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Abstract. Thin anisotropic current sheets (CSs) are
phenomena of the general occurrence in the magneto-
spheric tail. We develop an analytical theory of the
seli-consistent thin CSs. General solitions of the Grad-
Shafranov equation are abtained in a quasi-adiabatic ap-
proximation which neglects the jumps of the sheet adi-
abatic invariant f,. This is possible if the anisotropy of
the initial distribution function is not too strong. The
resulting structure of the thin CSs is interpreted as a
sum of negative dia- and positive paramagnetic currents
flowing near the neutral plane. In the immediate vicinity
of the magnetic field reversal region the paramagnetic
current arising from the meandering motion of the ions
on Speiser orbits dominates. The maximum CS thick-
ness is achieved in the case of weak plasma anisotropy
and is of the order of the thermal ion gyroradius out-
side the sheet. A unified picture of thin CS scalings
includes both the quasi-adiabatic regimes of weak and
strong anisotropies and the nonadiabatic limit of super-
strong anisotropy of the source ion distribution. The
later limit corresponds to the case of almost field-aligned
initial distribution, when the ratio of the drift velocity
outside the CS to the thermal ion velocity exceeds the
ratio of the magnetic field outside the CS to its value in-
side the CS (vp /vr > Bp/By). In this regime the jumps
of I, become essential, and the current sheet thickness
is approaching to some small but finite value, which de-
pends upon the parameter B, /Bg. Convective electric
ficld increases the effective anisotropy of the source dis-
tribution and might produce the essential CS thinning
which could have important implications for the sub-
storm dynamics.

Correspondence to: L. M. Zelenyi

1 Introduction

Thin current sheets, i.e. the sheets with the thicknesses
of the order of the ion gyroradius (or less) are frequently
observed at different locations in the Earth’s magneto-
tail, for example in the near-Earth and the midtail re-
gions during the quiet times and the substorm growth
phase (Fairfield, 1984; Kanfmann, 1987; McPherron et
al., 1987; Mitchell et al., 1990; Sergeev et al., 1993;
Sanny et al., 1994; Pulkkinen et al., 1998}, and also in
the distant region of the magnetotail (Pulkkinen et al.,
1993). Mitchell et al. {1990) demonstrated that in the
late growth phase the current sheet with L ~ 400 km is
dominated by cross-tail motion of quasi-adiabatic ions
(Speiser, 1965). In the extensive study by Sergeev et al.
(1998) no evidences were found of charged thin current
sheet structures maintained by electrons. The impoz-
tant characteristic feature of thin current sheets is that
their cross-tail current density profile doesn’t coincide
with and might be significantly more narrow than the
profile of the plasma density (Sergeev et al., 1993; Sanny
et al., 1994). A thin current sheets with the thicknesses
of the order of 0.2Rg or less could therefore be often
embedded inside a few Rg thick plasma sheet {PS).

These experimental investigations stimulated the de-
velopment, of the numerous mathematical models of thin
current sheets in the magnetotail. Pritchett and Coro-
niti (1994, 1995) presented kinetic simulations of very
thin (thickness less than a proton gyrodiameter) CSs
with electrons as the dominant current carriers, which
may exist in the magnetotail neutral sheet in the tran-
sition domain between dipole-like and tail-like regions.
The results of this modeling were explained on the basis
of the CS models with the nonzerc clectrostatic poten-
tial (Kuznetsova et al., 1998) and isotropic distribution
function.

The analytical isotropic models where magnetic ten-
sion of curved field lines is balanced by the plasma pres-
gure gradient (Schindler, 1974; Kan, 1973, Birn, 1987)



128

were extensively exploited in magnetospheric physics for
maore than two decades. Another principal opportunity
to balance the magnetic field line tension by centrifu-
gal force exerted on finite mass particles moving along
curved field lines was suggested in pioneer papers by
Speiser (1965) and Eastwood (1972). Such model of
CS balance implies the existence of the finite plasma
anisotropy outside the sheet. This consideration was
based on the existence of the so called Speiser orbits
which were essentally nonadiabatic in the CS. The nu-
merical kinetic modeling by Pritchett and Coroniti
(1995) demonstrated that the ion CSs had well expressed
diamagnetic "wings”. Investigations of Holland and
Chen {1993), Harold and Chen (1996) clearly demon-
strated the important role of the magnetization cur-
rents in equilibrium C8s, particularly in the case of weak
anisotropy. Recently Kaufrnann (1997) tried to take into
account the influence of non-guiding center particles on
the structure of CS (particularly of trapped particles)
and found that although the net currents carried by
trapped particles is equal to zero, their existence could
appreciably change the resulting CS structure. Previous
non-selfconsistent studies of anisotropic ion €8s made
by Alexeev and Malova (1990) demonstrated some of the
characteristic features of the ion dominated anisotropic
sheets, i.e. small {~ ¢/wp;) scales and cmbedded struc-
ture, Onmne further class of magnetotail models where
equilibrium is maintained by the scattering of current-
carrying particles on the structured multiscale magnetic
"turbulence” was proposed by Zelenyi et al. (1998).

