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Abstract. Satisfactory method of removing noise from
experimental chaotic data is still an open problem. Nor-
mally it is necessary to assume certain properties of the
noise and dynamics, which one wants to extract from
time series. The wavelet based method of denoising of
time series originating from low-dimensional dynamical
systems and polluted by the Gaussian white noise is con-
sidered. Its efficiency is investigated by comparing the
correlation dimension of clean and noisy data generated
for some well-known dynamical systems. The wavelet
method is contrasted with the singular value decompo-
sition (SVD) and finite impulse response (FIR) filter
methods.

1 Introduction

Owing to a continuous character of the power spectra
filtering of chaotic data requires specific methods. The
traditional, Fourier domain methods such as band pass
filtering fail, thus several other methods, especially ded-
icated to analysis of chaotic time series, were proposed
(Grassbeger et al., 1993; Kostelich and Yorke, 1988).
In this paper a new technique of filtering, based on
the wavelet transforin, is presented and compared with
the singular value decomposition (SVD) and FIR filter
methods.

The basic idea is to distinguish noise from data by
means of their local regularity, thus it is assumed that
the regularity of the noise is different from that of data.
One can show that the local regularity of a function
can be effectively studied with the continuous wavelet
trausform and the notion of the Halder exponent. These
concepts are briefly introduced in Sect. 2 and a scaling
hehavior of wavelet cocfficients of the Gaussian colored
noise is determined. For wore information on this sub-
ject see Daubechies (1992): Mallat and Hwang (1992):
Muzy et al. (1994},

In Sect. 3 the wavelet filtering method is applied to
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time series associated with several dynamical systems of
known properties. Results are compared with the widely
used SVD filtering rooted in the idea of Karhunen-Logve
representation for the multichannel data, and the finite
impulse response (FI1R) filter. The Karhunen-Loéve ba-
sis (Albano et al., 1988; Broomhead and King, 1986)
is the basis of eigenvectors of autocovariance matrix
A = E[x @z, where r denotes the vector in the re-
constructed phase-space (Takens, 1981). Since the au-
tocovariance matrix is symmetric, SVD representation
acts like rotation in phase space.

2 Background

The continuous wavelet transform of a function f is de-
fined by:

Wolfl(a,b) = fla.b) =< f | ¥as >, (1)

where < f | ¢ap >= fj;o drf(r)g(x} is the standard
inner product in L*(R). The family of functions v,
is constructed by the recipe: wap(x) = o=/ y (22,
where @ and b are dilation and translation parameters,
respectively. The factor a=!/% ensures that a norin of
U 4 il L?(R)is constant. From now on we choose r = 1.
A function ¢ is called "mother wavelet”,

To be able to reconstruct the funceion from its wavelet
representation ¢ must satisfy so called admissibility con-
dition:

/ % i) < oo, (2)

where 1 is the Fourier transform of ¢ {Daubechies, 1992).
The wavelet transform is said to have n, vanishing
moments if [ deg(x)zt =0 for k=0,1,..,n, — L.
By definition, the function f has the Holder exponent
f at point #if there exists a constant ¢ and a polynomial
P (x) of the order n such that:

|f{x) = Pl — )] < Clr —b|", (3)
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Thus the behavior of f{z) around b may be expressed
in terms of the Taylor expansion:

n—1

§(2) = 70) + 3 (e = 9O ) + Cla 8", (1)
k-1

Appiying the wavelet transform to this expansion and
assuming that the mother wavelet function has at least
ny > h{b) vanishing moments we obtain:

Ca™? / dzlz — by (I - b)

Ca® [ dcioPORG at®. (5)

Wyifl(a,b) =

The last two formulas demonstrate the role of wavelets
in studying the local regularity of a function (Muzy
et al., 1994). In order to retrieve correctly the Hélder
exponent the mother wavelet must have n,, > h vanish-
ing moments.

One of the important characteristics of the wavelet
transform of colored noise is the scaling behavior of the
coefficients. Power spectra of colored noise are of the
form:

P{w) ~ fw|7*, (6)
where p is the spectral index. The scaling relation for

the wavelet coefficients computed in L! norm may be
derived as follows:

E Uf(a, b)|2]

E [ f dty f(: Ve (t1) f dtzf(tz)m]
f / dtydts E[F(t1) f (£2)]%a,00t1 Ythap(t2)

a_z.[fdtd'rg(*r)i,b (t;b)w (t_ (2_7))

a_'z/drg(f)/dwaﬂqf:(aw)ﬁeiw
= [ o) Plw)

d¢ - o |¢|F
/;WJ(OI p

xa TP {(7)

Here g(7) is the autocorrclation function, provided
that the process is stationary.

