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Abstract

Understanding sources, concentrations, and transformation of polycyclic aromatic hy-
drocarbons (PAHs) in the atmosphere is important because of their potent mutagenicity
and carcinogenicity. The measurement of particle-bound PAHs by three different meth-
ods during the Mexico City Metropolitan Area field campaign in April 2003 presents5

a unique opportunity for characterization of these compounds and assessment of the
methods. The three methods are (1) collection and analysis of bulk samples for time-
integrated gas- and particle-phase speciation by gas chromatography/mass spectrom-
etry; (2) aerosol photoionization for fast detection of PAHs on particles’ surfaces; and
(3) aerosol mass spectrometry for fast analysis of size and chemical composition. This10

research represents the first time aerosol mass spectrometry has been used to mea-
sure ambient PAH concentrations and the first time that fast, real-time methods have
been used to quantify PAHs alongside traditional filter-based measurements in an ex-
tended field campaign. Speciated PAH measurements suggest that motor vehicles and
garbage and wood burning are important sources in Mexico City. The diurnal concen-15

tration patterns captured by aerosol photoionization and aerosol mass spectrometry
are generally consistent. Ambient concentrations typically peak at ∼110 ng m−3 during
the morning rush hour and rapidly decay due to changes in source activity patterns and
dilution as the boundary layer rises, although surface-bound PAH concentrations de-
cay faster. The more rapid decrease in surface versus bulk PAH concentrations during20

the late morning suggests that freshly emitted combustion-related particles are quickly
coated by secondary aerosol material in Mexico City’s atmosphere and may also be
transformed by heterogeneous reactions.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a class of semi-volatile compounds25

formed as a byproduct of incomplete combustion and emitted by sources such as mo-
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tor vehicles, coal-fired power plants, wood fires, and cigarettes. Many PAHs are potent
mutagens and carcinogens, and they account for the majority of mutagenic potency at-
tributable to specific compounds in ambient particulate matter (Hannigan et al., 1998).
The PAH benzo[a]pyrene has been directly linked to lung cancer through its selective
formation of adducts along a tumor suppressor gene (Denissenko et al., 1996).5

Transformations of PAHs on particles have the potential to affect the particles’ toxi-
city through the formation of species that are more toxic, e.g. nitro-PAH (Sasaki et al.,
1997), or less toxic. Heterogeneous reactions of PAHs (Bertram et al., 2001; Esteve et
al., 2003, 2004) may serve as surrogates for heterogeneous chemistry of many types
of organics; such reactions could change the particles’ hydrophilicity and thus their po-10

tential to act as cloud condensation nuclei (Jones et al., 2004). A second mechanism
of transformation is coating of freshly emitted particles by condensation of secondary
aerosol components formed by gas-phase reactions. Through this type of transfor-
mation, PAHs that are initially present on the surface of particles may become less
accessible for heterogeneous reactions and less bioavailable. PAHs are associated15

with black carbon, and coating of such particles has significant implications for radia-
tive forcing and climate change (Chandra et al., 2004; Conant et al., 2003; Jacobson,
2001).

In the spring of 2003, a multinational team of over 100 atmospheric scientists from
30 Mexican, US, and European institutions conducted an intensive five-week field cam-20

paign in the Mexico City Metropolitan Area (MCMA) (de Foy et al., 2005). The overall
goals of the effort were to contribute to the understanding of the air quality problem in
Mexico City, through measurements and modeling, and also to serve as a model for the
study of other megacities in the developing world. Recent studies of PAHs in Mexico
City have reported concentrations there to be among the highest measured anywhere25

in the world. Median total particle-bound PAH concentrations along Mexico City’s road-
ways range from 50 to 910 ng m−3, equivalent to smoking 0.4 cigarettes per hour or a
lung cancer risk level of 2×10−5 for 10 h per week of exposure over 40 years (Marr et
al., 2004; Velasco et al., 2004). The extremely high ambient concentrations in Mex-
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ico City provide a stronger signal for the analysis of diurnal patterns and comparison
against concentrations of related pollutants. Comparison of PAH versus elemental car-
bon and active surface area concentrations in Mexico City suggests that surface PAH
concentrations may diminish rapidly with particle aging (Marr et al., 2004). Because of
the serious health effects of PAHs, it is important to understand their sources and loss5

processes under ambient conditions.
The measurement of particle-bound PAHs by three different methods – filters,

aerosol photoionization, and aerosol mass spectrometry – during the five-week MCMA
field campaign allows a more comprehensive characterization of these compounds
in ambient air than has been possible in the past. Combined with measurements of10

numerous other species, including gas-phase PAHs, the data present a unique op-
portunity to characterize ambient concentrations, sources, and atmospheric process-
ing of PAHs. This research represents the first time aerosol mass spectrometry has
been used to measure ambient PAH concentrations and the first time that two fast,
real-time methods have been used to quantify PAHs alongside traditional filter-based15

measurements in an extended field campaign. The objectives of this research are to
(1) compare and contrast the three measurement methods, (2) describe the ambient
concentrations and sources of PAHs in Mexico City, and (3) explain the differences in
diurnal patterns observed in PAH versus other species concentrations.