The scaling of thin CSs is relatively well investigated.
First, Francfort and Pellat (1976) made the non-self-
consistent estimate of the CS thickness L in the limit
of strong anisotropy: L =~ p* ('UT/'UDJ4/3 where vy and
vp are respectively the thermal ion velocity and the
bulk speed of the ion flow outside the sheet and p* =
mup/eBy is the Larmor radius and vp 3 vy, This es-
timate was confirmed later by Burkhart et al. (1992},
The non-selfconsistent estimate of the weak anysotropic
CS thickness was made by Ashour-Abdalla et al. (1994)
who obtained L = pg ~ vy /wqy (po is & thermal ion gyro-
radius for vy > vp limit). Similar scaling have been also
mentioned earlier by Chen et al. (1990). The particular
case of the super-strong anisotropy {ion motion almost
along the magnetic field lines) was considered by Pritch-
ett and Coronitl {1992) and Burkhart et al. (1992).
They found scaling of the CS in a form L = p*b;ﬁ/s,
where b, = I3, /By (B, and By are the magnetic fields
at the plane of the sheet and and far gutside of the sheet,
respectively).

The first entirely self-consistent analytical thin CS
modcl has been proposed by Kropotkin et al. (1997)
for region of the moderately strong plasma anisotropy
outside the thin CS b, < vr/vp €« 1. They assumed
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the conservation of the invariant
1

I, = — ¢ mu,dz (1)
27

(Speiser, 1970; Sonnerup, 1971; Biichner and Zelenyi,
1989) for this parameter range and confirmed the earlier
non self-consistent estimates of the CS thickness (Franc-
fort and Pellat, 1976). As a result they obtained the
analytical solution for the magnetic field and current
density profiles which could be considered as anisctropic
analogue of the well-known Harris (1962) solution with
B, = 0. In this paper our consideration is based on the
more general model allowing the arbitrary ion popula-
tion anisotropy outside CS (Sitnov et al., 2000},

We start from a brief description of the self-consistent
CS theory based on the quasiadiabatic approximation
for ion dynamics, which provides the conservation of
the invariant (1). This assumption allows to obtain
the equations of the Grad-Shafranov type for the ion
dominated CSs. In the next part of the paper we ex-
plicitly take into account the nonadiabatic variation of
the invariant I, and estimate the minimum thickness
which could have self-consistent CS when the parameter
v /vy, characterizing the anisotropy, could be arbitrar-
ily large. In the last section we tried to combine these
two approaches and present the unified picture of thin
quasi-adiabatic CS scales. Transforming our results to
the corresponding deHoffmann-Teller coordinate frame
we could easily generalize our consideration to the situ-
ation when constant dawn-dusk electric field is imposed
on the system. In particular, it may affect strongly the
thinning of the near-Earth tail current sheet with the
interesting implications for substorm dynamics.

2 DBasic theory

We start from the description of the basic self consistent
theory (Sitnov et al., 2000). The details may be found in
Appendix 1. The CS is homogeneous along the Earth-
Sun line (X) and is infinite in the dawn-dusk (Y") direc-
tion. The magnetic field has two components: B =B (=),
0, B,) with By = |B (z — *o0)| and electric field is set
to zero by choosing deHoffmann-Teller frame of refer-
ence. In section 5 we will discuss how our results could
be transformed to the magnetospheric frame. We also
assume that the current is supported mainly by the
ion population, and the dynamics of this population
is quasi-adiabatic: I, = const (Biichner and Zelenyi,
1989). The latter assumption is valid under the condi-
tion

v = VBT < 1 (2)

where p, is the maximum gyroradius of the ion in the
magnetic field at the location where magnetic field lines
have the smallest curvature radius K.. For the typi-
cal magnetotail current sheet parameters: By ~ 20nT,
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B, ~ 1nT, thickness L ~ 1000km and ion energy about
3keV the value of ion & is of the order of 0.1, i.e. the
quasi-adiabaticity condition is justified.

The electron population is considered in the models
as a charge neutralizing background making negligible
contribution to the total current density. According to
Shay et al. (1998), Hesse et al. (1996), and Nishikawa
(1998), electrons may be essential current carriers in the
small (of the order of the electron skin depth) vicinity of
the X-line. Our model having everywhere the nonzero
normal component of the magnetic field describes rather
different. CS configurations like the outflow region of the
reconnection pattern. This is why the frozen-in condi-
tion holds for the electron species, and no considerable
electron current is expected (see also Larsson and Kauf-
mann, 1996).

The quasi-adiabatic approximation of the ion dynam-
ics allows us to use a new set of integrals of motion
to avoid the solving of the Vlasov equation. We use in
particular the quasi-adiabatic invariant I defined by (1)
and the total particle energy W = muvj /2. Conservation
of quasi-adiabatic invariant {1) has been investigated in
a number of papers (e.g., Biichner and Zelenyi, 1989),
Zelenyl and Savenkov, 1993). In these studies the di-
mensionless value of adiabatic invariant 7, was used:
I' = (3w /8) 1, Jvermn~/Lpy, where v is the total particle
velocity, m is the ion mass and L is the sheet thickness.
According to these papers, for sufficiently large values
of I' > x the medium value of the separatrix jumps
of the invariant I’ averaged over the ensemble of par-
ticles uniformly distributed over the initial phases (as
it is implicitly assumed in our model) is precisely zero,
while the mean square value of the jumps is equal to
((ar)?y = (3m*/18) - w2 - (1= (1)),
age value of the jumps |AI'| is of the order of & and
the necessary condition when one could approximately
neglect them (I' >» JAI'|) is: I' > k. In our model this
condition is equivalent to & > B, /By where ¢ = vt fvp.
As long as the latter condition holds, the invariant I,
is approximately conserved. This simplification gives us
the chance to consider the equilibrium problem analyt-
ically in a large interval of €. The extended discussion
of this issue is also given in section 4 of the paper by
Kropotkin et al. (1997). Because our model has no ex-
plicit y-dependence: 8 /Jy = 0, the generalized momen-
tum F, = v, + (e/mc)A,(z, z) provides the additional
integral of motion.

