [Treumann (1999a), Treumann
(1999b}]. Direct applications of the Tsallis entropy have
been, nevertheless, found in fractal random walks [Ale-
many and Zanette (1993), Zanette and Alemany (1995)]
hydrodynamic turbulence [Boghosian (1996)], cosmic
background radiation [Hamity and Barraco {1996)], and
others. The validity of the Tsallis notion of entropy
(4),(5) thus remains a delicate open question in the mod-
ern statistical physics, and its detailed comprehension
requires further research.

Milovanov and Zelenyi: Tsallis entropy and course grained systems

A remarkable property of the Tsallis entropy (4),(5)
is its nonadditivity [Tsallis (1988)]. This suggests a
treatment of the Tsallis entropy (4),(5) as a proper in-
strument in dealing with a class of physical systems
which exhibit long-range correlations. The long-range
correlations could be associated with the eztensive in-
teractions in the system; relevant examples might be
found, for instance, in self-organized criticality [Chang
(1999)], “fractional” resonances [Milovanov and Zelenyi
(1998)], coherent reconnection [Buchner (1998)], devel-
oped turbulence {Zelenyi et al. ({1998), Milovanov et
al. (1996,2000)], gravitation [Saslaw (1987), Spitzer
(1987)], anion dynamics [Haldane (1991)], percolation
[Isichenko (1692), Nakayama et al. (1994}], etc.

The concept of anions, the particles having “frac-
tional” statistics, is the indirect prediction of the topo-
logical three-dimensional gauge theories studied by Wit-
ten (1989); the development of the quantum statistics
of antons has stimulated enormous progress in the con-
densed matter physics (e.g., the quantum Hall effect and
high-temperature superconductivity}.

Topological ideas have been recently applied by Milo-
vanov (1997) to an analysis of the structures charac-
terized by a diverging correlation length, e.g., perco-
lating sets at the threshold of percolation; the sinthe-
sis of the standard percolation theory and the homao-
topic / differential topology of manifolds leads to the im-
portant conclusions regarding the geometric properties
of the intrinsically correlated fields [Milovanov and Zim-
bardo (2000}].

In this paper, we show that the property of nonad-
ditivity is a key to an understanding of the statistical
background of the Tsallis definition of entropy (4),(5).
In section 2, we formalize this property in terms of a
nonlinear functional equation whose solution is proven
to be the Tsallis entropy S;F where the parameter ¢ (the
so-called “Tsallis index” [Alemany and Zanette (1993)])
defines the “degree of nonlinearity” of this equation. In
section 3, we establish the canonical distribution for
a statistical system whose entropy is given by S7; we
demonstrate that this distribution coincides with the so-
called “kappa” distribution which attracts a good deal
of attention in literature. We summarize the results ob-
tained in section 4 of the paper.

2 Tsallis Entropy from Functional Equation

Consider two statistical systems M’ and M” whose sta-
tistical weights (i.e., the total numbers of the possible
microscopic states for each system) are, respectively, £/
and §2”. Let S(@') and S57(2”) denote the entropies
of the systems M’ and M”. We assume below that
the microscopic configurations for both M’ and M" are
equiprobable; this means that all the microscopic prob-
abilities p} for the system M’ are equal to 1/{¥', and all
the microscopic probabilities pj’ for the system A", to
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Assuming stafistical independence of the systems Af’
and M", we may define the entropy of the complex sys-
tem M = M’ |JM” as an additive function of the en-
tropies of its constituents, M’ and M”. Thus, we may
write

S(9) = §'(€) + 5"(2") (6)

where S(£2) is the entropy of the entire system M =
M| JM", and @ = Q" is the statistical weight of M.
It is well known from the standard courses of statisti-
cal mechanics [see, e.g., Levich (1962), Reif {1965)]
that the functicnal equation (6) immediately leads to
the Boltzmann definition of entropy for the system A,
i, S(Q) = 5% =InQ [see Eq. (2)].

It is clear that an inclusion of the long-range correla-
tions that might be present in the system M in general,
violates the linear expansion (6). Indeed, such correla-
tions appear in an essential mutual influence of the sys-
tems M’ and At"” which perturbs the microscopic states
throughout A1. Hence, the systems A4 and A" cannot
be treated as statistically independent when the long-
range correlations play a role; the entropy of the com-
plex system M = M’ |JM” cannot be then reduced to
the algebraic sum (8) of the entropies of the constituent
systems M’ and M". Note that the relation 2 = Q'Q"
may be also violated in this case unless additional re-
strictions are implied (see the consideration below).