2. Experimental20

The measurements took place on the rooftop (12 m above ground level) of a three-story
building at the Universidad Autónoma Metropolitana in Iztapalapa (UAM-I), approxi-
mately 10 km southeast of downtown Mexico City, whose elevation is 2240 m. The
building houses the National Center for Environmental Research and Education, and
the site is known by its Spanish acronym, CENICA. The site is located in a mixed-used25

medium-income neighborhood with light traffic. The nearest major roads are at least
1 km away.
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The five-week field campaign took place toward the end of the dry season during
April 2003. It included Holy Week, which ended with Easter Sunday on 20 April. During
the holiday week, many businesses closed and residents left on vacation. The average
temperature during the field campaign was 21◦C, with an average daily low of 15◦C and
high of 29◦C. Winds were often northerly in the morning and southerly in the evening,5

with an average speed of 2 m s−1. Rain occurred, usually briefly and in the afternoon
and early evening, on 7, 8, 10, 12, 20, 22, 25, and 28 April.

Particle-bound PAHs were measured by three methods: (1) filter collection and anal-
ysis by gas chromatography/mass spectrometry (GC/MS), (2) aerosol photoionization,
and (3) aerosol mass spectrometry. The “total” particulate PAH concentrations, de-10

fined in Table 1, measured by each method are referred to as FPAH, SPAH, and APAH,
respectively. The filter sampler and photoionization aerosol sensor were located on
opposite sides of an experimental platform, approximately 3 m apart and 4 m above
the rooftop. The aerosol mass spectrometer was housed in a temperature-controlled
storage building at the opposite end of the rooftop, approximately 50 m from the exper-15

imental platform.

2.1. Time-integrated sampling and speciated analysis

To allow speciation of PAHs by GC/MS, time-averaged bulk samples were collected on
27–30 April. A high-volume (Hi-vol) air sampler equipped with a Teflon-impregnated
glass fiber filter (20 cm × 25 cm) and two polyurethane foam plugs (PUFs) in series20

beneath the filter and without a size-selective inlet was used to collect semi-volatile
and particle-associated PAHs at a flow rate of ∼0.6 m3 min−1. Gas-phase naphthalene
and alkyl-naphthalenes were simultaneously collected on replicate Tenax-TA solid ad-
sorbent cartridges at a flow rate of 200 cm3 min−1. Samples were collected over four
sampling intervals per 24-h period: 07:00–11:00, 11:00–16:00, 16:00–21:00, and an25

overnight sample from 21:00–07:00.
The filter and PUF samples were spiked with deuterated internal standards, Soxh-

let extracted overnight in dichloromethane, fractionated by high performance liquid
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chromatography (HPLC) on a semipreparative Silica column, and the PAH-containing
fractions were analyzed by GC/MS. The PUFs were spiked with phenanthrene-d10,
fluoranthene-d10 and pyrene-d10 prior to extraction and were analyzed by positive
ion/chemical ionization GC/MS with selected ion monitoring (SIM) using a DB-17
column in an Agilent 5973 mass selective detector (MSD). Filters were spiked with5

pyrene-d10, benzo[b]fluoranthene-d12 and benzo[a]pyrene-d12 prior to extraction and
were analyzed by electron impact GC/MS-SIM using a DB-5MS column in a Hewlett
Packard 5971A MSD. The Tenax samples were spiked with naphthalene-d8 and 1-
methylnaphthalene-d10 prior to thermal desorption and EI GC/MS-SIM analysis as de-
scribed previously (Reisen and Arey, 2005). Table 1 lists the particle-phase species10

identified.

2.2. Aerosol photoionization

The main advantages of aerosol photoionization are its sensitivity and ability to perform
continuous, real-time measurements with a response time of less than 10 s. In this
method, the aerosol sample is exposed to ultraviolet light from an excimer lamp at15

207 nm, which causes PAHs on the surface of particles to photoemit electrons. An
electric field removes the ejected electrons, and the positively charged particles are
trapped on a filter, generating a current that is measured by an electrometer.

The photoelectric aerosol sensor (PAS 2000 CE, EcoChem Analytics, Texas, and
Matter Engineering AG, Switzerland) reports results as total particle-bound PAHs. Be-20

cause our experience suggests that the instrument is most sensitive to PAHs on the
surfaces of particles and less sensitive to those buried under other aerosol compounds,
we henceforth use “SPAH” to refer to particle-bound surface PAHs detected by the pho-
toionization sensor. “PAH” will continue to refer to the class of compounds more gener-
ally. The instrument is factory-calibrated for SPAH concentrations up to 1000 ng m−3,25

and it is expected to give a linear response up to 5000 ng m−3. The response is cali-
brated against filter-based analyses of PAHs, including species with molecular masses
202, 226, 228, 252, 276, and 300 (Hart et al., 1993; McDow et al., 1990). Previ-
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ous studies have shown a strong correlation between photoelectric charging and inde-
pendently measured PAH concentrations for a variety of aerosols: oil burner exhaust,
cigarette smoke, parking garage air, and ambient urban air in different cities (Siegmann
and Siegmann, 2000). The sensor’s response has also been reported to be linearly
correlated (r2=0.82) with bacterial genotoxicity (Wasserkort et al., 1996).5