So the aver-

As a result, the invariant (1) may be expressed in the
form:

me v +vl— [Uy+—/ ")dz”} 2 (3)
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where the limits of the integration zg and z; are given
by the equation

20,1
% f B(z")d" =7y /vi +vi -, {4)

with the additional restriction zq = 0 if the formal solu-
tion zp of Eq.(4) turns out to be negative. The general
structure of the distribution function could therefore be
presented in a form

Flz, v)=fWV (v, vy, v:) , L5 (Va, Uy, 2,20, Wz, 1y, 2))) (5)

Basic dimensionless equations for the self-consistent
magnetic field are given in the Appendix 1 {A3}-(Ad).
One can also investigate two different limits of these
equations, i.e. the limits of strong and weak anisotropies
(see the Appendix 2). It follows from (A11) that the
scaling in the case of the strong anisotropy is L & p*e?/3.
Contrary to this case for the weak anisotropy the cor-
responding universal profiles of the current and mag-
netic field scale as L ~ gvp/wo = vrfwe = po, s0 that
the width of the weakly anisotropic sheet is always of
order of the thermal ion gyroradius pp. This result is
consistent with the earlier estimate of the CS thickness
{Ashour-Abdalla et al., 1994), made by considering the
converging iterations to the possible self-consistent so-
lution.

3 The role of dia- and paramagnetic currents
in the formation of the embedded structure

of CS

The general structure of the self-consistent magnetic
field profile (A3} includes the contributions of partial
dia- and paramagnetic currents along Y -axis. The im-
portant role of the magnetization currents was under-
lined by investigations of Holland and Chen (1993}, Ha-
rold and Chen (1996} who have found numerically that
plasma diamagnetism can play the significant role for
the case vp <€ vr but is quite small in the opposite
case.

Schematics of the cross-tail currents is shown in Fig. 1.
In general, one can split the total diamagnetic current
outside the sheet, where the particle motion could be
roughly considered as magnetized, into several ”compo-
nents” (Frank-Kamenezkii, 1968}:

?L*Big(%lg[ﬁo v Bol+ p” (B x _B)o])—‘"meo Bo (6)

where p,. = nmvi /2, p; = nmvi, R— is the curvature
radius of magnetic field lines. TILe resulting current is
the combination of gradient (first term in the R.H.S.
of Eq.(6)), centrifugal, or curvature (second term), and
magnetization currents (third one). Their sum man-
ifests the natural plasma diamagnetism and provides
the total current in the negative Y-direction. Region
A (having dark gray-shading in Fig. 1) corresponds to
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A

2 non-crossing
| region

Fig. 1. Main counstituents of the cross-tail current: A. Non-
crossing region, where guiding center approximation (Eqs.(6)-(7))
could be applied. Schematically are shown: Larmor rotation of
particles and their gradient (first term in Eq.{6)), curvature (sec-
ord term) and magnetization (third term) drifts. Net current in
this region is negative which illustrates the natural diamagnetismn
of magnetized plasma. B. Meandering region of non-guiding cen-
ter motion. Dositive paramagnetic (edge)} current is carrvied by
meandering segments of the transit (Speiser) orbits. Particles
trapped within CS on specific meandering orbits carry the neg-
ative current near the plane z = 0 and positive current at the
edges of their trapping region. At the edges of CS partial com-
pensation of paramagnetic current by diamagnetic drift currents
could occur,

this domain of particle motion, where their orbits still
could be described using guiding center approximation
{6). At this schematic picture the non-crossing drifting
Larmor circles are the segments of the Speiser orbits
before they will reach the z = 0 plane. The orbits cross-
ing the z=0 plane are representing two characteristic
populations: meandering portion of Speiser’s orbits and
the group of trapped particles. The trapped trajecto-
ries correspond in our model to the integrable ion orbits
(Biichner and Zelenyi, 1989). Near the plane of the field
reversal the diamagnetic negative currents coexist with
the positive current, which is carried by the meandering
part of Speiser’s orbits crossing the neutral sheet plane.
Diamagnetic current partially compensates the mean-
dering current. The interplay of dia- and meandering
effects determines the final profile of the current density
inside and outside the CS.

The "meandering” current of ”Speiser” particles was
estimated in paper by Lyons and Speiser (1985) for the
limit of strong anisotropy when Vg component of the
particle velocity is of the order of the plasma flow veloc-
ity along the magnetic field lines V. Accordingly their
estimate of the total (over the entire thickness of the C8)
magnetotail current carried by meandering ions is equal
to I, = (4bngm;/B,o) Vi, where 1, is the total current
in the sheet, ng - the density of ions entering the cur-
rent sheet from one semiplane, 1 < b < 2 is the clectron
factor, m; is the ion mass, B.g is the z - component. of
magnetic field outside the sheet, V.4 = Vp - the plasma
drift flow velocity along the magnetic field lines at the
C8 boundaries in the deHoffmann-Teller frame of refer-
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—
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Fig. 2. Schematic picture of the paramagnetic edge current at
the boundary of the volume filled by magnetized plasma. My,
and Mper, - magnetic moments of currents carried by particles
on Larmor orbits {(diamagnetic) and of the current flowing at the
boundary of the systemn. Edge effects could compensate the nat-
ural plasma diamagnetismn.

ence. For the case of the strong anisotropy of the source
distribution their treatment of the corresponding Ohm’s
law is justified, but for the weak anisotropy contribution
of the diamagnetic currents becomes of principle impor-
tance and simple Ohm'’s law like the expression above
does not exist.