Taking account of the correlations in the system M
would mean that expansion (6} of the entropy S(£2) must
be supplemented by the multiplicative terms, each hav:
ing the form w(A, p}[S' ()P [S”(2")]* where A and p
are some nongero constants depending on the particu-
lar nature of the system M, and w(A, ) ts some func-
tion of A and p. Below, we are restricting ourselves
to the “natural” case of A = u, when the correlations
are symmetric over M’ and A" FEach of the addi-
tional multiplicative terms could be then represented as
w(A, A)S(Q) S (@)

Our further interest is concentrated on the relatively
weak correlations when the multiplicative terms are fin-
ear over each of the partial entropies, S(€') and $*(Q").
In this case, the only multiplicative term to be kept in
the expansion of the entropy 5(£2) must be the quadratic
one, iLe., w({l, 115 (215" (Q"), for which the power ex-
ponent A is equal to unity (A = 1). [The multiplicative
term w(1, 1)S{('}57 (") is thus given by the bilinear
function of the partial entropies S7(€2') and 5”(Q27)]
Consequently, we have, instead of Eq. (6},

S(Q) — SI(QI) + Slf(QH) + LU‘S!(Q!)S”(Q“) (7)

where w = w(1,1) is a constant to be quantified below.

Eq. (7) can be easily generalized to give an expan-
sion of the entropy S(§2) for a complex system M =
U;'Nzl M-l = Aqr UM"U“_UMIH.[N].A./ composed
of an arbitrary number N > 2 of the mutually corre-
lated systems M’, M”, .. M’ N2 (The superscript
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“...[1].../” means that the prime “/” is repeated ¢ times.)
In fact, denote S0l = gt-[l/(q-bl4) to be the
entropy of the system A"/ where the index 4 runs
from I to N, and €0l be the statistical weight of
M-Bh Assuming the cases of equiprobability for
each M’ U1 and making use of Eq. (7), after N — 2
iterations one gets the functional equation

ESr 18] I+wzsl ] g L y

i<y
+ W Z gl Blrgt il g kls Ly
i<j<k
WNLGIGH oy gtN]
(8)
where all the indices ¢, j, k, ... = 1,..., N, and the argu-

ments, -F-' of all &1 are omitted for simplicity.
Eq. (8) takes into account the long-range correlations of
all the orders from 2 to N > 2 effective in the complex
system M = U M-B-7 For instance, the pair cor-
relations are contalned in 6’2 = N!/2I(N — 2)! bilinear
terms of the form w,S”“'["]“".S'""U]"", i < §; the triple cor-
relations, in C3 = N!/3(N — 3)! trilinear terms of the
form wESI...[i]..JSl...[j]...ISI...[k].‘.I’ i<j< k; . the cor-
relations of the highest order N, in Cff =1 N-linear
term w1557 x ... x §% N (Here, the quantities
Ch,n=23,.,N, denote the binomial coetficients.)
The correlations of arbitrary order 2 < n < N would
be contained in C'y = N!/n!(N — n)! n—linear products,

wn_IS""["]""S"”U]"" w % Sl...[f].__.l, i<j<...<l of
n partial entropies §'-Fl-/ g-llr gl for p
different systems A'- Al M’ Ll S M e A

guitable summation of the terms wh= lS’ ok ‘8§ L. !y

. x §W-' for each 2 < n < N could be done over the
ranked permutations of the corresponding indices {4, 7,...,
i, e.g., over the increasing sequences i < j < ... < { of
the indices i, j,..., ! (see above), just to avoid inclusion
of the identical terms into Eq. (8). The total number of
the multiplicative terms of all the orders n from 2 to N
on the right of Eq. (8) is easily seen to be Zf:'z Ch =
2N — (N +1).

It is important to note that Eq. (8) is linear over
each of the partial entropies 'l §{ = 1,...,N, since
it contains only maltilinear products of 5} for any
2 < n < N. This means the following: The correla-
tions involved, although effective up to the highest or-
der N > 2, are not strong enough to change the statis-
tical weights €'l of the systems A’/ In other
words, Eq. (8) implies that all A0l § = 1., N,
have the same statistical weights Q’~[i1-/ as they would
do in absence of the correlations, i.e., when all A0l
are isolated from each other. The correlations in the
complex system M = Uf;l ML could then only
alter the probabilities of the inherent microscopic config-
urations of the systems M’ (17 rather than affect the
statistical weights QU] themselves. A description
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of the sufficiently strong long-range correlation mecha-
nisms that could change the statistical weights Q-
for the systems M’ [/ ¢ =1, N, ie., result in a
substantial nonlinear reorganization of the allowed mi-
croscopic configurations for all M’/ would require
an analysis of more general functional equations, with
the partial entropies $" U1/ nonlinearly present in the
corresponding expansions of S((2}.

Since expansion (8) of the entropy S(£2) is the linear
function over each of the entropies S Ul-/(q/[il-1y,
i=1,...,N, we can preserve below the standard relation
between the statlsmcal welght Q of the complex system
M = U, (M5Bl and the partial weights €l
This is given by the N —linear product [Landau and Lif-
shitz (1970)]

N
i=1

This expression should be substituted into Eq. (8). It
is widely known that relation (9) holds for the complex
system M = Uf\;1 Mt composed of the statisti-
cally independent M'll/ { =1 N. Preserving the
N —linear form (9) in dealing with the mutually cor-
related systems M’ [l is due to the above assump-
tion of the relative weakness of the correlation mecha-
nisms when the partial weights Q' U]/ of the systems
ML g = 1 N, are not affected by the correla-
tions.

