

The use of tunnel concentration profile data to determine the ratio of NO2/NOx directly emitted from vehicles

X. Yao, N. T. Lau, C. K. Chan, M. Fang

► To cite this version:

X. Yao, N. T. Lau, C. K. Chan, M. Fang. The use of tunnel concentration profile data to determine the ratio of NO2/NOx directly emitted from vehicles. Atmospheric Chemistry and Physics Discussions, 2005, 5 (6), pp.12723-12740. hal-00301975

HAL Id: hal-00301975 https://hal.science/hal-00301975

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Atmos. Chem. Phys. Discuss., 5, 12723–12740, 2005 www.atmos-chem-phys.org/acpd/5/12723/ SRef-ID: 1680-7375/acpd/2005-5-12723 European Geosciences Union

ACPD

5, 12723-12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

Title Page Introduction Abstract Conclusions References Figures Tables ∎∎ • Back Close Full Screen / Esc Print Version Interactive Discussion

EGU

The use of tunnel concentration profile data to determine the ratio of NO_2/NO_x directly emitted from vehicles

X. Yao¹, N. T. Lau¹, C. K. Chan², and M. Fang¹

¹Institute for the Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

²Department of Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

Received: 29 September 2005 – Accepted: 21 November 2005 – Published: 13 December 2005

Correspondence to: M. Fang (fangming@ust.hk)

 $\ensuremath{\textcircled{O}}$ 2005 Author(s). This work is licensed under a Creative Commons License.

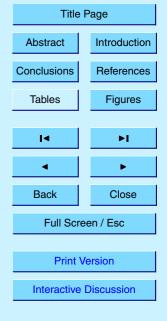
Abstract

Recently, it is reported that primary vehicular NO_2/NO_x ratio to be 10–30% and primary vehicular NO₂ has raised much interest and concern in the control of NO₂ in urban areas. In this study, primary vehicular NO₂/NO_x ratio in Hong Kong was investigated based on intensive long tunnel (3.7-4 km in length) experiments where concentration 5 profiles of air pollutants along the entire lengths of the tunnels were obtained. Long tunnels were selected because of the inherent low O₃ concentrations in the partially enclosed environment. In addition the concentrations of pollutants from vehicles are high. Thus, the NO₂ measured inside long tunnels would be more representative of the primary NO₂ emitted by vehicles and contribution due to atmospheric transformation 10 would be limited. This dataset was supported by a long-term on-road air quality dataset (June 2002–August 2003). Both datasets were obtained using the Mobile Real-time Air Monitoring Platform (MAP). The primary on-road vehicular NO₂/NO₂ ratio was less than 2%, detected in the mid sections of tunnels investigated, where O_3 concentration was at a minimum. In sections of the tunnels (entrance and exit) where O₃ concentrations 15

were relatively high, the NO₂/NO_x ratio could be as high as 19%. Long-term (annual average) on-road air quality data in open air yielded NO₂/NO_x ratios up to 28%. Thus, it is apparent that directly emitted NO₂ from vehicles is not significant in atmospheric NO₂ concentration. A simple model was used to segregate the contribution of background NO₂ and transformed NO₂ measured in vehicle plumes. 20

25

Introduction 1.


 NO_2 plays a central role in tropospheric chemistry. NO_2 in urban atmosphere originates mainly from primary emissions of combustion processes and oxidation of NO. Recently, primary vehicular NO₂ raised much interest and concern in NO₂ control in urban areas (Harrison and Shi, 1996; Carslaw and Beevers, 2004a, b, 2005; Soltic and Weilenmann, 2004). The reported primary vehicular NO₂/NO₂ volume ratio varied from

ACPD

5, 12723-12740, 2005

The ratio of NO_2/NO_y directly emitted from vehicles

X. Yao et al.

2-5% to ~30% (Lenner and Lindqvist, 1983; Cariappa et al., 1994; Harrison and Shi, 1996; Clapp and Jenkin, 2001; Jimenez et al., 2001; Carslaw and Beevers, 2004a, b, 2005; Jenkin, 2004a, b; Soltic and Weilenmann, 2004). The lower ratio (2-5%) is the widely accepted value for gasoline engines under normal driving conditions (Hilliard

- and Wheeler, 1979). Two methods were used in these experiments: direct measurements using chassis dynamometers equipped with dilution system and remote sensing technology, and indirect measurements in tunnels at pre-determined spots, and conventional stationary (including roadside) monitoring. One of the difficulties encountered in these methods is how to isolate primary vehicular NO₂ from background and trans formed NO₂. A more definitive primary NO₂/NO_x ratio would be very useful in the
- understanding of the transformation of this pollution in the atmosphere.