Meandering particle motion around the z = 0 plane is
principally different from the particle Larmor rotation
far from it, corresponding current is flowing in opposite
direction to the currents related with the plasma dia-
magnetism and might be interpreted as paramagnetic.
This current is a kind of the "boundary” current Aowing
along the walls of the bounded plasma system (Frank-
Kamenezkii, 1968}, In the |Az| ~ pg vicinity of the wall
magnetized ions have no room to accomptlish the com-
plete circle of Larmor rotation, but instead are reflected
(elastically or partially elastically} from the wall surface.
As a result the current near the edges is carried only by
the segments of Larmor orbits (withont the compensa-
tion from the particles rotating nearby as it happens far
from the "wall”). The plane of magnetic field reversal
(z = 0), which strongly affects the particle motion, plays
the role of such *wall”. This analogy of the meandering
motion with the edge effects at the plasma boundary is
illustrated in Fig. 2 from Frank-Kamenezkii (1968).

Let us estimate approximately the value of the par-
tial contributions of the diamagnetic current outside the
sheet into the total current Iy in the casc of strong and
weak anisotropies, replacing all derivatives by inverse
sheet thickness L=*. In the limit of strong anisotropy
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we obtain:
¢ f piB P _ Pl
JL = Bg ( L + R2 [ﬁ x ﬁﬂ]) (’BDL (7)

The values of gradient and magnetization current (first
and third terms in Eq.(7)) are small because they are
determined by the perpendicular component of velocity,
which is small in comparison with vy ~ vp. The parallel
velocity gained by the particles due the centrifugal drift
is small too. [t is of order of & = B, /Bo/L/p* € 1
as was shown in paper by Zelenyi and Savenkov [1993].
Therefore the meandering motion is the only essential
current carrier in this regime.

In the limit of the weak anisotropy the particle for
the first time touches the plane of the magnetic field re-
versal z = 0 being still so far from the spatial domain
where the field line curvature and magnetic field gradi-
ent are strong that one can neglect the values of gradient
and centrifugal drifts (first and second terms in Eq.(6)).
Therefore the essential carrier of the current near near
the edge of the CS will be the magnetization current of
non-crossing orbits, described by Eq.(6), and the para-
magnetic currents due to "meandering” motion. In this
case one can neglect all derivatives dB/dz in Eq.(6), as-
suming that By =2 const and leave only dn/dz term in
the expression for the magnetization current (last term
in Eq.(6}). The competition of paramagnetic and mag-
netization currents determines the details of the struc-
ture of C§ profile, particularly the existence of the dia-
magnetic "wings” and correspondong embedded struc-
ture (Fig. 1).

Fig. 3 demonstrates the dimensionless self-consistent
magnetic field b = B{z)/By where By is the magnetic
field outside the sheet for different ¢ = vr/vp values.
The results of calculations for arbitrary £ demonstrate
that in the cases of moderate and weak anisotropies the
self-consistent current sheet equilibrium exists (on the
contrary the statement in paper by Holland and Chen
(1993)). The sheet thickness is changing with parameter
¢ and the profile of magnetic field converges to the lim-
iting profiles for strong and weak anisotropies, assuming
the corresponding scaling of Francfort and Pellat (1976}
and Ashour-Abdalla et al. (1994).

The comparison of Fig. 4 and Fig. 5 demonstrates that
the profiles of current and plasma densities are simi-
lar and have the unique scaling in the case of strong
anisotropy. In the case of weak anisotropy completely
different picture emerges. At large values of ¢ the profile
of density tends to be almost homogeneous along Z-axis.
At the same time the corresponding current is concen-
trated within such plasma sheet {PS) having the charac-
teristic thickness about termal ion gyroradius. We show
in Fig. 6 (a and b) that the current for £ > 1, although
having essential paramagnetic kernel (z = 0), has also
quite long diamagnetic wings”. The absolute value of
this ”diamagnetic” part of the current is relatively small
(ten times less than paramagnetic value Jy,(0)) but the
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Fig. 3. The self- consistent profiles of the magnetic fleld b/bo
(where by is a magnetic field outside the sheet) as a function of the
dimensicnless Z-coordinate ¢ = ze~ 4/ 3wg/vp, for various values
of the anisotropy parameter ¢ = v /up.

0.0 20 4.0 6.0 80
Fig. 4. The dimensionless current density Jy =

Jy(z)/(enovpe?®) as a function of the dimensionless Z-
coordinate ¢ for various values of the anisotropy parameter
£ =vr/vp.
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Fig. 5. The dimensionless plasma density n = n{z}/ng (where
no is a plasma density outside the sheet) as a function of the
dimensionless Z-coordinate ¢ for various values of the anisotropy
parameter € = vy /vp.

existence of these wings results in the difference of pro-
files of plasma density and cross-tail current in the equi-
librium solution.

Fig. 6a shows that the structure of CS is determined
by the process of the compensation of positive and neg-
ative components of the current. This result is in good
agreement with papers by Holland and Chen (1993),
Harold and Chen (1996), where the essential role of dia-
magnetic currents in the case of weak anisotropy was
demonstrated. Fig. 6b illustrates the mechanism of this
embedding. Embedding is a characteristic property of
the anisotropic CS at £ > 1, when the role of diamag-
netic currents is dominant everywhere except the near
vicinity of the field reversal. In the opposite case of
strong anisotropy the influence of diamagnetic currents
is decreasing because the motion of particles becomes
mostly field-aligned (vp > wr) and diamagnetic effects
(proportional to v} } disappear due to the relative small-
ness of the Larmor circles. So the current in general has
only positive ("paramagnetic”} component, and profiles
of plasma and current densities approximately coincide.