During this study, we cross-calibrated four photoionization sensors against the en-
semble mean while sampling candle soot and ambient air at concentrations of 20–
3000 ng m−3 for 5–30 min on four separate occasions. All instruments reported a con-
centration of zero with a zero-air filter applied. Correction factors ranged from 0.82 to
1.34 for the individual instruments.10

2.3. Aerosol mass spectrometer

The Aerodyne Aerosol Mass Spectrometer (AMS) allows real-time, size and compo-
sition analysis of non-refractory submicron particles (Jayne et al., 2000; Jimenez et
al., 2003). A summary of the main results from the AMS measurements during this
field campaign is given by Salcedo et al. (2005a, b). A separate paper (Dzepina et al.,15

20051) describes in detail the algorithm for extracting particle-phase PAH concentra-
tions from AMS spectra and its validation. Here, we report the total AMS PAH con-
centration (APAH), which represents the sum of the concentrations of PAHs between
molecular weights of 202 and 300.

2.4. Additional measurements20

Table 2 summarizes the measurements considered in this study. Black carbon and
PAHs form during the same combustion processes. Their concentrations are correlated
in ambient air, and are impacted by a variety of combustion sources, including traffic,

1Dzepina, K., Salcedo, D., Marr, L. C., Arey, J., Worsnop, D. R., and Jimenez, J. L.: Detection
of particle-phase polycyclic aromatic hydrocarbons (PAHs) in Mexico City using an Aerosol
Mass Spectrometer, Aerosol Sci. Technol., submitted, 2005.
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cooking, and wood smoke (Marr et al., 2004; Schauer et al., 2003; Wallace, 2000;
Watson and Chow, 2002; Zielinska et al., 2004). A meteorological station located on
the experimental platform recorded temperature, humidity, pressure, and wind velocity
every minute. The site was part of a routine air quality monitoring network and mea-
sured concentrations of criteria pollutants, including sulfur dioxide, carbon monoxide,5

ozone, nitrogen dioxide, and particulate matter.

3. Results

Figure 1 shows concentrations of selected PAHs (gas + particle phases) determined
by GC/MS on Tuesday 29 April. These PAHs are shown because of their associ-
ation with specific sources. Tunnel studies have shown that larger PAHs, in partic-10

ular benzo[ghi]perylene and indeno[1,2,3-cd]pyrene, are emitted in gasoline-fueled
vehicle exhaust (Marr et al., 1999; Miguel et al., 1998), while alkylated phenan-
threnes are associated with diesel vehicles (Benner et al., 1989). Concentrations of
benzo[ghi]perylene and methylphenanthrenes are highest in the morning, although
the diurnal patterns of these two PAHs differ. Benzo[ghi]perylene concentrations15

are 36 times higher in the morning compared to the afternoon and evening, while
methylphenanthrene concentrations are only 1–2 times higher in the morning. The
potential causes for this difference are discussed in the next section.

A GC/MS total ion chromatogram of the PAH-containing HPLC fraction from a filter
sample revealed a retene peak and also a large peak from a MW 306 species. Retene20

has been suggested as a marker for soft wood combustion (Ramdahl, 1983). The MW
306 species was subsequently identified to be 1,3,5-triphenylbenzene by matching its
mass spectra and retention time on two different GC columns with those of an authentic
standard. This compound has recently been suggested to be a potential marker for the
burning of refuse, including plastics (Simoneit et al., 2005). In contrast to the other25

PAHs, which are all considered markers of vehicle exhaust, the 1,3,5-triphenylbenzene
and retene concentrations are highest in the nighttime rather than morning or daytime
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samples.
Figure 2 shows total particulate PAH concentrations measured by all three methods

during the three days when they were operating simultaneously, 27–30 April. Not all
methods were operating during the entire interval. Filter measurements are not avail-
able for 28 April, and the AMS was not sampling continuously during this period.5

In the figure, heavy solid and dotted lines show time-integrated averages correspond-
ing to the filter sampling periods. To illustrate the fine temporal structure of PAH con-
centrations, the figure also shows 1-min SPAH in the background. Total (FPAH, SPAH,
APAH) and modified (FPAH* and APAH*) results represent, respectively, all PAHs de-
tected by each method and a modified total, intended to facilitate comparison against10

SPAH. The modified total is the sum of concentrations at molecular masses and mass-
to-charge ratios (m/z) of 202, 226, 228, 252, 276, and 300, as shown in Table 1. It
excludes signals at molecular masses and m/z ’s of 216 and 240 that correspond to
alky-PAHs, because the photoionization instrument’s calibration does not account for
such species. This modification also excludes benzofluorenes, but their contribution15

was at most 3% of the FPAH total.
The 1-min SPAH time series shows a strong diurnal pattern in ambient PAH concen-

trations, with concentrations generally starting to rise at ∼05:00, peaking at ∼08:00,
and then dropping throughout the late morning. Peak concentrations often exceed
100 ng m−3, and concentrations usually remain below 50 ng m−3 throughout the re-20

mainder of the day. However, on the first day shown in the figure, a Sunday, peak
concentrations are about 50% lower compared to the other days.