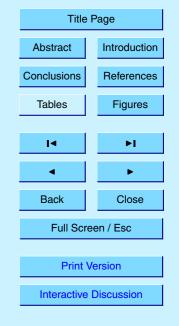
 NO_x concentrations at tailpipes vary from a few ppm to hundreds of ppm depending on engine operating conditions and efficiency of the three-way catalytic converter installed (Turns, 1996). NO can be converted to NO_2 by a number of reactions, e.g.:

15 $2NO + O_2 \rightarrow 2NO_2$,		
------------------------------------	--	--

$$NO + O_3 \rightarrow NO_2 + O_2, \tag{2}$$

$$NO + HO_2 \rightarrow NO_2 + OH, \tag{3}$$

$$NO + RO_2 \rightarrow NO_2 + RO_2$$


20

Reaction (1) is not important in NO₂ production compared to the O₃ and free radical reactions (Finlayson-Pitts and Pitts Jr., 2000), thus the ubiquitous O₃ in the atmosphere makes it difficult to determine the amount of NO₂ directly emitted from vehicles.

Reaction (2) is a fast reaction. The formation rate of NO_2 at 298 K by Reaction (2) is estimated to be 27% min⁻¹ when O_3 is constant at 10 ppb. In urban area, it is reported that HO₂ concentration was as high as 0.01 ppb (Hard et al., 1992). The formation rate of NO₂ at 298 K by Reaction (3) is about 8% min⁻¹ when HO₂ is constant at 0.01 ppb. If Reaction (2) is considered alone, the amount of NO₂ generated is same as the amount of O₃ reacted. Thus, (NO₂+O₃) is conserved. (NO₂+O₃) is not conserved when the 12725 5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

(1)

(4)

 NO_x and volatile organic carbon (VOC) reactions such as Reactions (3–4) take place resulting in a net increase of (NO_2+O_3) (Finlayson-Pitts and Pitts Jr., 2000; So and Wang, 2003).

- In this study, intensive high-resolution air pollutant concentration profiles along the entire lengths of tunnels (3.7–4.0 km in lengths) were measured to estimate the primary vehicular NO₂/NO_x ratios and to study the oxidation of NO to NO₂ in vehicle plumes. The dataset was obtained using the Mobile Real-time Air Monitoring Platform (MAP). The advantages of the tunnel measurements are:
 - 1. Tunnels are ideal for studying vehicular emissions because the space is confined
 - and the conditions are "controlled". The main source of air pollutants is vehicular (fresh and aged) and the NO_x concentration can reach several ppm.
 - 2. In the absence of solar irradiation inside tunnels, O_3 concentration is inherently low and Reaction (2) is not favored. This in turn inhibits the O_3 -involved reactions. However, dark chemical reactions still can take place (Cariappa et al., 1994; Finlayson-Pitts and Pitts Jr., 2000). MAP concentration profile data allow the pinpointing of the exact location of the lowest O_3 concentration where HO_2 and RO_2 free radicals are also possibly the lowest, and, therefore, primary NO_2 is expected to be more prominent. In other words, the interference due to Reactions (2–4) could be reasonably isolated.
- Notably, volatile organic compounds (VOC) are still present and in high concentrations. The tunnel results were supported by a long-term on-road air quality dataset (June 2002–August 2003), also obtained using MAP, for seasonal variation and statistical average of this ratio in open space.

2. Experimental

10

15

 $_{25}$ Two tunnels in Hong Kong were used in the study. The Tate Cairn's Tunnel (TCT) is ${\sim}4\,km$ in length while the Tai Lam Tunnel (TLT) is 3.7 km long. The roadway grade

ACPD

5, 12723-12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
	►I		
•	•		
Back	Close		
Full Screen / Esc			
Print Version			
Interactive Discussion			

is negligible in both tunnels. Both tunnels have two separated tubes, two-lane tubes in TCT and three-lane in TLT. The daily average traffic volumes in TCT and TLT were 62 600 and 45 400 vehicles day⁻¹, respectively, during the experiments. The ratio of diesel trucks to passenger vehicles in TCT was 25% while it was 43% in TLT. The difference in the daily averaged traffic flow and traffic compositions between the southbound and northbound tubes in the same tunnels at the same time was pedicible, although a

and northbound tubes in the same tunnels at the same time was negligible, although a diurnal variation of traffic flow existed.