We now intend to prove that the solution to the func-
tional Eq. (8) for arbitrary values of the parameter w
coincides with the Tsallis entropy (5) provided that re-
fation (9) can be applied. Assume, for simplicity, that
the quBrobable distribution for the complex system

ML ig the case. Substituting S(Q) =
[ Q) — 1]/w into Eq. {8) and considering Eq. (9), after
simple algebra one obtains

N N
p (H ol ..I) — HG'"”[i]“J(QJ
i=1

i=1
A general functional solution to this equation is a power

[l]l) (10)

faw () = ° where 3 is a constant. Consequently, the
entropy S{§2) becomes

. Qf 1

S50 = . 11
5(€2) " {11)

One then notices that the basic functional Eq. {8) doesn’t
contain any other auxiliary parameters besides w. Hence,
any parameter # which might appear in a solution to Eq.
(8), must be a function of w, Le., § = F{w). We now
require that the right hand side of Eq. (11) tends to the
Bolezmann form, In @, for w — 0. [Note that in this case
Eq. (8) crosses over to the functional equation of the
form of Eq. (6), i.e;, S(Q) = Yo, gl r(qrlil.ny,
which doesn’t contain any multiplicative terms and whose
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solution is the Boltzmann entropy, S¥ = In€2.] This im-
mediately yilelds 3(w) = w+O{w?) where (Hw?) denotes
the feasible nonlinear terms in the Taylor expansion of
B(w) at w — 0. We neglect these terms in what follows.
Setting B(w) = w, from Eq. (11) one gets

-1

. (12)

$(8) =

Expression (12} is easily seen to reproduce the Tsallis
entropy S [see Eq. (5)] with

(13)

From Eq. (13} it is evident that ¢ — 1 for w — 0,
in this limit, ST recovers the Boltzmann notion of en-
tropy, §F = an The “unconventional” cases when the
parameter g deviates from unity, i.e., ¢ # 1, could be
assigned, in view of Eqs. (8) and (13), to physical sys-
tems whose entropies are nonadditive functions of the
entropies of the constituent subsystems (w # 0) due to
the intrinsic long-range correlations therein.

The role of the long-range correlations in a physical
system could be recognized in an appearance of struc-
tures with the features of ordering. Such structures
might be supported by the long-range correlation mech-
anisms operating in the system, and their description in
the framework of the conventional statistical mechanics
assuming the Boltzmann definition of entropy (2) might
be inadequate. An occurrence of such structurcs might
be termed “ordering through correlations” [cf. Nicolis
and Prigogine (1977)]. We might speculate that the
“ordering through correlations” could give rise, in par-
ticular, to the “coarse-grained” topology of the system
when “grains” of various sizes are organized in corre-
lated patterns. In this context, the statistical weight
t in Eq. (12) could be interpreted as the number of
“grains”

An evidence for the “ordering through correlations”
in a physical system described by the Tsallis entropy
(5),{12) might be recognized from the functional Eqgs.
(7),(8). Indeed, consider, for simplicity, a complex sys-
tem M = M’'JM" composed of the two (N = 2)
mutually correlated subsystems A’ and A" having the
entropies S’ and 5", respectively. Then the entropy §
of the entire system M is given by Eq. (7). [Note that
Eq. (8) is reduced to Eq. (7) for N = 2.] Assume,
first, that the parameter w in Eq. (7) is negative, i.e.,
w = —|w|, w # 0. Negative w would mean that the en-
tropy S of the system M is smaller than the algebraic
sum of the entropies of the constituent subsystems, i.e.,
S < 5"+ 5", with the entropy deficit of |w|S'S". It is
widely known that the physical states with the lower en-
tropy & would have a higher degree of ordering; hence,
the degree of ordering of the whole system M composed
of the two mutually correlated subsystems M’ and A1”
would be higher (for w < ) than the degree of ordering
of the physical state when M’ and A" are isolated of
each other. Consequently, the formation of the system

g=1-w
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M from the isolated systems M’ and M" would be fol-
lowed by a decrease of the total entropy § {for a value
of |w}8'S"), and, therefore, by an accurrence of order-
ing in M = M’'|j A" as an imprint of the correlations
between M’ and M”. In the opposite case of positive w,
ie,w = |wl|, w # 0, the degree of ordering of the system
M = M'{JAM" is less than the degree of ordering of the
two isolated systems A’ and M”; hence, the formation
of the whole system M = M’ JM" would be followed
by an increase of the total entropy S (for |w|5'S”) and
by the corresponding violation (destruction) of the orig-
inal ordering in the isolated M’ and M (i.e., “disorder-
ing through correlations”). This suggests an interpreta-
tion of the parameter w in Eq. (7) as the &ifurcation
parameler [Nicolis and Prigogine (1977)] which distin-
guishes the two generalized statistics possible (i.e., the
one for w < (1, and the one for w > 0), describing the
opposite types of behavior from the viewpoint of the or-
dering in the complex system M = M| J A", The zero
value of the bifurcation parameter w, i.e., w = 0, would
recover the conventional statistical mechanics based on
the Boltzmann definition of entropy (2), for which the
above “ordering (disordering) through correlations” is
absent.