Figure 3 shows the diurnal profiles (15-min averages) of SPAH and APAH* averaged
over weekdays and weekends separately, excluding Maundy Thursday 17 April through
Easter Sunday 20 April, when traffic and ambient pollutant concentrations were signif-25

icantly lower than usual. The standard deviations of weekday SPAH and APAH* are
∼2 and ∼5 ng m−3, respectively. We have isolated weekdays because motor vehicle
activity, thought to be a major source of PAHs, is expected to differ significantly be-
tween weekdays and weekends (Marr et al., 2002). The temporal patterns of SPAH
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and APAH* are similar, with concentrations beginning to increase at 05:00, peaking at
08:00, and then falling off; but their absolute values differ during most hours of the day.
On weekdays, SPAH is usually lower than APAH* by ∼20 ng m−3, except during the
peak period (06:30–08:30), when the two signals are comparable in magnitude. Lin-
ear, least-squares regression of the weekday diurnal profiles of APAH* against SPAH5

produces a slope of 0.86±0.03 (standard deviation) and intercept of 21±1 ng m−3 with
r2=0.87. An additional difference between the two is that APAH* does not seem to
decay as fast as SPAH in the late morning.

The differences in weekday versus weekend concentrations are opposite for the two
measurements of PAH concentration. Weekend SPAH concentrations are ∼30% lower10

compared to weekday SPAH during the peak morning rush hour period, but weekend
APAH* concentrations are up to two times higher compared to weekday APAH* be-
tween midnight and 11:00. Weekend APAH* is approximately twice as high as weekend
SPAH, with a regression slope of 1.85±0.09, intercept of 21±3 ng m−3, and r2=0.81.
Due to reduced emissions on weekends, we would expect PAH emissions and con-15

centrations to be lower on weekends. The possible causes of this discrepancy will be
discussed below.

SPAH is strongly correlated with both CO and naphthalene. Figure 4 shows 15-
min averages of SPAH versus CO during the entire field campaign. The slope of the
regression line, forced through zero, is 18.7±0.2 ng m−3 ppm−1, with r2=0.70. Fig-20

ure 5 shows SPAH versus all available naphthalene measurements (n=24), which are
time-integrated over 4- to 10-h periods. For the relationship between SPAH and naph-
thalene, the slope is 0.024±0.001 with r2=0.92.
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4. Discussion

4.1. Method intercomparison

The three PAH measurement techniques have complementary strengths. Collection of
time-integrated samples with GC/MS analysis allows detailed, isomer-specific specia-
tion and the ability to quantify both gas- and particle-phase concentrations. Aerosol5

photoionization is a sensitive and fast technique that detects total surface PAH concen-
trations. Aerosol mass spectrometry provides speciation by MW, size distributions, and
measures of other aerosol components at 4-min resolution.

While the three methods generally report similar trends and the same order of mag-
nitude for the concentrations, certain disparities may emphasize methodological lim-10

itations, transformation of PAHs, and/or uncertainties in calibration. Figures 2 and 3
show that APAH* is generally higher than SPAH, except during the morning rush hour
between 06:30–08:30, when they are similar. The likely cause of lower SPAH values
is the fact that the PAS responds only to surface-bound PAHs. The difference in mass
loadings is also captured in the large intercept (∼25 ng m−3) of the correlation between15

APAH* and SPAH. As the particles are coated by condensation of the products of the
active photochemistry in Mexico City (Shirley et al., 2005; Volkamer et al., 2005), the
photoionization sensor becomes blind to the “buried” PAHs while the AMS, which fully
vaporizes the non-refractory portion of the particles (Slowik et al., 2004), continues
to detect them. This leads to higher PAH measurements with the AMS when aged20

particles dominate, i.e. during most of the day except the morning rush hour.
An intriguing observation is that while SPAH concentrations are higher on weekdays

than on weekends, APAH* concentrations are actually higher on weekends, particularly
between midnight and 11:00. A buildup of aged particles, containing coated PAHs, dur-
ing the week and peaking on weekends may explain the observation. However, data25

are insufficient to confirm this hypothesis. Alternatively, sources of emissions that pro-
duce particles containing coated PAHs may be important on Friday and Saturday nights
(Saturday and Sunday early mornings). Concentrations of carbon monoxide (CO) and
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black carbon (BC), indicators of gasoline and diesel engine activity, respectively, are
not higher on Friday and Saturday nights and are not significantly different on week-
ends versus weekdays; so vehicle traffic does not appear to be the cause of higher
APAH* on weekends.