A longitudinal ventilation system with 16 fresh air fans is used in TCT with a total fresh air supply of $6\,912\,000\,\text{m}^3\,\text{hr}^{-1}$, while a semi-transverse ventilation system with 24 fresh air fans and 15 exhaust air fans is used in TLT with a total fresh air supply of $42\,200\,000\,\text{m}^3\,\text{hr}^{-1}$ and a total exhaust air flux of $6\,140\,000\,\text{m}^3\,\text{hr}^{-1}$. Ten sets of CO, NO₂, NO and visibility sensors are used to monitor air quality in the two tunnels to control the ventilation.

The Mobile Real-time Air Monitoring Platform (MAP) developed at the Hong Kong
 ¹⁵ University of Science and Technology was used to make the tunnel measurements. The details have been reported in Yao et al. (2005a, b). Stand-alone NO_x, O₃ and CO gas analyzers (API, Inc.) onboard MAP were used to obtain the concentration profiles. The intensive tunnel measurements were made in September 2004 and May 2005. For each tunnel, the average air pollutant concentrations were computed from five runs.
 ²⁰ The NO_x monitor reported concentration data in 10–20 s spans. The speed of vehicles in the tunnels was limited to 70 km hr⁻¹. Thus, the spatial resolution of NO₂ and NO_x concentrations in the tunnels was 300 m.

The long-term on-road dataset consists of a total of 126 days (runs) of air pollutant data (June 2002–August 2003). In each run, MAP measured air pollutants nominally

²⁵ from 10:00 to 16:00. Traffic conditions included low traffic country roads, highways heavily traveled by heavy-duty trucks, city streets and tunnels.

ACPD

5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
•	►I		
•	►		
Back	Close		
Full Screen / Esc			
Print Version			
Interactive Discussion			

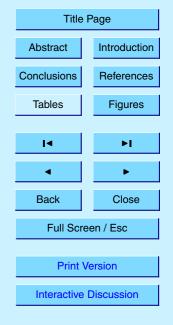
3. Results

3.1. Concentration profiles of NO and NO₂ in tunnels

There was no evident difference in the measured air pollutant concentrations between the southbound and the northbound tubes of TCT at similar times (rush hour or non-rush hour in daytime). Averages of the two tubes of TCT will be discussed instead of treating them separately. However, a large difference was found in TLT between the two tubes probably due to fuels from different sources used in the vehicles. Ultra low sulfur-content fuel (<150 ppm for gasoline and <50 ppm for diesel) is used in Hong Kong while the sulfur-content is <800 ppm for gasoline and <2000 ppm for diesel across
the border north of Hong Kong. When heavy-duty trucks return to Hong Kong, the tanks are usually filled with high sulfur-content fuels and the southbound TLT is the preferred truck route. The use of high sulfur-content fuels will eventually poison threeway catalytic converters resulting in high NO_x emissions. The average concentration profiles, with standard deviations, of NO and NO₂ in the tunnels are shown in Figs. 1a-

⁵ c. The entrance of the tunnel is marked by 0 (zero) m.

Pollutant concentration profiles inside the tunnels are influenced by a combination of factors: sources, sinks, piston effect and mechanical ventilation. NO peak appeared at about two-thirds the length of the tunnel from the entrance, while lower NO concentrations occurred at the two ends as shown in Figs. 1a–c. It is reported that the peaks of NO and the lange reserving and size and so and so a second size and so and so a second size and so a se


- ²⁰ NO_x and the less reactive species CO and SO₂ occurred almost at the same location in TCT (Yao et al., 2005). NO₂ peak was detected at the exit section while the lowest value occurred at 500–1500 m from the entrance section. The lowest O₃ occurred at 1000–2000 m from the entrance section and relatively high O₃ was detected at both ends (entrainment effect) as shown in Figs. 2a–c.
- ²⁵ The respective NO, NO₂ and O₃ concentration profiles in the tunnels were similar only the concentrations varied. There are three sources of NO in the tunnels: ambient NO in front of the vehicle carried into the tunnels due to piston effect and relatively low background NO in fresh air brought into the tunnels due to mechanical ventilation,