3 Establishing of the Canonical Distribution for
the Tsallis Entropy

Establishing of the canonical distribution for the Tsallis
entropy (5),(12}) is straightforward and follows general
methods of statistical mechanics {Landau and Lifshitz
(1970)]. Let us divide the entire macroscopic system M
into two parts, a small subsystem M, (which is treated
below as a small macroscopic part of A1), and the resid-
ual (macroscopic) part M”, so that M = ML{JM".
(The subscript “2” in the notation of M; is introduced
to underline the fact that M! is only a very small part of
M. The system M is assumed to be in an equilibrium.)
From the viewpoint of statistical mechanics, A can be
considered as a “closed” system, and AM”, as the “heat
bath” for M.. Qur goal would be to obtain the proba-
bility, w, of such a state of the entire system A when
the subsystem AL is found in a microscopic state with
given energy E.. (In the meanwhile, the corresponding
microscopic state of the heat bath, A", is assumed to
be arbitrary.)

Suppose M is found in a microscopic state with the
energy E'; one immediately concludes that the sum
El 4+ E" is equal to the energy, E, of the entire closed
system M, ie., E = E. + E”. Then, denote dQ" to
be the statistical weight of all the microscopic states of
the heat bath A" with the energies lying between E
and E"” + dE"; it is clear that d€}” is a function of only
E”, le., d)" = dQ"(E"). This makes it possible to
represent the desired probability w as an integral in the
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(V" —space {Landau and Lifshitz ({1970)]:
w = const X /J(E; + E' - EYdQ(E") {14)

where § is the Dirac delta-function. [Eq. {14) defines
the microcanonical distribution for the heat bath AM”.}
Because the expression under the integral sign in Eq.
(14) depends only on E”, we can replace the integration
over £ in Eq. (14) for the integration over £” by using
the obvious identity

dQH ( EH)
dEH

Next, the derivative d''( E”)/dE" can be approximated
by the ratio AQ”/AE"; here, AQ" = [ dQ) is the sta-
tistical weight of the macroscopic state of M” and is
obtained by integrating the weights of all the micro-
scopic states involved, whereas AE" is the energy range
for A" which corresponds to the weight AQ"Y. The
quantity AQ" can be related to the entropy S”(AQ") =
[AQ"“ —~ 1]/w, according to Egs. (5) and (12); this
vields the weight AQ" as the function of " by means
of the simple expression AQ” = [1 4+ wS"]'/*. Consid-
ering S" as a function of the energy E”, from Eq. (15)
one gets

QY = dE". (15)

dQ" _ [1 + wSII(EH)]l/w

dFE" AE" (16)
Consequently, Eq. {14) becomes
W = const X
gt 1w SIE' E E dE”
x {1+ wS"(E")] (Ee + E" — )m-
(17)

In view of the delta-function, the integration in Eq. (17)
is reduced to the value of the integrand at E” = E — I,
yielding

{l + UJS”(E”)]I/“’
AE!

w = const x ( (18)

)E&E—E{

Note, further, that the energy E. of the system M is
negligible compared with E; this is because M was as-
sumed to be only a very small macroscopic part of the
entire systemn M. Relative changes in AE" caused by
the variations of £ of the order of E are also negligible.
Hence, in Eq. (18), we can set AE” ~ AE"(E) = const,
neglecting the terms proportional to E.. Meanwhile, in
the exponential term [1 4+ wS”(E”)]”“’, we are expand-
ing S"(E — E.) in the Taylor series to give
T
S"E - E!)=8"(E) - E; d57(E) (19)
dE
where the term proportional t¢ E. must be preserved.
The derivative dS"(E)/dE could be now defined as the
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inverse “thermodynamic temperature”, T', of the system
M, e,

as”(E) _ 1
dE T T
Definition (20} formally coincides with the standard def-
inition [Landau and Lifshitz (1970)] of the thermody-
namic temperature 7" in an equilibrium, which assumes
the Boltzmann form (2) for the entropy, 5", of the heat
bath A"”. In the context of our study, however, we im-
ply the generalized, Tsallis form (5),(12) for the entropy
5", rather than the Boltzmann form (2). This general-
ized form stands for the role of the long-range correla-
tion mechanisms operating in the system M. Hence, an
extended sense must me assigned to definition (20): Eq.
(20) defines the inverse thermodynamic temperature of
the systern M in an equilibrium when the long-range
correlation effects are significant and affect the energy
distribution throughout M [see Eq. (7)]. We also note
that both the subsystem A, and the heat bath A4”
have the same generalized thermodynamic temperature

T in the equilibrium.
Combining Egs. (19) and {20), from Eq. (18) we have

w E\ M
1 + wS"(E) ?) ’

(20)

w = const X (1 - (21)
vielding the probability distribution for the system M!
which 1s in an equilibrium with the heat bath A", This
distribution, however, should depend only very slightly
on the entropy 5" of the heat bath A", [If this is not
the case, one comes to an explicit nonlinear relation-
ship between the probabilities of the microscopic states
of the system M., and the allowed microscopic realiza-
tions for the heat bath A4 which are described by the
entropy 5. This, in turn, would imply that the mi-
croscopic configurations for M. and A" are correlated
to a relatively high extent associated with a substan-
tial reorganization of the microscopic states throughout
M = MLJM". Such a conclusion is in contradiction
with the above assumption of weakness of the correlation
effects (see section 2); this assumption has been quan-
tified by the functional Eqs. (7),(8) which are linear
over each of the partial entropies involved and, there-
fore, neglect the possible nonlinear modifications of the
corresponding microscopic states.]