These results suggest a method of distinguishing col-
ored noige with small p from a smooth signal (we assume
that signal is of C* class, with & sufficiently large). One
can prove that, in contrast to colored noise, the wavelet
coefficients for smooth signal have an asymptotic behav-
ior @™, in the limit ¢ — 0. Thus the simplest way to
eliminate noise from smooth data is to remove the power

il
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law behavior controlled by the index p. We propose sub-
tracting at any given point b the noise contribution of
the form:

n{a, b) = C"(b)ap_;l. (8)

Here C'(b) is a constant computed in the region of
(a,b) plane where noise prevails over a smooth part of
signal. For a white Gaussian noise this obviously takes
place at small scales a. Thus the cleaned signal would
he:

Fola,b) = Fla,b) [1 - —”—(‘-‘L)] . 9)
{fa, b}

As in any application of the wavelet transform, the
problem of correct choice of the mother wavelet arises.
As has been shown earlier, for the singularity detection
one should use the wavelet, which cancels moments of
the order greater than the order of the local, at a given
position b, Hélder regularity. Equation 7 suggests that
a Gaussian white noise can be removed with the first
derivative of the Gaussian function as mother wavelet.

3 Numerical Experiments

The purpose of this paper is to gauge the wavelet fil-
tering method. When testing the method we have to
use a certain reference quantity, which in our case is the
correlation dimension ). For real data the correlation
dimension is not known a priori. That is why we will
only use daia corresponding to known dynamical sys-
tems.

From a great number of algorithms for estimating D4
we choose the most popular Grassberger-Procaccia al-
gorithm.

To estimate some dynamical quantities we have to
be able to reconstruct a d-dimensional phase space in
Euclidean space (d is called embedding dimension) from
a single time-dependent function f(t}. It was proven by
Takens (1981) that a possible reconstruction formula is:

z; = [f{te), f( + 7)o, St 4 (- 1)7)], (10)

with m > 2d + 1.

The choice of the time delay 7 is the crucial point
in application of the embeading procedure. It does not
need to be too short to eliminate linear correlation be-
tween vectors and too long because of finiteness of data
series. We have taken 7 to satisfy the condition g(r} =
+9(0), where g is the autocorrelation function of f(t)
(Shuster, 1988).

The correlation dimension may be defined hy expres-
ston:

lim P[8(z,y) < r] = Cr~ P2, (11)
r—0
which states that the probability that a distance & be-

tween two points on the attractor is less than r scales as
r= D2 for a properly chosen embedding dimension m.
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It 1ts simplest form the probability (in Eq. 11) may
be approximated by the correlation integral C'(r):

1
N SOl —llm -z, (12)

iy

Pld(a,y) <r]=C{r) =

where & is the Heaviside function.

Since the dimension of the phase space d 1s not known
a priori the Grassberger-Procaccia algorithm is applied
several times for various values of m; to obtain a set of
correlation integrals C{my,r). Existence of the attractor
results in the saturation of the slopes of the functions
Clmg,r) on a log-log plot. It is convenient to plot the
derivative of C'(m,r) with respect to » (local slope) vs.
In{r). If the noise level is not too high then over certain
range of r, a scaling region, the slope remains approx-
imately constant (see Fig. 2). If the plateaus coincide
for several values of m;, this limiting value of slope is
considered as an estimate of the correlation dimension
Ds.

In practice, for each embedding dimension we esti-
mate the correlation dimensionn Da(rr;) as the average
of local siopes over the region of the smallest standard
deviation ap, (m; ) and che final value of 14 1s computed:

D — 2126 wi{mg) Dyimy) ! (13)

0
E;_e w(m,)

where weights are defined by

wime) = [, (ma)] %, (14)

and the final error is:

™

10 -

ap, = Zw(mi) . {15)

i~6

Thus we take into account only the last five embed-
ding dimensions in the estimation of Iy, For improve-
ments and limitations of the Grassberger-Procaccia al-
gorithm see Ruclle {1890) and Teiler (1986).

The denoising method was tested on three models:
Lorenz model, Mackey-Glass model, and non-smooth
chaotic data.

3.1 The Lorentz model is described by the equations:

el

il oly — @)

oo -

o Ty

il

— = ay— bz,

ot KO (16)

with o = 10, b = 8/3, r = 28. For those paramneters the
system has an attractor with the correlation dimension

1), = 2.07 (Shuster, 1988).
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3.2 The Mackey-Glass model

de  ar(t—71)

TS T ma o (17)

with a = 0.2, b = 0.1, 7 = 50. For this set of parameters
the correlation dimension 13y == 4.