ACPD

5, 12723-12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

and primary NO emitted from vehicles. One of the NO sinks is the transformation of NO to NO_2 in the atmosphere. The highest NO_x concentration was detected in the southbound tube of the TLT tunnel and it will be used in the discussion to follow. The maximum NO concentration (averaged value of five runs) was 2720 ppb and the aver-

- ⁵ age for the entire tunnel was 1331 ppb. The maximum NO₂ concentration (averaged value of five runs) was only 82 ppb and the average for the entire tunnel was 52 ppb. NO concentration at the entrance was 214 ppb and was assumed to be the background NO outside of the tunnel. The high NO inside the tunnel indicates overwhelming contribution from fresh vehicle emissions.
- ¹⁰ There are four main NO₂ sources in the tunnel: ambient NO₂ in front of the vehicle carried into the tunnels due to piston effect and relatively low background NO₂ in fresh air brought into the tunnels due to mechanical ventilation, primary NO₂ emitted from vehicles, and transformed NO₂ from NO. NO₂ concentration at the entrance of the southbound tube of TLT was 50 ppb. The lowest NO₂ (28 ppb) occurred at ~1500 m.
- ¹⁵ The higher NO₂ at the entrance was likely ambient NO₂ carried into the tunnel by piston effect. Furthermore, fresh air brought into the tunnel by mechanical ventilation would also contribute to the NO₂ concentration as well as diluting the emitted and transformed NO₂ in the entrance section. For the rest of the tunnel, accumulation of emitted NO₂ and transformed NO₂ overcame the dilution processes and NO₂ increased gradually to 82 ppb (an increase of 54 ppb).

In the 1500 to 2500 m section, both NO_x and NO_2 increased. From 2500 m to the exit section where end effect was experienced, NO_2 increased by 44 ppb while NO_x decreased by 1777 ppb. The concentration of the NO_2 originating from primary vehicular emissions in this section was expected to decrease with decreasing NO_x . The 44 ppb

²⁵ increase in NO₂ in this section was probably due to transformed NO₂. The wind speed inside the tunnel was estimated to be ~5 m s⁻¹ based on ventilation data. It took the air ~240 s to travel from the 2500 m point to the exit of the tunnel. It should be noted that the average air mass movement in tunnels is much lower than vehicular speed. The NO concentration decreased from 2720 to 1001 ppb in this distance. A rough cal5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

culation showed that NO₂ produced by Reaction (1) was ~6 ppb. The 44 ppb increase in NO₂ measured suggests that 86% of the NO₂ was not transformed by Reaction (1). As shown in Fig. 2, the increase of (NO \pm O) from \pm 1500 m to the oxit section of

As shown in Fig. 3, the increase of (NO_2+O_3) from ~1500 m to the exit section of the tunnel by 63 ppb (to 96 ppb), suggests that the transformation reactions such as Reactions (3–4) were likely to be important.

3.2. The NO_2/NO_x ratio profiles in the tunnels

5

Higher NO_2/NO_x values were found at both ends of both tunnels as shown in Figs. 2a– c. The lowest NO_2/NO_x ratios (2 to 6%) with NO concentrations at 1006–2128 ppb, occurred at ~1000 m from the entrance of TCT and at ~2000 m in both tubes of TLT.

¹⁰ These lowest NO_2/NO_x ratios should be closer to the primary vehicular NO_2/NO_x ratios. The apparent two-fold range in the lowest NO_2/NO_x ratio was probably due to vehicular conditions and ambient concentrations of these gases.

In the literature, higher primary NO_2/NO_x ratios have been reported for diesel engines than gasoline engines, and vehicles with higher NO_x emissions (Hilliard and Wheeler, 1979; Lenner and Lindqvist, 1983; Cariappa et al., 1994; Soltic and Weilenmann, 2004).

The NO_x concentration in the southbound tube of TLT doubled that in the northbound tube. As presented in the Experimental Section, traffic composition, traffic flow and ventilation in both tubes of TLT are similar. The difference in NO_x concentration ²⁰ between the two tubes was probably caused by low quality fuels used by the crossborder vehicles in the southbound tube of TLT. The primary vehicular NO₂/NO_x ratio was expected to be higher in the southbound tube of TLT.

TLT has more diesel vehicles, lower traffic flow and better ventilation system than TCT. The southbound tube of TLT had higher NO_x concentration than TCT, suggesting higher emission of this pollutant. Thus, the primary vehicular NO_2/NO_x ratio was expected to be higher in the southbound tube of TLT than TCT. The lowest NO_2/NO_x ratio at 2% detected in the southbound TLT was the upper limit of the average on-road primary vehicular NO_2/NO_x ratio in the two tunnels (four tubes) studied.