Consequently, the probability distribution (21) is con-
sistent with the functional form of Eqs. (7),(8) only if
the following condition holds

lw|S"(E) < 1. (22}
Hence, Eq. (21} could be finally written as
E 1/w
—All —w=—=
w ( w T) (23)

where the normalizing constant A is defined from the
obvious condition T [wdkE! = 1 to give A = 1 +w.
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Expression (23) yields the probability distribution for a
macroscopic system M. in an equilibrium provided that
ML is a small part of a large closed system M. In other
words, Eq. (23) defines the canonical distribution for the
system M/ obeying the Tsallis definition (5),(12) of the
concept of entropy. In the limiting case w — 0 {which
recovers the standard, Boltzmann notion of entropy (2],
the distribution (23) crosses over to the standard canon-
ical (i.e., Gibbs) distribution, w = exp{—E. /T, which
is widely known in statistical mechanics. The devia-
tion of expression (23) from the purely exponential form
w = exp(—E%/T) is due to the long-range correlations
in the system M that affect the probabilities of the cor-
responding microscopic states.

Considering Eq. (12), one concludes that inequality
(22) is equivalent to

lw|ln AQ” < 1, (24)

where AQ" = [dQ" is the statistical weight of the
macroscopic state of the heat bath M” [see Eq. (15)].
Under the logarithm sign, we can also replace the weight
AQY" for AQ, this being the statistical weight of the
macroscopic state of the entire system M corresponding
to the energy F. Inequality (24) can be then rewritten
in the suitable form

lw| < In"! AQ. (25)

This inequality shows that the parameter w goes to zero
for the system M whose statistical weight AQ is suf-
ficiently large, i.e., AQ — oco. For such M, the effect
of the long-range correlations satisfying the Tsallis no-
tion of entropy (5),(12), can be fairly neglected, and
the conventional statistical mechanics [Landau and Lif-
shitz (1970)] based on the Boltzmann definition of en-
tropy (2) could be applied. One might assume, for in-
stance, that the long-range correlation mechanisms in
the system M could be practically neglected for the
values of |w| less than some |w|g € 1, where |w|o is
a small parameter describing the relative role of all the
mechanisms counteracting the long-range correlation ef-
fects (e.g., thermal fluctuations, etc}. Then the appli-
cability of the Boltzmann entropy (2) would require
the condition AQ > AQmin ~ exp(l/|w|o), instead
of the less certain Afl — oo. In the meanwhile, for
the systems M with relatively small statistical weights
AQ < AQpu, ~ exp(l/|w]o), the Tsallis definition of
entropy (5),{12) might have physical sense, leading to
the “unconventional” canonical distribution (23). Con-
sequently, the generalized statistical mechanics based on
the Tsallis entropy (5),{12) must imply the limitation
A < exp(1/|w|e) on the statistical weight of the sys-
tem M, providing the dominant role of the long-range
correlations in M.

The condition AQ < exp(1l/|w|s) might be naturally
satisfied for the “coarse-grained” systems discussed in
section 2 in the context of the “ordering through cor-
relations”. General thermodynamic properties of the
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“coarse-grained” systems are analyzed in detail in, e.g.,
the monographs of Gibbs (1960), Toleman (1979), and
Gallavotti (1999). The idea of the “coarse-graining” has
been applied by Tetreault (1992ab) to a study of self-
organization and intermittency in the stochastic mag-
netic fields. Similar issues were exploited by Milovanov
et al. (1996, 2000) and Zelenyi et al. (1998) in relation-
ship with the self-organized percolation structuring in
the distant Earth’s magnetotail.

The canonical distribution (23) coincides, for negative
w, with the so-called “kappa” distribution which plays
an important role in many applications. It is remarkable
to note that just negative values of w can be associated
with the “ordering through correlations” and the forma-
tion of the “coarse-grained” correlated patterns. This
might be a hint to consider the “kappa” distributions
(23) as a direct manifestation of the “macroscopic” or-
dering in the system and the ensueing development of
the “coarse-grained” structures. We shall come back to
this issue in the end of section 4.

The motivation for using “kappa” distribution func-
tions in literature mostly follows interpretational pur-
poses and still lacks proper theoretical basis:

Christon et al. (1989) reported a “kappa” distribution
from a comprehensive study of the plasma particle pop-
ulations in the near-Earth environment. A “kappa” dis-
tribution was indicated by Winningham (1992) for the
accelerated particles in the Earth’s magnetotail. The
“kappa” distributions of electrons and protons acceler-
ated in the solar corona were assumed by Maksimovic
et al. (1997) in the context of the kinetic model of the
solar wind.

Except for Hasegawa et al. (1985) who substantiated
the “kappa” distribution of a plasma immersed in a su-
perthermal radiation field, and Collier (1993) who could
generate a “kappa”-like distribution function from ran-
dom walk jumps in velocity space, only few authors dis-
cussed the physical origin of the “kappa” distributions.