Data sets used in the analysis have been 4096 points
long. The signal was polluted by an additive white
Gaussian noise. To quantify noise level a parameter
R = ¢, /oswas chosen, where o, and o, are standard
deviations of the noise and signal, respectively. As a
mother wavelet the 4th derivative of the Gaussian func-
tion was taken. The constant C(b) is & modulus of the
wavelet coefficient at the finest scale at a point b.
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Fig. 1. Illustration of the application of formulas 3 and 18. Panels
are the sections of modulus of the wavelet transform across the
scales at certain point, {a) - noisy signal {solid line) and noise
contribution {dotted line) as in formula 9, {b) - noisy signal {solid
line} and noise contribution {dotted ling) as tn formula 18, {(c}
- clean signal (sold line) and after deuoising (dotted line) as in
formula 9, at small scales there are strong noise residuals, (d)
- clean signal (solid line) anud after denoising (dotted line) as in
formula 18, filtering is much betler.

We have to keep in mind that Eq. 7 was derived as an
ensemble average thus for a single realization the modu-
lus of wavelet coeflicients will vary around this average.
To take this into account we propose to modify Eq. 9

folu,b) = fla. b) {1 - %} , (18)
where:
n'(a, by = n(a,b)Ba) .

Bla) = La, bl (19)

n{a, by’

The denoising algorithm was applied three times. Fig-
ure 1 illustrates the effect of application of Eq. 9 and
18 on the wavelet coefficients of the noisy Lorentz tine
serics. Scale variation of wavelet coefficients of noise
causes that (9) does not remove correctly the noise cou-
tribution (pancl {¢} dotted line). One can see that L.
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18 performs denoising much more effectively (panel (d)
dotted line).

slope

sope

In{r)

slopa
slope

Fig. 2. Results of filtering for two kinds of filters applied to the
Lorenz system. 'I'he panels are local slope vs. In(r) {each curve is
for different value of embedding dimension ranging from | to 10
with step 1),{a) - clean data, existence of scaling region is clearly
visible, (b) - noisy data {R=>50%), the scaling region does not
exist, {c) - after SVD filtering, its hard to find the scaling region
bus effect of noise is reduced, (d) - after wavelet filtering, scaling
region exists but is much narrower than for the clean data (a).
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Fig. 3. Results of filtering for two kinds filters in the case of
Mackey-Glass systern. The panels are local slope vs. In{r) (each
curve is for different value of embedding dimension ranging from
2 to 20 with step 2), (a) - clean data, existence of scaling region
is clearly visible, (b) - noisy data {(R=50%), the scaling region
does not exist; (¢} - after SVD filtering, its hard to [ind the scal-
ing region but impact of noise was decreased, (d} - after wavelet
filtering, scaling region exists again but not so evident as in (a).

Figures 2 and 3 show the plots of local slope vs. In{r)
{for the Lorenz and Mackey-Glass system, respectively).
As was mentioned earlier a constant value of local slope
over a certain region of r suggests a finite dimension
of the attractor. One can sce that the wavelet filter
extends the scaling region and the correlation dimen-
sion is close to the correct value, especially in the case
of Mackey-Glass system, confirming the advantage of
using the wavelet filtering over SVD filter. Note that

Grzesiak: Wavelet filtering of chaotic data

the scaling region is shifted along In(r) as a result of a
reduction of the signal power in the wavelet denoising
procedure.

Figures 4 and 5 illustrate the effectiveness of filter-
ing as function of the noise level. The wavclet filter
has better efficiency for both systems, especially for the
Mackey-Glass systemn where the correlation dimension
is nearly constant across the noise levels. The large er-
rors of estimated dimensions for SVD result from the
difficulty in defining the scaling region for large noise to
signal ratio.
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Fig. 4. Comparison of cliecliveness of two filters for the Lorenz
system. Top panel (a) shows correlation dimensgion vs. noise
level (stars-noisy data, diamonds-SV1) filter, squares-wavelet fil-
ter), bottom panel displays errors of estimated dimension.
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Fig. 5. Comparison of effectiveness of two filters for the Mackey-
(Glass system. Top panel (a) shows correlation dimension vs. noise
level (stars-noisy data, diamonds-SVD filter, squares-wavelet fil-
ter), bottom panel displays errors of estimated dimension.

3.3 Non-smooth chaotic data
Now we present more complicated example of filtering

of non-smooth chaotic data. Time series are obtained
from a model describing the four- waves interaction in
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plasma as derived by Krasnosel’skikh et al. (1998) us-
ing Zakharov equation (KLDM model}. In Fig. 6 its
power spectrum is compared with the spectra of previ-
ously discussed data scts. The power law behavior in-
dicates an existence of singularities in the KLDM time
series. Lorenz and Mackey-Glass spectra (Fig. 6 {a)
and (b)) are typical of smooth signals, which decay very
fast, faster than the power-law.