4 CS structure for super-strong anisctropy

We present at Fig. 7 the combined picture of thin ion
CSs scaling L(g). We distinguish two kinds of thin
ion sheets: quasi-adiabatic CSs (¢ > B,/B,) and non-
adiabatic CS (¢ < B, /B,) which we refer as the super-
strong anisotropy case. What is the explanation of the
appearance of these two regimes?

In general, quasi-adiabatic (k; < 1) ion, which crosses
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paramagnetic eurrents ) a
06—+ --- - _____ :
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Fig. 8. The scheme of the sheets embedding for weakly
anisctropic case: (a) the total current density (solid line) at
£ = vr/vp = 10 and corresponding partial contributions from
dia- {dashed line) and paramagnetic {dotted-dashed line) effects.
The vertical dashed line separates regions where only diamagnetic
currents exist and the region in the vicinity of the midplane z = 0
where dia- and paramagnetic currents coexist; {b) the compari-
son of plasma sheet and current sheet thicknesses Lps and Lcs for
€ = 10 case.



Zelenyi, et al.: Nonadiabatic current sheet models
Non- |
adiabat.
cs

Quasi-adiabatic CS
Alz<<Iz

weak
anisotropy

strong

E=VtIVd

Fig. 7. The combined picture of thin ion current sheets scaling
L(g), e is a source anisotropy, po = vr/wo, p* = vp/wo, wo =
eBg/me.

the plane of magnetic field reversal, always experiences
the jump of quasi-adiabatic invariant .. Magnetic field
in the field reversal region has very small radius of cur-
vature and dynamics of field-aligned moving particles
(v > wi) is controlled by the centrifugal force until
their first encounter with CS. It’s influence on conserva-
tion of CS invariant I, was first estimated by Zelenyi and
Savenkov (1993). Then in the series of papers by Del-
court et al., (1994, 1996, 1999) the theory of the particle
motion under the influence of sharply peaked centrifugal
impulses have been developed for the ”chaotic” case at
&£ =1—3. As we discussed in the section 1 one could
roughly estimate the characteristic average value of the
jump according to Biichner and Zelenyi (1989), Zelenyi
and Savenkov (1993}, Vainshtein et al. (1999) as

|AT'| ~ & (8)

where I' is the dimensionless value of I, and x =
Bn/B,+/L/p* is a parameter of adiabaticity. If the
jump of |AT;| is smaller than the value of I, itself, then
our analytical model could more or less adequately de-
scribe thin ion CS formation neglecting the non-conser-
vation of I,. In the opposite case initial values of I, are
small, i.e. particle distribution is almost field-aligned
vig € g ~ v, and our quasi-adiabatic approach could
not be applied. To estimate the characteristic value v}
which demarcates both limits, let’s consider for simplic-
ity the particle starting to move from the boundary of
the PS, exactly along field lines of the parabolic mag-
netic field B = (By(z/L),0, B,). Moving towards the
plane 2 = 0 particle drifts in the curved magnetic field
and gains the additional finite cross-field component of
the velocity. This gain of perpendicular velocity due

133

to centrifugal drift, according to paper by Zelenyi and
Savenkov (1993), could be easily estimated. At the mo-
ment of the first equatorial plane crossing the particle
guiding center is reaching the point

Zyo. = Lbn /% (9
and v, gains the value
vt = yk?/® {10)

So particle starting with zero pitch angle (vio = 0,
1. = 0) to the moment, of CS crossing acquires the finite
value v}, which corresponds to |I'| ~ & in agreement
with Eq.(8). Therefore the marginal value of the initial
velocity v]¢ should exist, which separates two regimes
of anisotropy: a non-adiabatic sheet with super-strong
anisotropy where non-conservation of I, is of princi-
pal importance and a quasi-adiabatic sheet with the
anisotropy although strong, but still satisfying the con-
dition |AT,| < I,°.

To find this we should first estimate the self-consistent
CS thickness in the non-adiabatic approximation, i.e.
when particles are launched at the boundaries |z] ~ L
with very small pitch angles and velocity vy ~ vp. Dis-
tance (9) characterizes the width of the meandering re-
gion at the moment when particle becomes ”crossing”
{z = 0 plane). It is reasonable to estimate the self-
consistent thickness of CS according to this value, ie.
z, .. = L.. One could then immediately find the relation
between parameter «£ and normalized B,, component of
the magnetic field for the self-consistent solution in the
form

by = /3 (11)

Using now the definition & = B,/ B,/ L/p* (where p* ~
vp/wo) one could obtain the value of the CS thickness
L as the function of b, and p* :

L =b,p* (12)

So, the marginal value of v g at the boundary |z| ~ L
(for v, < v, one can not neglect the non-conservation
of I.) might be obtained relating the values of v, at
z =1L and z = z;...*. Because the motion of particle is
still magnetized within this interval (z,. < z < L) we
could obtain:

(wo)® (@)’
Bo " Bolzs /D) (13)

Taking into account {10)-(12) we could find from (13)
that the quasi-adiabatic approximation becomes defi-
nitely violated for

Vlo S ’Uobn (14)

Expression (14) fully conforms with the more rigor-
ous analysis by Zelenyi and Savenkov (1993) and Vain-
shtein et al. (1999) who developed a general theory
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of the jumps of quasi-adiabatic invariant I, including
the limiting case of small initial values of I' < &, when
Al' = k > I, and jumps of I, already loose their char-
acteristic strong dependence on the initial conditions
(resulting in the development of deterministic chaos).
Expression (14} is equivalent to ¢ < b, (as shown in
Fig. 6). In this case the sheet structure is determined
generally by scattering of ions crossing the plane of mag-
netic field reversal. Qur analytical model developed in
previous sections could not be applied in such essentially
non-adiabatic limit.