Ma and Summers (1998) found that a “kappa” dis-
tribution could be the result of the stochastic particle
acceleration by whistler-mode turbulence; Summers and
Thorne (1992) also recognized that a “kappa” distribu-
tion can itself enhance the whistler-mode instability.

Zelenyi and Milovanov {1992) demonstrated that the
“kappa” distributions provide an extended Lie group
symmetry for the Viasov-Maxwell equations; moreover,
having solved the Lie group classification problem, they
could rigorously prove that the “kappa” distributions
are the only functions (along with the standard Gibbs
distribution corresponding to the limit w —+ 0) for which
the extended symmetries could be principally allowed.

An important property of the “kappa” distribution
(23) is the evidence for the power-law “tail” for w < 0.
Indeed, setting w = —|w| and E! » T/|w|, from Eq.
(23) one gets

w E;"-" (26)
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where v = 1/|w|. [For the small values of E!, ie.,
E! « T/lw|, Eq. (23) yields the standard, exponen-
tial distribution w « exp(—E./T) independently of the
sigh of w.] Rigorously speaking, the power exponent
in Eq. (26) must be sufficiently large, in view of condi-
tion (25), so that distribution {26) decreases relatively
fast with the energy EI.

The power-law distributions of the form (26) are com-
monly assigned to physical systems involving coherent
mechanisms (e.g., coherent acceleration mechanisms for
charged particles). An example might be the statistics
of cosmic rays [Berezinsky et al. (1990)) revealing the
power-law energy spectrum (26) over a logarithmically
wide range of energies.

An impact of the coherent mechanisms could be found
in the energy transfer towards higher {for w < 0) energy
range of the spectrum, leading to the formation of the
power-law “tail” (26). In this context, the power ex-
ponent ¥ = 1/|w|, w < 0, in distribution (26) might be
interpreted as a “degree of coherence” of the basic mech-
anisms involved. For instance, a more “flat” spectrum
(26), i.e., the one having a smaller value of the power
exponent 7, would correspond to a higher degree of co-
herence of the basic mechanisms effective in the system;
this appears in a larger value of |w| and in a more pro-
nounced power-law “tail” of the canonical distribution
(23).

The total energy, § F, transferred towards the “tail”
(26), could be roughly estimated by integrating the de-
viation, Aw, of distribution {23) from its purely expo-
nential form, w = exp(—E./T), at w = 0. Expanding
Aw in the Taylor series over the small parameter w and
keeping, for simplicity, only the first (i.e., linear) term,
one finds, approximately,

o dw

Simple calculations lead to the result

} dE;. {27)
w=1>0

§E m —2wT (28)

where Eq. (23) has been used. Eq. (28) shows that the
energy 4 F is positive for w < 0, and negative, for w > 0.

The energy d E might be effectively gained by a small
fraction, A /N <« 1, of the “resonance” particles, whose
presence is required by some acceleration mechanisms
[see, e.g., Berezinsky et al. (1990)]. [Here, A is the par-
ticle number density. We also note that the energy §F
in Eq. {28) is normalized to one particle (N = 1) as it
follows from the normalizing condition 77! [ wdE] = |
assumed in the canonical distribution (23). For arbi-
trary values of A, Eq. (28) should be replaced for
E ~ —2NwT.] Hence, the “resonance” particles can
be accelerated to the typical energies

S~2|u|T£

N w < 0. (29)
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These energies may exceed the characteristic thermal
energy, T, for the relatively large values of the parameter
lw| > dN /2N

It is worth mentioning that a treatment of physical
systems exhibiting coherent mechanisms might require
an inclusion of rather artificial auxiliary constraints if
based on the statistical mechanical formalism assuming
the Boltzrnann definition of entropy (2) [see, also, the
relevant discussion in Alemany and Zanette (1993)].
In the meanwhile, an alternative approach [which could
be based on the generalized definition of entropy in the
Tsallis form (5),(12)] enables one to preserve the con-
ventional framework of calculus as shown above {this
framework assumes the standard statistical mechanical
constraints) in dealing with the systems with coherence,
on only account of the suitable generalization of the con-
cept of entropy. In particular, this follows from the
fact that the generalized distribution (23) [which con-
tains the power-law “tail” (26)] could be obtained as
the canonical distribution for the Tsallis entropy (5),(12)
within the conventional statistical mechanical analysis.

In conclusion, we note that the canonical distribu-
tion (23) implicitly assumes that the total populations
of the microscopic states for each subsystem of the sys-
tem M are time-invariant, i.e., no matter flows between
the subsystems of M are allowed. An inclusion of such
flows (which result in variations of the total populations
of the subsystems) might be done through an intredue-
tion of the chemical potential T [Landau and Lifshitz
(1970)]; in this case, £, in Eq. (23) must be replaced
for B — Y. The distribution w obtained in this way will
be the grand canonical distribution for M} correspond-
ing to the Tsallis entropy (5),(12).