ACPD

5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

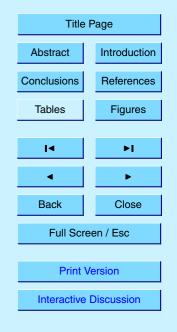
X. Yao et al.

Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
	▶		
•	•		
Back	Close		
Full Screen / Esc			
Print Version			
Interactive Discussion			

Ventilated fresh air diluted all gases inside the tunnel and was probably responsible for NO₂ concentrations to decrease from the entrance to the minima. In this distance in the tunnels, the NO₂/NO_x ratio gradually decreased by 12–15%. It should be noted that the NO₂/NO_x ratio in ventilated air was higher than that in the vehicle exhaust, therefore the intrusion of ventilated air would increase the NO₂/NO_x ratio. Any oxidation of NO to NO₂ by Reactions (2–4) would also increase this ratio. This ratio increased by 8–13% from where the lowest NO₂ was detected to the exit section.

3.3. The NO₂/NO_x on-road ratio

In the open air, it is reported that NO_x concentration in vehicle plumes substantially
 decreased in a few minutes when vehicle plumes are diluted by ambient air (Seakins et al., 2002). During dilution processes, rapid transformation of NO to NO₂ can take place due to Reactions (2–4). Higher dilution extent of vehicle plumes by ambient air would yield a higher NO₂/NO_x ratio. We further examine the NO₂/NO_x ratio in on-road open air. The on-road NO_x concentrations are shown in Fig. 4a and the annual average was 251 ppb, indicating that the dilution extent of vehicle plumes by ambient air in open air is better than in tunnels. As expected, the annual average NO₂/NO_x ratio was as high as 28% (Fig. 4b). Using the primary vehicular NO₂/NO_x ratio determined in the tunnels (2%), background and/or transformed NO₂ would account for 26% of the ratio in open air. In addition, there was no significant seasonal variation of the NO₂/NO_x ratio in the long-term on-road dataset as shown in Fig. 4b. The correlation between NO_x and the ratio is poor (R²=0.25).


Twenty-four-hour experiments conducted on 14–15 August 2002 was used as an example to examine the contribution of different sources and processes to the onroad NO₂/NO_x ratios. As shown in Figs. 5a, b, fairly good correlations exist between NO₂ and NO_x when NO_x was <300 ppb. The slopes are 0.35 and 0.32 in daytime and nighttime, respectively. However, for NO_x>300 ppb, correlations between NO₂ and NO_x are poor with the corresponding slopes at 0.21 and 0.19. Compared to the primary vehicular NO₂/NO_x ratio of 2%, background NO₂ or transformed NO₂ determined the

ACPD

5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

on-road NO_2/NO_x ratio regardless of time.

A simple model was used to isolate the emitted and transformed NO₂ from background NO₂. Assume that the measured NO₂ in vehicle plumes consisted of background NO₂([NO₂]_{*BG*}), primary vehicle emitted NO₂ ([NO₂]_{*P*}) and transformed NO₂ $([NO_2]_{T})$

Define NO_x<50 ppb to be background and NO_x \ge 300 ppb to be vehicle plume. For NO_x<50 ppb, the average NO_x, NO₂ and O₃ concentrations were 24, 12 and 37 ppb, respectively, and for NO_x \ge 300 ppb, they were 513, 115 and 6 ppb, respectively. In nighttime, the average NO_x, NO₂ and O₃ concentrations for NO_x<50 ppb were 25, 13 and 10 ppb, respectively, while for NO_x \ge 300 ppb, they were 463, 87 and 2 ppb.

The following was used to estimate $[NO_2]_P + [NO_2]_T$ from MAP data:

 $[NO_2]_P + [NO_2]_T = [NO_2]_{VP} - [NO_2]_{BG}$

where $[NO_2]_{VP}$ is the NO₂ measured in vehicle plumes.