As one can see from Fig. 7, the thickness of ion CS
derived from quasi-adiabatic model (L ~ £%/%) formally
tends to zero in the limit £ —+ 0. In reality this thick-
ness is finite due to unavoidable jumps of the adia-
batic invariant. Actually, in the quasi-adiabatic case the
thickness is determined by the initial cross-field velocity
v} (or equivalently by parameter s, as was estimated
by Francfort and Pellat (1976)). In the non-adiabatic
regime, where the initial velocity v,0 = 0, the dynam-
ics of particle meandering motion in the sheet depends
upon the abovementioned finite gain of the cross-field
velocity v 4, which determines the effective value of the
adiabatic invariant I, at the moment of the first en-
counter with the field reversal plane z = 0. Therefore
the thickness of the sheet would be also finite and its
value is given by Eq.(12). It means that we have found
the absolute minimal thickness of the CS created by me-
andering ion trajectories even if their pitch angles at the
boundaries are exactly equal to zero. The ion dominated
CS with a smaller thickness could not exist.

This estimate coincides with the estimation of the spa-
tial thickness of the meandering motion in a step-like
non self-consistent magnetic fleld (Alexeev and Malova,
1990} B = {B.sign(z),0, B;}. Even if ions initially
are moving exactly along the field lines, reaching the
equatorial plane, they immediately acquire finite per-
pendicular velocity because even being field aligned in
the upper semiplane (z > (), entering into the lower
semiplane (z < 0) their motion suddenly gets the fi-
nite pitch angle &« ~ 2B, /By (Fig. 8a). So the widih
of meandering region in this model is |Az| ~ py ~ p*a
and even initially step-like {L — 0) magnetic fleld will
be smeared to the self- consistent thickness (12) if the
system be allowed to evolve to the self-consistent state.

One could also demonstrate (the corresponding de-
tails are presented in the Appendix 3) that our estimate
of the C8 thickness (12) does not contradict to the scal-
ing L* = p*b,*/? discussed in paper by Pritchett and
Coroniti (1992). Moreover there is a one-to-one corre-
spondence between these two values because the thick-
ness of super-strong anisotropic CS obtained by Pritch-
ett and Coroniti (1992) and our estimate (12) refer to a
different moments of the same meandering motion. The
estimate of Pritchett and Coroniti {1992) is the height of
the ion trajectory element at the center of the meander
semi-circle, while we estimated the maximal CS thick-
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Fig. 8. CS scalings (a) in a step-like non self-consistent magnetic
field B = {B.sign(z),0, B:} [Alexeev et al., 1990, 1995]. Thick-
ness of the meandering region L = p*b, is determined by the
finite pitch angle o ~ 2B, /Bg that particle acquires at the mo-
ment of interaction with CS; (b) self-consistent sheet for the case
of super-strong anisotropy of the initial distribution (v < bpvy).
Sheet is characterized by two thicknesses: L = p"bn at the edges
of the meandering region near separatrix and L* = p*b, /3 at the
center of the meandering segment of motion.
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Fig. 9. The scheme of the self- consistent current sheet thick-
ness L as function of parameters B, /Bg and €. The region 1
corresponds to the weak anisotropy scaling L ~ pg ~ wr/wo
(the explanation is given in the text); region 2 corresponds to the
strong anisotropy L ~ ppet/? = p*e?/%; region 3 reflects the thick-
ness D/f super-strong anisotropic current shees L ~ pge— 1o, 43 =
p b 43,

ness (12) at the beginning of the meandering regime,
when particle just crosses the separatrix. Both esti-
mates relate the thickness of the self-consistent sheet
with the scale of the meandering motion. And if our
value I. = b,p* is an upper estimate of the CS thick-
ness, the value L* = p*b,*/® provides its lowest margin.

As one can see from the comparison of scalings of step-
like and "distributed” models in Figs. 8a and 8b our
estimate of absolute minimal thickness of CS (Eq.(A17)
in the Appendix 3) is in good accordance with the one by
Pritchett and Coroniti (1992), which have been obtained
from another considerations. Therefore, the absolute
minimal thickness of the current sheet is proportional
to b/ 3 and the relation of appropriate scales for the
superthin CS is as follows: L*/L = bY/°.

5 The combined picture of thin adiabatic and
non-adiabatic current sheets

The combined scheme of the self- consistent CS thick-
ness L as the function of parameters b, and ¢ is pre-
sented in Fig. 9. The region 1 corresponds to the ap-
proximation of weak anisotropy with the scaling L ~
po ~ vrjwe. Region 2 corresponds to the scaling ob-
tained earlier by Francfort and Pellat (1976) with L =
p™{(vr/up)*®, p* = vp/wo. Region 3 reflects the scaling
of super-strong anisotropic €S and at the same time (as
we argued above) is equivalent to (12). In region 3 CS
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Fig. 10. The dependence of current sheet thickness L from
By /By and €~! = vp /vy parameters for different values of the
dimensionless electric field Ey* = ¢Ey/(vprBe) = 0.0 (a), 0.25
(b, 0.7 (¢, 1.0 {d).

thickness doesn’t depend on the parameter g, but is en-
tirely determined by the value of the normal component
of magnetic field B,,. The general thinning of CS due
to increase of the plasma anisotropy outside the sheet
is in good agreement with the numerical consideration
of Harold and Chen, (1996) who investigated the effects
of multicomponent distributions on the structure of the
CS.