4 Summary and Conclusions

Summarizing the results obtained, we mention that the
generalized entropy (5) originally postulated by Tsal-
lis (1988) in his pioneering paper, can he rigorously
derived as the solution to the functional equation (8)
under condition (9). This functional equation quanti-
fies the behavior of the entropy, 5, of the complex sys-
tern M = Uf\;l MUl through the partial entropies,
&'l of the constituent subsystems M1/ and as-
sumes the presence of the long-range correlation mecha-
nisms affecting the microscopic probability distributions
for the subsystems involved.

Egs. (8},(9) take into account the correlation effects
up to the highest order, N > 2, effective in the com-
plex system M = Uf\;l MLl For instance, the
correlations of the order 2 < n < N are quantified
by Ch = N!Y/n{N — n)! multiplicative terms on the
right of the funciional Eq. (8}; each of these terms has
the form of an n—linear product, w™~ 1§ b1 g7 Ll 7
Lox Sl 5« < 1, of n partial entropies
Gl grobls gt Mt for  different subsystems
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M.r.‘.[i].“r, M:...[j]...f’m’ Mf...{!],..l of the system M. The
functional Eq. (8) is thus linear over each of the par-
tial entropies §’-01-7 ¢ =1,....N, and contains in total
2N¥ — (N + 1} multiplicative terms of all the orders n
from 2 to N > 2. The linearity of the basic Eq. (8)
over each of the entropies S’ 1/ implies that the cor-
relation mechanisms are sufficiently weak to change the
statistical weights, Q17 of the subsystems M/ U7,
enabling one to preserve the conventional representation
(9) of the statistical weight, €, of the complex system
M = Uf:l M g Hf\;l o

The basic parameter w which appears on the right of
the functional Eq. (8), describes the strength of the cor-
relations; the correlations of the order 2 < n < N are
then signified by the (n — 1)—th power of w, i.e., w™"!,
this being the corresponding correlation amplitude for
the multiplicative term involved, w® =181 rgr k-7«
... % §Ll* The weakness of the correlation mecha-
nisms is clear from inequality (25) and leads to the ex-
ponential decay (ox w™™1) of the correlation amplitudes
Versius n.

For w — 0 (when the correlation effects are negligi-
ble), the standard, Boltzmann definition of entropy (2)
is recovered from Eq. (8). The Boltzmann entropy (2)
reveals the property of additivity; this property is con-
tained in the linear functional form of the basic Eq. (8)
for w — 0 [see, e.g., Eq. (6)]. On the contrary, the prop-
erty of additivity is violated for the generalized, Tsal-
lis entropy (5),(12) assuming the nonzero values of the
parameter w. The essential nonadditivity of the Tsal-
lis entropy (5),(12) for the nonvanishing values of w is
explicitly present in the multiplicative functional terms
on the right of Eq. (8) and stands for the role of the
long-range correlation mechanisms.

We could speculate that the nonadditivity of the Tsal-
lis entropy (5),(12) might be associated with an occur-
rence of structures with the features of ordering. This
could be seen from the functional Egs. (7),(8) which al-
low an entropy deficit for complex systems as a result of
the inclusion of the long-range correlations (i.e., the “or-
dering through correlations”). The “ordering through
correlations” might support the “coarse-grained” topol-
ogy of the system when “grains” of various sizes are
assembled in correlated patterns. The statistical weight
2 in the Tsallis entropy (12) should be then interpreted
as the number of the “grains” involved.

Our results indicate that the role of the long-range
correlations described by the functional Egs. (7).(8)
might be essential only for the systems with the rel-
atively small statistical weights Q not exceeding the
value of ~ exp(1/lwl|o); the |w|o is a small parameter
which quantifies the corresponding role of the mecha-
nisms counteracting the long-range correlation effects
(e.g., thermal fluctuations, etc). Hence, an application
of the generalized statistics based on the Tsallis def-
inition of entropy (5),{12) might have sense only for
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the systems with the statistical weights less than ~
exp(l/lwlo). In the opposite case of the systems with
the weights much larger than ~ exp(1/|w|o), the con-
ventional statistical mechanics must be used which is
based on the Boltzmann entropy (2).

This remark has important consequences for the ther-
madynamics of the “coarse-grained” systems. Indeed,
one concludes that the Tsallis entropy (5),(12) could
be applied only at the “macroscopic” level associated
with the “coarse-grained” structure of the sysiem; in the
meantime, at the “microscopic” scales (i.e., well “inside”
the “grains”), the conventional Boltzmann statistics re-
mains the case. Hence, the full entropy of the “coarse-
grained” system should be treated as the sum of the
“macroscopic” Tsallis entropy (5},(12) defined for the
ensemble of the “grains”, and the “microscopic”, Boltz-
mann entropy (2) characterizing the disorder inside each
“grain”.