During periods with PAH loadings below 30 ng m−3, FPAH* and SPAH agree well, as5

shown in Fig. 1. During periods of elevated PAH loadings (07:00–11:00 on Sunday 27
April and 21:00–07:00 on 27–28 April), FPAH* is higher than SPAH, except during one
period dominated by fresh emissions (07:00–11:00 Tuesday 29 April). Again, SPAH
may be lower because it does not include PAHs on aged particles that have been
coated by secondary aerosol. During the period of fresh emissions when SPAH is10

higher, the PAHs captured on the filters are exposed to several hours of ambient air
during the MCMA’s most photochemically active period, i.e. weekday mornings; and
the PAHs may be subject to reaction artifacts in the sampler. This type of degradation
can reduce PAH concentrations by 50% (Schauer et al., 2003). The real-time SPAH
and APAH measurements are much less susceptible to such artifacts.15

In summary, while SPAH and APAH* agree at higher concentrations, SPAH is consis-
tently lower than APAH* at lower loadings. In contrast, SPAH and FPAH* agree better
at lower concentrations. The reasons for the disagreements are not fully known, and
laboratory calibration experiments are needed to explore the differences further.

4.2. PAH sources20

The limited number of samples and lack of precise information about Mexican source
profiles in this study preclude a quantitative source apportionment. However, evidence
suggests that motor vehicles are the major source of PAH emissions in Mexico City.
Motor vehicles are responsible for 99% of CO emissions in the area (Secretaŕıa del
Medio Ambiente, 2003), and PAH and CO concentrations are correlated, as shown in25

Fig. 4. The strong correlation between SPAH and naphthalene, shown in Fig. 5, also
indicates that vehicles are a key source of particulate PAHs, if Mexico City follows the
pattern of Southern California, where vehicles are responsible for 53% of naphthalene
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emissions (Lu et al., 2004).
These results provide insight into the diurnal patterns of gasoline- versus diesel-

powered vehicles in the MCMA. Benzo[ghi]perylene can be used as a marker of
gasoline-powered vehicle activity, as it has the highest emission factor of the 16 prior-
ity PAHs in light-duty vehicle exhaust but is not detected in heavy-duty diesel exhaust5

(Marr et al., 1999). During the 07:00–11:00 period, benzo[ghi]perylene accounts for
25% of the total particle-phase PAHs; and during the three remaining periods, it ac-
counts for only 7–8% of the total. This result suggests that gasoline-powered vehicles
are an especially significant source of PAHs during the morning rush hour.

On the other hand, methylphenanthrene can be used as an indicator of diesel ex-10

haust (Westerholm et al., 1991). The relative contribution from diesel exhaust ap-
pears to increase during 11:00–16:00 relative to the earlier period, as reflected in
methylphenanthrene levels that are of similar magnitude (Fig. 1) or increasing (27 April,
data not shown), while concentrations of other PAHs except retene decrease signifi-
cantly, presumably in response to a rising mixing height and reduced source activity.15

The ratio of methylphenanthrenes/phenanthrene has been utilized in source appor-
tionment studies to estimate the relative contributions of gasoline versus diesel emis-
sions (Lim et al., 1999; Nielsen, 1996). Methylphenanthrenes/phenanthrene ratios of
1.5 for gas-phase emission measurements (Westerholm et al., 1991), and ranging from
1.7–8 for particle-phase emissions (Lim et al., 1999; Takada et al., 1990; Westerholm20

et al., 1991) have been reported for diesel vehicles, while for gasoline vehicles ratios of
0.2–0.7 have been reported (Takada et al., 1990; Westerholm et al., 1988). Although
there are significant variations in reported ratios, and operating parameters such as
the engine load are known to affect the ratio (Jensen and Hites, 1983), all the ratios
reported for diesel emissions are >1 and those for gasoline emissions <1. Figure 125

shows that the ratio of methylphenanthrenes/phenanthrene is <1 during the morning
rush hour period and is >1 during the rest of the day. This observation is consistent with
the dominant contribution of gasoline emissions to particle-phase PAH concentrations
during the morning rush hour and with the increased importance of diesel emissions
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during the rest of the day.
Different diurnal traffic patterns of gasoline- and diesel-powered vehicles can explain

these observations. In California, gasoline vehicle traffic peaks during the morning
and evening rush hours (Marr et al., 2002). However, diesel vehicle traffic starts out
slowly during the traditional morning rush hour and then peaks during the late morning5

and early afternoon. If this pattern were also true in the MCMA, then we would expect
emissions from gasoline vehicles to be higher during the 07:00–11:00 period compared
to the 11:00–16:00 period and the opposite effect for diesel vehicles. The observed
PAH concentrations support this hypothesis. Additionally Fig. 6 shows that BC, which
is associated with diesel exhaust, peaks 1–2 h later in the morning compared to CO,10

which is associated with gasoline exhaust.
The diurnal patterns of individual PAH masses, shown by Dzepina et al. (2005)1, also

suggest that activity patterns for gasoline versus diesel vehicles differ, with diesel vehi-
cle traffic lagging the traditional early morning rush hour. The concentrations of lighter
MW PAHs (m/z=202) peak one hour later and do not decrease as rapidly compared15

to concentrations of the heavier MW PAHs. Filter-based measurements of PAHs in a
roadway tunnel have shown that gasoline vehicles have higher emission factors of the
larger PAHs and that diesel vehicles have higher emission factors of the smaller PAHs
(Marr et al., 1999). This fact, combined with diesel vehicle traffic that peaks after the
morning rush hour, would produce the observed pattern.20