Although our model was considered above in the de-
Hoffman - Teller coordinate frame where the electric
field is transformed to zero, we also could easily re-
calculate our results for the magnetospheric coordinate
system where finite dawn-dusk field E, exists. Trans-
ferring from deHoffrann - Teller system having velocity
Vi = c¢E, /B, we conclude that the anisotropy defined
above depends now not only on the initial anisotropy
of the distribution function but also on the convection
electric field, moreover this effect might be the dominant
for the realistic magnetotail parameters.

Let’s represent the drift flow velocity introduced by
Francfort and Pellat (1976) as a function of the external

electric field: {;dx vp+cE,/B,. Here vp is the velocity
of the source ion beam in the magnetospheric frame, E,
is dawn-dusk {external) electric field. The dependence
of CS thickness L from b, and e ! = vp/vr parame-
ters for different values of the dimensionless electric field
E; = cEy/(vpBy) is shown in Figs. 10a - 10d. One can
see that the thicknesses characteristic for the regimes
of strong and super-strong anisotropy are prevailing for
the large values of normalized electric field for almost
any values of parameters b, and £ = vr/vp.
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This result is consistent with the generally recognized
concept of CS thinning during the beginning of sub-
storm. Turning of B, component of IMF to the South
activates the forced reconnection of magnetic field lines
at the dayside initiating the magnetic flux pile up at the
nightside. During the growth phase the cross-field elec-
tric field is growing and plasma convection enhances in
the magnetotail. Convective "dawn-dusk” electric field,
penetrating inte the CS, causes its thinning according
to our self-consistent model. At the later stages the
development of plasma instabilities and reconnection of
magnetic field lines due to current filamentation might,
of course, occur. Figs. 10a - 10d support the general
view of CS thinning presenting several snapshots of the
thin CS scalings for different values of the normalized
"dawn-dusk” electric field Ej. The essential thinning of
the CS in the course of the substorm growth phase could
therefore be reasonably well reproduced by our model.

6 Summary

Our model discussed above is an analytical develop-
ment of the kinetic investigations of thin CSs by Speiser
(1965), Eastwood (1972), Francfort and Pellat {1976),
Burkhart et al. (1992), Pritchett and Coroniti (1992),
Holland and Chen {1993), Kropotkin et al. (1997) and
other researchers. The evidence of such sheets have been
provided recently by in situ measurements in the tail of
the Earth’s magnetosphere. Two essential types of ki-
netic models of thin CSs exist now. First, these are full
particle-in cell and hybrid simulations by Pritchett and
Coroniti (1994, 1995), Hesse and Winske (1996); Hesse
et al. {1996) and Kuznetsova et al. (1998) to describe
very thin CSs in the magnetotail. Electrons constitute
significant or even dominant part of the cross-tail cur-
rent in such sheets. These models are still restricted
because of small ion-to-electron mass ratios and the de-
pendence of results (tearing stability, for example) from
the description of electrons as particles or fluid, bound-
ary conditions and other factors. The plasma and cur-
rent profiles in such models as a rule coincide. More-
over, contrary to the earlier experimental indications of
the existence of negatively charged magnetotail CS with
electrons as carriers (Mitchell et al., 1990) the later ob-
servations by Sergeev et al. (1998) do not confirm these
results. Nevertheless such models are very useful in re-
vealing essential features of CS structure and dypamics.

The analytical model presented in this paper is a rep-
resentative of another class of kinetic models, where the
tension of magnetic field lines is balanced by the finite
inertia of ions. We have shown that the self-consistent
solution of Viasov- Maxwell equations could be obtained
for the anisotropic sheets in the analytical form on the
basis of the new set of integrals of ion motion. In a
somewhat similar manner the well known isotropic so-
lutions of Harris (1962) and Schindler (1972) have been
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obtained before. We have generalized the earlier work
by Kropotkin et al. (1997), so that our basic equation of
Grad-Shafranov type describes the cases of both weak
and strong (but not super-strong) anisotropy of the ini-
tial distribution function. The characteristic property
of self-consistent CS structure predicted by this model
is the embedding of CS inside the P5.

We demonstrated that the maximum thickness of the
CS is achieved in the case of weak anisotropy and is
of the order of the thermal gyroradius of ions outside
the sheet. With the increase of anisotropy the sheet be-
comes compressed down to some finite limiting thick-
ness. We have estimated that this smallest possible
thickness of the sheet in the limit of the super-strong

anisotropy vr/vp < bn is in the range p*bff < I<
2*by. In this regime the CS structure is determined by
nonadiabatic effects (I, is essentially non conserved) and
consists mainly of paramagnetic currents. Existence of
the external electric field E, results in the effective in-
crease of anisotropy and we considered the influence of
E, on the CS scaling. The current sheet in our model
thins with the growth of the dawn-dusk electric fleld
and this effect might have important implications for
the dynamics of substorms.

Appendix 1. The basic equations

To relate the distribution (5) with its asymptotic form
outside the sheet we use the relation I = (2mc/e)
between the sheet invariant I and the magnetic moment
p = mvi /(2B) at the edge of the sheet. Using the
Liuville theorem we could represent the ion distribution
in the form

2
ngexp{~£*2/3 [( w8—1—5_2/3) +I}}

w3203 (1 +erf (71)]
—2/3

f= (A1)
where € = vpfup, w = ¢ % v/fup, wp = W}, I =
€2/ Iwy/ (mur), ne is the plasma density outside the
sheet which i3 created by two counterstreaming beams,
wg = eBy/ (mc}).