We added 50% of the white noise and used three
filters: FIR (finite impulse response), SVD, and the
wavelet filter. Filtering was accomplished using B spline
function of 9th order i.e. by 9th-touple convolution of
the characteristic function of interval [0,1].

pewer

1w Bl . .
0.0a1 0.010 C.100 +.000
frequency
0l -
(&
B
3
2
a
10 T AR N —_—
0.001 0.010 0.100 1.000

frequency

power

9.50¢ 0.010 0100 1.000
frequency

Fig. 6. Power spectra for: (a) - Lorenz system, (b} - Mackey-
Class system, (¢) - KLDM system.

The power spectra for noigy and cleaned data are com-
pared in Fig. 7. Wicth the FIR filter one can not recover
the original power law hehavior of a spectrum, and the
SV filter seems to be inefficient at all. Only the wavelet
filter retrieves the original power spectrum shape (Fig.
7 (d}). Figure 8 illustrates the effect of filtering on the
correlation dimension. Only the FIR and the wavelet
filters {Fig. 8 (d) and (e)) give reasonable evaluation
of s 4.650 £ 0.42 and 4.070 £ 0.28, for the FIR and
wavelet filtering, respectively. The correlation dimen-
sion estitnated in Krasnosel'skikh et al. (1998) is 3.24.
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Fig. 7. Power spectra for noisy (a) (R=>50%) and cleaned KLDM
data with: (b) - VD filter, (¢) - FIR filter, {d) - wavelet filter.
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Fig. 8. Resulits of filtering for KLDM svsten:. The panels are lo-
cal slope vs. In{r) {each curve Is [or different value of embedding
dimension ranging from 1 to 10 with siep 1), {a) - clean dala, exis-
tence of scaling region is clearly visible, (b) - noisy data (R=50%),
the scaling region does not exist: (¢) - after SV filtering, there is
no evidence of scaling region; (<) - after FIR filvering; {¢) - alicr
wavelet filtering.

4 Conclusions

The munerical tests presented in this paper have shiown
that the wavelet transforn filtering can compete with
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the SVD and FIR filters.

The finite impulse response {FIR )} filters are frequently
used for cleaning chaotic data (Macek, 1998; Badii et al.,
1988). It performs sufficiently well when the signal and
noise are easily distinguishable in the Fourier domain,
i.e. broad-band chaotic signal is concentrated at low fre-
quencies while the noisy part dominates at high frequen-
cies. Then one can choose FIR filter with spectral char-
acteristics near to the optimal Wiener filter (see Kantz
and Schreiber (1997)). But it is always difficult to select
the optimal cutoff frequency, which would depend on the
noise level. The choice of cutoff frequency is especially
difficult when the signal or noise arc nonstationary. An-
other problem with FIR filters is that they can increase
the correlation dimension (Badit et al., 1988).

In the wavelet method only a noise contribution is
subtracted. The wavelet method can be seen as a self
adjusting. Equation 18 proves that we are able to clean
out a signal of a nonstationary noise provided the noise
autocorrelation function is the Dirac delta function. In
that casc application of the FIR filters is not recom-
mended. For nonstationary chaotic signals the nonlin-
ear filtering in the phase-space {see for instance: Kantz
and Schreiber (1997); Grassbeger et al. (1993)) is also of
little use. Here we cannot obtain the proper embedding
and thus extract the signal.

There is yet another advantage of using the wavelet
method for cleaning a signal of the white noise contribu-
tion. Assuming that a chaotic signal is smooth up to a
certain order, the wavelet removal of the noise contribu-
tion should not distort the original signal while, as was
shhown in the third test, FIR filter changes the original
spectrurm.

The assumption that chaotic signal is smooth may be
viewed as to0 narrow, but in most cases the smooth-
ness of dynamical systems comes from the smoothness
of the right-hand side of differential equations defining
the system. Besides, as has been shown, the wavelet fil-
ter can be efficient even for non-smooth signals provided
its spectral index is significantly greater than the spec-
tral index of the noise. Note however, that the wavelet
filter, in this form, will not work on chaotic maps, such
as the Hénon map.

The method was tested on signals with superimposed
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colored noise. Although the results are not as consistent
as in the case of a white Gaussian noise yet the wavelet
filter performs better than the SVD filter, which seems
to amplify noise behavior rather than a signal.

Our tests also show that the efficiency of filtering is
higher for high dimensional systems often encountered
in geophysics.
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