The presence of triphenylbenzene and retene suggest that other sources also con-
tribute to ambient PAHs in the MCMA. The high concentrations of triphenylbenzene at
night are an indicator of garbage burning (Simoneit et al., 2005; Tong et al., 1984),
a common nighttime activity in the MCMA. Concentrations of retene, a wood smoke
marker (Ramdahl, 1983), are especially high on 27 April (not shown), when a forest25

fire burned for one hour on a nearby hill, Cerro de Estrella, starting at ∼18:00.
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4.3. PAH transformations

Figure 6 shows average diurnal cycles of SPAH, APAH∗, CO, BC, hydrocarbon-like
organic aerosol (HOA), and oxidized organic aerosol (OOA) during non-holiday week-
days. HOA is an indicator of freshly emitted particles, which are likely to be primary
combustion aerosols in Mexico City, while OOA is a highly oxygenated aerosol, which5

is likely to be secondary organic aerosols from the photooxidation of aromatics and
other precursors (Zhang et al., 2005a, c). OOA may also be associated with biomass
burning emissions during the latter part of the campaign. Note that the y-axes start at
the background concentration of each pollutant, not at zero. While APAH∗, SPAH, CO,
BC, and HOA concentrations rise in concert starting at 06:00 each morning, SPAH falls10

off much more quickly and diverges from APAH∗, CO, and BC at 09:00.
There are two hypotheses that could most likely explain the faster decay of SPAH

relative to other indicators of vehicle emissions. The timing of the decay in SPAH
concentrations, i.e. during the hours of the most active photochemistry in Mexico City,
suggests that a photochemical mechanism may be responsible. First, coating of PAH-15

containing particles by condensation of secondary inorganic or organic aerosol could
shield the PAHs from detection by photoionization. Electron microscopy of individual
particles collected during the field campaign indicates that extensive processing of soot
particles, including condensation of sulfate, can occur within 30 min to several hours
(Johnson et al., 2005). For PAHs to be detected by photoionization, electrons must20

be ejected from the molecules and must be able to escape from the surface of the
particle. Coating of PAH-containing particles could reduce the SPAH signal by making
it less likely for PAHs to be photoionized or for ejected electrons to escape the particle.

Previous experiments have shown that paraffin coatings of 30–60 nm completely in-
hibit the photoionization signal (Niessner et al., 1990). Sufficient ammonium nitrate25

and secondary organic aerosol (SOA) may be produced in Mexico City’s atmosphere
to coat primary particles and at least partially inhibit the detection of surface-bound
PAHs by photoionization. The following analysis assumes that inorganic aerosol and
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SOA condense on preexisting particles, rather than homogeneously nucleate, which
is consistent with observations (Dunn et al., 2004). During the late morning, OOA
reaches 6µg m−3 above its background value (Fig. 6). If we assume that OOA repre-
sents SOA and has a density of 1.1 g cm−3 (Bahreini et al., 2005), then the excess OOA
is equivalent to a volume concentration of 6×10−12 m3 m−3. Divided over a maximum5

aerosol surface area of 1×10−5 cm2 cm−3 estimated from the AMS measurements,
this amount of SOA can coat the particles to a thickness of 6 nm. Ammonium nitrate
concentrations, which share a similar diurnal pattern to that of OOA, reach 12µg m−3

above background in the late morning (Salcedo et al., 2005b) and can contribute an
additional 7 nm of thickness to the coating. The density of inorganic aerosol is assumed10

to be 1.7 g cm−3 (Bahreini et al., 2005). The fractal nature of primary particles (DeCarlo
et al., 2004; Slowik et al., 2004; Zhang et al., 2005b) and unknown division of surface
area between primary and secondary aerosol contribute uncertainty to this estimate.
Although the total calculated coating thickness of 13 nm is only an approximation, it is
of the order of magnitude needed to suppress, at least partially, the photoionization15

signal.
Additionally, we have performed an exploratory laboratory experiment with the pho-

toionization aerosol sensor and found that its response dropped by a factor of ten when
soot particles were coated with oleic acid, while the AMS response did not change. The
magnitude of surface coating and its relevance to ambient conditions were not charac-20

terized in this exploratory experiment.
The size distributions of individual PAH masses, presented by Dzepina et al. (2005)1

also support the idea that particles containing PAHs are coated, or at least grow in size,
throughout the day. Between 10:00 and 14:00, the mode of m/z ’s 202 and 226 occurs
at 300–400 nm. Later in the afternoon between 14:00 and 18:00, the size distributions25

broaden such that the peak extends beyond 600 nm. The shift to larger diameters,
which is observed for all species in the city, is likely due to coagulation and condensa-
tion of secondary aerosol on preexisting particles (Dzepina et al., 20051).