Using (A1} and introducing the dimensionless vari-
ables C = 26_4/3{4)0/1‘.)17 ; Cﬁ.l = 20,16_4/30}0/’()1), and
b = B/By, as well as their transforms b({) — b(a)
— v (n) with

$

/ b(CYdC', =62, 7 (n) = bla),
4]

db dbda  1db?

d{  dad{ 2da
we arrive t¢ the following dimensionless equation for the
sheet magnetic field 4 as a function of the nontrivial
part 7 ~ [ B (2') dz of the vector-potential in the region

n20

a =

(A2)

gel/® (”D )2 Flay (m) + Fiy () (A3)

2 f—t —
v )= w3/2 \ vy L+erf(e1)
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where

n o oG o0
Foy(m) = :tf dn'/ dwz/ wydwy/ dwg
0 0 0 0
2
exp{*s_Q/a[(\/wi+w§+wg_1i—5_2/3) +Ii}} (A4)

where w; = d(/dt and the difference between the con-
tributions with positive and negative dawn-dusk com-
ponents of the particle velocity is only in the sign of the
whole expression and the form of the invariants I

Ry N
where

noi:max{o, n'fﬁwngwg;wy} (A6)
and

e = \Jwh +wi+n Fuy (A7)

The parameter v4/vp must satisfy the boundary re-
lation y(p = o0) =1

v 22 gl/8
{(1+erf(e 1))

vp 7T3/4

\/[0 dn (Fiay (0 ws) + Foy (', ws)) - (AS8)

Equation (A8} corresponds to the pressure balance
condition in a sheet and should be satisfied for the self-
consistent solution (Burkhart et al., 1992).

Appendix 2. Limiting cases of the basic theory

In the limiting case ¢ — 0 we could estimate wg ~
e72% o o0, I ~ &¥® 5 0, I_ ~ w2 — o0 and after
the restoration of variables a and b given by (A2) the
basic equation {(A3) may be reduced to the following

parameterless form

23 o, [
b2 — d.' 3/2
(a) m /o “ /0 (cos ¢)™ de

= da’ (s) B
J mexp (—I+ )(175,0 ) (A9)
with
. 23/‘2 08 172 o i
rp = 2ol T g e (A10)
T Jo b(a'")

which is in fact represents the universal equation for
strongly anisotropic sheet obtained earlier by Kropotkin
ct al.(1997). According to Eqs.(A2) and {A3) the cor-
responding current and magnetic field profiles have the
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characteristic scaling L ~ &*3vp /wy, which was pre-
dicted earlier by Francfort and Pellat (1976) on the basis
of non self-consistent approach.

In the other limit £ — oo the parameters 1, we, wy,
we, and Ii/ % scale as €1/3. As a result expanding expo-
nent in the right hand side of (A4) and using the new
set of variables v (n) = 8 (a), @ = e7/%n = e'/3q, one
can obtain the following equation like (A9)-(A10)

oo /2 m/2
2{a) = 2 —r?) d in 4df d
3% (a) (16/%)/[; r? exp (—r%) T‘/O 5 -/0 @

2y a+2y
(f —[ )da'\/rz—fi‘")(ar,y,z) (A11)
0 o
where
9 ViErra -y
1 (o y,2) =2
+ ' U
w max{O,o:’—\/yz-l—_ﬂ—y}
5 da"
Vtai-(y-a'+a?) (412)

Bla)

and z = rsinffcosy, y = re€infsing, z = rcosd. In
particular, according to (A11), the coordinate « is of the
order of & ~ £1/3¢ ~ 1. Therefore, contrary to the case
of strong anisotropy the corresponding profiles of cur-
rent density and magnetic field scale as L ~ svp fwg = p.

Appendix 3. Estimates of the scalings of the CS
thickness for super-strong anisotropy

The correspondence between two scaling parameters (ex-
pression (12) and the scaling L ~ b/ ®) can be easily
found from simple calculations. Let’s consider the ion
moving in the curved magnetic field towards the sheet
plane with zero pitch angle at the boundary. As we ar-
gued above at the moment when the particle enters the
sheet its perpendicular velocity due to gradient drift is
finite and equal to (10). Taking into account the up-
per estimate (12); one can suppose that entering into
the CS the particle is moving in the field where the
size of the field inhomogeneity (which is of the order
of the sheet thickness) is smaller than Larmor radius p,
ie. igmdB/B\*l € p, 50 on a scale ~ p we might ap-
proximately consider the profile of the magnetic field as
a step-like function. Omne might relate then the perpen-
dicular pitch-angle of particle 8y near the separatrix and
the phase ¢ of Larmor rotation at the moment when the
particle crosses the equatorial plane z = 0, being at the
center of its meandering semicircle ({v,) = 0). Follow-
ing the reasoning of estimates by Francfort and Pellat
(1976}

(m — ) ~ sin® G, (A13)
where
Siﬂ90 ~ UJ_/'UO (Al4)
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and v is the value of perpendicular velocity just before
the separatrix crossing. Due to simple geometric con-
sideration the height L* of the quasi-adiabatic element
of the orbit at the center of the meandering circle in the
plane z = 0 is of the order of

L* m p*(z — 4)* (A15)
Substituting (A13) and {Al4) to (Al3) one might get
L* = p*sin®/® 8y ~ p* (v Jvg)*® (A16)

Taking into account the estimate of the perpendicular
component of velocity (10) at the moment of separatrix
crossing and expression (11) we obtain from (A16) that

L* = p*h, 43 (ALT)

This value coincides with estimate by Pritchett and Coro-
niti (1992) of the CS scaling in the case of super-strong
anisotropy.
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