The consideration of the full entropy of the system
resolves the concerns about the allowed “violation” of
the second law in the Tsallis thermodynamics [see, e.g.,
Treumann (1999a), Treumann (1999b)]. Indeed, for
the open systems, the Tsallis entropy deficit associated
with the “macroscopically” ordered structures, could be
naturally maintained due to the entropy outflows into
the exterior medium [Nicolis and Prigogine (1977)].
These outflows could stabilize the sysiem far from the
thermal equilibrium, and the “coarse-grained” patterns
could permanently exist as the effect of the correla-
tions involved. Similar situation might be also realized
in the closed thermodynamic systems far from equilib-
rium, but only for finite time intervals. In this case, an
appearance of the “macroscopically” ordered structures
like the “coarse-grained” correlated patterns might be
the consequence of the violent relaxation at the “mi-
croscopic” scales. In other words, the inhibited growth
of the Tsallis entropy leading to a (temporary) “coarse-
graining” of the system is “compensated” by the entropy
“overproduction” inside the “grains”, so that the total
entropy growth (which takes into account the relevant
contributions from both the macro- and micro-scales)
satisfies the H—theorem. Once the thermal equilib-
riuin 18 achieved, no “macroscopically” ordered struc-
turcs could, of course, occur any more in the closed sys-
tem.

It might be worth to compare these conclusions with
the recent findings of Treumann (199%ab). Treumann
studied the evolution of the closed, nearly collisionless
system with long-range correlations from the state with
the sufficient amount of free energy towards the thermal
equilibrium. He found that the system evolves through
the strongly nonlinear stage (the so-called “turbulent
quasi-equilibriurn”) characterized by the coexistence of
many different mutually interconnected scales affecting
each other. These turbulence structures could corre-
spond, in our language, to the “coarse-grained” corre-
lated patterns whose feasible development preceeds the
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thermal equilibrium state.

Then, Treumann Introduces the correlations in the
effective collisional term which contains a power law de-
pendence as the suitable approximation of the multiscale
interconnections in the system. This is an alternative of
the inclusion of the correlations directly into the multi-
plicative terms yielding the expansion (8) of the entropy
functional for the complex system with the interconnec-
tions.

Analysing the kinetic equation with the effective col-
lisional term, Treumann could construct the “turbulent
entropy” & (defined as the ensemble average over the
logarithm of the correlation functional) which clearly
satisfies the H —theorem and couldn’t be reduced to only
the standard Tsallis form (12). One might propose that
the “turbulent entropy” & is the practical approxima-
tion of the full entropy of the closed system at “tur-
bulent quasi-equilibrium”, which combines the contri-
butions from macro- (Tsallis) and micro- (Boltzmann)
scales into the effective united form. It is also inter-
esting to note that the “turbulent quasi-equilibrium” is
characterized by relatively slow growth of the entropy
&; this might substantiate the assumed formation of the
turbulence “coarse-grained” correlated patterns associ-
ated with an occurrence of the entropy deficit at the
“macroscopic” scales.

The sclution of the kinetic equation with the effec-
tive collisional term on the right hand side leads to
the “kappa”-like distribution function at the “lurbu-
lent quasi-equilibrium” [Treumann (1999a), Treumann
(1999b)]. This “kinetic” result practically coincides with
the canonical distribution (23) obtained in our study
within purely thermodynamic formalism. This substan-
tiates the principal equivalence of the Treumann’s “ki-
netic” approach [Treumann (199%ab)] to the “thermody-
namic” treatment of the “coarse-grained” closed systerns
far from equilibrium on the basis of the Tsallis entropy.

The comprehension of the “kappa”-like distribution
functions as the canonical distributions (23) for the Tsal-
lis entropy (5),(12) opens new perspectives on the “mac-
roscopically” ordered {i.e., “coarse-grained”) systems.
Indeed, an appearance of the “kappa” distributions could
be treated as the direct manifestation of the long-range
correlations operating in the system and “deforming”
the spectral energy density due to the “fragmentation”
into the interconnected “grains”.

The close relationship between the “macroscopic” or-
dering and formation of the “kappa” distributions could
be understood from the following general arguments.
The “ordering” requires an entropy deficit which could
be associated with negative heat ~AQ). The energy AQ
released at the “macroscopic” scales as the result of the
“ordering” would be accepted, in the closed system, by
the “microscopic” particles inside the “grains”. That
is, the particles basically gain energy, and their speciral
energy density increases at the higher energy range. For
the multiscale interconnected “grains”, no typical value
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of AQ} could be defined above some characteristic level
(of the order of the “thermal” energy, T.). Hence, the
distribution of the particle energy density would have
no particular scale at the higher energy range and is re-
duced, therefore, to the power-law form w o« E=7. At
the lower energy range, the “thermal” energy 1" remains
the only quantity describing the particle energy density
distribution, and the “shape” of the particle distribution
function could be defined as the (re-normalized) Gibbs
distribution w « exp(—E/T). Thus, an evidence for the
“kappa” distribution (i.e., the power law “tail” o« E~7
at the higher energy range, and the (Gibbs distribution
w x exp(—E/T) at the lower energies) indicates towards
“macroscopic” ordering in the system, where the power
exponent v characterizes the strength of the correlations
involved.

In conclusion, it i1s important to emphasize that the
concept of the Tsallis entropy (5),(12) enables one to
deal with the “macroscopically” correlated systems in
the framework of the conventional statistical mechan-
ics (see section 3), whereas an exploitation of only the
standard, Boltzmann entropy (2) would require an in-
clusion of rather artificial auxiliary conditions that often
complicate the analysis.
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