The second hypothesis is that heterogeneous reactions of PAHs on the surfaces of
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particles may be responsible for the faster decay of SPAH versus other related pol-
lutants. In the gas phase, the dominant loss process of PAHs during the daytime is
reaction with the OH radical (Arey, 1998; Atkinson and Arey, 1994). In the particle
phase, PAHs may undergo photolysis or reaction with oxidants such as OH, ozone,
nitrogen oxides, and nitric acid; and the rate of reaction depends on the nature of the5

underlying particles and meteorological factors (Behymer and Hites, 1988; Calvert et
al., 2002; Finlayson-Pitts and Pitts, 2000; Kamens et al., 1986, 1988, 1985). Recent
laboratory experiments suggest that OH addition to pyrene and subsequent reactions
can lead to its removal from particles, in the form of volatile products (Molina et al.,
2004). A group of 11 PAHs adsorbed on graphite particles were found to have similar10

reactivities with OH (Esteve et al., 2004). As reaction with OH is the dominant loss
process of gas-phase PAHs (Atkinson and Arey, 1994), we therefore investigate the
heterogeneous reaction rate of OH with particle-phase PAHs to determine its role in
the loss of PAHs in Mexico City. Heterogeneous oxidation by ozone may also be an im-
portant sink for PAHs (Donaldson et al., 2005), so the results presented here represent15

a lower limit of their reactive decay.
The analysis focuses on the period 09:00–10:00, when SPAH concentrations diverge

from the others (Fig. 6). The predicted heterogeneous reaction rate Rhet is

Rhet =
ωγ
4

A[OH] (1)

where ω is the mean thermal velocity of OH (cm s−1), γ is the heterogeneous reaction20

probability, A is the surface area concentration of PAHs (cm2 cm−3), and [OH] is the
OH concentration (molec cm−3) (Bertram et al., 2001; Ravishankara, 1997). At 298 K,
the mean thermal velocity of OH is 66 100 cm s−1. We assume a reaction probability
of 0.5, which is consistent with experimental data for PAHs (Bertram et al., 2001).

At 09:00, the typical weekday SPAH concentration is 50 ng m−3. Based on PAH spe-25

ciation profiles during the morning hours, the average molecular mass of the mixture is
258 g mol−1, so the corresponding surface PAH density is 1.2×1014 molec m−3. Assum-
ing a molecular cross section of 1 nm2 corresponding to benzo[a]pyrene (Karcher and
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Fordham, 1987), whose molecular mass is close to the average, we obtain a surface
area PAH concentration of 1.2×10−6 cm2 cm−3. For comparison, this value is ∼10%
of the total surface area estimated from the AMS of ∼10−5 cm2 cm−3 during 09:00–
10:00. Given a typical OH concentration in Mexico City at 09:00 of 1.4×106 molec cm−3

(Shirley et al., 2005; Volkamer et al., 2005), the resulting Rhet predicted by Eq. (1) is5

14 000 molec cm3 s−1.
The ratio of the typical PAH concentration at 09:00 to Rhet gives a characteristic

lifetime of 2.3 h for heterogeneous reaction of OH with particulate PAHs. Given the
uncertainty in reaction probability and other inputs to Eq. (1), we cannot rule out het-
erogeneous reactions as a mechanism for PAH loss. PAH reaction products, such as10

quinones, hydroxyl-PAHs, and nitro-PAHs were not found in the AMS signal (Dzepina
et al., 20051), but at this point in its development, the AMS is not specific or sensitive
enough to detect them at the very low expected concentrations. However, because
APAH* does not also fall off at the same rate as SPAH at this time of day, coating of the
particles is a more likely explanation for the rapid decay of SPAH.15

5. Conclusions

Particulate PAH concentrations were measured by three different methods in Mex-
ico City in April 2003: analysis of time-integrated filters, aerosol photoionization, and
aerosol mass spectrometry. Speciated measurements suggest that motor vehicles are
the predominant daytime source of PAHs and that wood and garbage burning are im-20

portant nighttime sources. Particulate PAH concentrations are correlated with both CO
and naphthalene. During the morning rush hour, total particulate PAH concentrations
rise to a maximum of ∼110 ng m−3 between 07:30–08:00 and then decrease through-
out the remainder of the morning to ∼20 ng m−3 in the afternoon. Overnight concen-
trations rise as high as 50 ng m−3. The more rapid decrease in surface versus bulk25

PAH concentrations during the late morning suggests that freshly emitted combustion-
related particles are quickly coated by secondary aerosol material in Mexico City’s
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atmosphere, and may also be transformed by heterogeneous reactions.
These results have important implications for public health and for climate. The di-

urnal pattern of ambient concentrations implies that exposure to PAHs will be much
higher during the morning rush hour compared to the rest of the day. The rapid trans-
formation of particle-phase PAHs during the morning suggests that the toxicity of fresh5

versus aged particles may differ. If PAHs are coated by other compounds, their bioavail-
ability may decrease. Likewise, rapid coating of primary soot particles suggests that
internally mixed particles containing black carbon cores will be prevalent in the outflow
of Mexico City, which will lead to enhanced absorption of radiation and thus a larger
perturbation of the regional radiation balance by these particles.10
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Table 1. Particulate PAHs quantified by each method.

Species M GC/MS PASa AMSb

Acephenanthrylene 202 FPAH∗c SPAH APAH∗

Fluoranthene 202 FPAH∗ SPAH APAH∗

Pyrene 202 FPAH∗ SPAH APAH∗

1,2-Benzofluorene 216 FPAH APAH
2,3-Benzofluorene 216 FPAH APAH
1-Methylpyrene 216 FPAH APAH
Methylated MW 216 species (4 isomers) 216 FPAHc APAH
Benzo[ghi]fluoranthene 226 FPAH∗ SPAH APAH∗

Cyclopenta[cd]pyrene 226 FPAH∗ SPAH APAH∗

Benz[a]anthracene 228 FPAH∗ SPAH APAH∗

Benzo[c]phenanthrene 228 SPAH APAH∗

Chrysene/triphenylene 228 FPAH∗ SPAH APAH∗

Retene (1-methyl-7-isopropyl-phenanthrene) 234 FPAH
Methylated MW 226 species (3 isomers) 240 FPAHc APAH
Methylated MW 228 species (10 isomers) 242 FPAHc APAH
Benzo[b+j+k]fluoranthenes 252 FPAH∗ SPAH APAH∗

Benzo[a]pyrene 252 FPAH∗ SPAH APAH∗

Benzo[e]pyrene 252 FPAH∗ SPAH APAH∗

Perylene 252 FPAH∗c SPAH APAH∗

Benzo[ghi]perylene 276 FPAH∗ SPAH APAH∗

Indeno[1,2,3-cd]pyrene 276 FPAH∗ SPAH APAH∗

Coronene 300 FPAH∗ SPAH APAH∗

1,3,5-Triphenylbenzene 306 FPAH

∗ These species are included in the modified FPAH∗ and APAH∗ totals which are intended for
comparison to SPAH.
a The PAS response, denoted SPAH here, has been calibrated against the sum of these PAHs.
The signal is influenced by ionization potential and molecular size (Niessner, 1986).
b The AMS response includes [M], [M-H], and [M-H2] ions (see text and Dzepina et al., 20051,
for details) but does not differentiate between isomers.
c Identifications are based upon retention indices for these species. In all other cases, individual
standards were available to determine retention times and mass spectra.
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Table 2. Particle- and gas-phase measurements at CENICA during April 2003.

Parameter Method Instrument Frequency Limit of
detection

Speciated gas- and Filter, PUF, and Tenax GC + Hewlett Packard 4–10 h <1 ng m−3,
particle-phase PAHs collection and analysis 5971A MSD or Agilent <10 ng m−3

5973 MSD for naphthalene
Particle-phase Aerosol EcoChem Analytics 1 min 1 ng m−3

surface PAHs photoionization PAS 2000 CE
Particle size and Aerosol mass spectrometry Aerodyne Aerosol 4 min 18 ng m−3

composition, including Mass Spectrometer
PAHs
Black carbon Optical attenuation Magee Scientific AE-31 5 min 0.1µg m−3

Aerosol active Diffusion charging EcoChem Analytics 1 min 1 mm2 m−3

surface area DC 2000 CE
Carbon monoxide Infrared absorption API 300A 1 h 0.04 ppm
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 27

Fig. 1. Concentrations (gas + particle phases) of benzo[ghi]perylene (BghiP), indeno[1,2,3-
cd]pyrene (IndPy), coronene (Cor), pyrene (Py), methylphenanthrenes (Mphen), retene (1-
methyl-7-isopropylphenanthrene), and 1,3,5-triphenylbenzene (TPBz) on 29 April 2003. Also
shown is the ratio Mphen/Phen, an indicator of the relative contribution of diesel versus gasoline
vehicle exhaust. BghiP is a marker of gasoline vehicle exhaust, retene of soft wood combustion
and TPBz of refuse burning.
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Fig. 2. Particulate PAH concentrations measured using filters (FPAH), photoionization (SPAH),
and the AMS (APAH). The background time series shows 1-min SPAH.
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Fig. 3. Weekday, non-holiday diurnal cycles of SPAH and APAH*, excluding the holiday period,
at 15-min resolution. The shaded area highlights the peak rush hour period between 06:30 and
08:30.
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