The amount of NO₂ ($[NO_2]_{R2}$) produced by Reaction (2) alone (no VOC involved in O_3 formation) is:

 $[NO_2]_{R2} = [O_3]_{BG} - [O_3]_{VP}$

where $[O_3]_{BG}$ is O_3 concentration when $NO_x < 50$ ppb, and $[O_3]_{VP}$ is O_3 concentration in vehicle plumes. Substituted Reaction (6) into (5),

$$NO_{2}]_{P} + [NO_{2}]_{T} - [NO_{2}]_{R2} = [NO_{2}]_{VP} - [NO_{2}]_{BG} - ([O_{3}]_{BG} - [O_{3}]_{VP}),$$
(7)

20 Define:

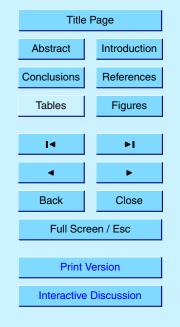
F

$$Ratio1 = ([NO_2]_P + [NO_2]_T) / ([NO_x]_{VP} - [NO_x]_{BG}),$$
(8)

$$Ratio2 = ([NO_2]_P + [NO_2]_T - [NO_2]_{R2}) / ([NO_x]_{VP} - [NO_x]_{BG}).$$
(9)

Ratio1 is the ratio of primarily emitted and transformed NO_2 to primarily emitted NO_x and they were 21% for daytime and 17% for nighttime. Ratio2 is the ratio of primarily

ACPD


5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

(5)

(6)

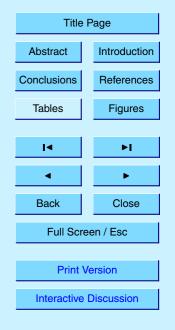
emitted and transformed NO₂ excluding Reaction (2) to primarily emitted NO_x and it was 15% for both day and night. Considered the primary vehicular NO₂/NO_x ratio of 2%, the transformed NO₂ excluding Reaction (2) contributed 13% to Ratio2, however, the contribution cannot be isolated from the primary vehicular contribution based on the data measured in the open air alone.

Overall, the data measured in the open air may not be applicable for estimating primary vehicular NO_2/NO_x ratios due to the existence of background and/or transformed NO_2 .

4. Summary

5

Intensive long-tunnel (3.7-4 km) air pollutant concentration profiles along the entire 10 lengths of tunnels in Hong Kong were used to estimate primary vehicular NO₂/NO₄ ratios under depleted O_3 conditions. The lowest NO_2/NO_x values were found in the middle of the tunnels at 2–6%. At the entrance sections of the tunnels, higher ambient NO_2 concentrations caused the NO_2/NO_x ratios to be as high as 20%. In the exit sections of the tunnels, more O₃ became available to rapidly oxidize NO to NO₂ and 15 the NO₂/NO_x ratio was as high as 19%. These values, however, were still lower than the average annual NO₂/NO_x ratio on roads in Hong Kong at 28%, where atmospheric transformation was expected to be much more significant. Ozone and free radicals are ubiquitous and they interfere with the measurement of NO directly emitted from vehicles. Long tunnels, shielded from ultraviolet irradiation and have a constant flow of 20 automobiles, provide an ideal and convenient laboratory for the assessment of primarily emitted vehicular NO₂ as demonstrated in this paper. Mobile platform measurements


Acknowledgements. The financial support by the Hong Kong Jockey Club Charities Trust in the
 Mobile Real-time Air Monitoring Platform project is gratefully acknowledged. We thank the MAP team, K. L. To, W. Tsang, A. Tam and A. Choi, who are responsible for the real-time mobile air quality data used in this paper.

provide concentration profiles necessary for such analysis.

5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

References

15

- Cariappa, C., Narney, J. K., Laster, W. R., and Caton, J. A.: Effect of carbon monoxide on nitric oxide in exhaust gases, Combust. Sci. Technol., 100, 355–361, 1994.
- Carslaw, D. C. and Beevers, S. D.: New direction: should road vehicle emissions legislation consider primary NO₂?, Atmos. Environ., 38, 1233–1234, 2004a.
 - Carslaw, D. C. and Beevers, S. D.: Investigating the potential importance of primary NO₂ emissions in a street canyon, Atmos. Environ., 38, 3585–3594, 2004b.
 - Carslaw, D. C. and Beevers, S. D.: Estimations of road vehicle primary NO₂ exhaust using monitoring data in London, Atmos. Environ., 39, 167–177, 2005.
- ¹⁰ Clapp, L. J. and Jenkin, M. E.: Analysis of the relationship between ambient levels of O₃, NO₂ and NO as a function of NO_x in the UK, Atmos. Environ., 35, 6391–6450, 2001.
 - Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the upper and lower atmosphere: theory, experiments and applications, Academic Press, San Diego, 2000.
 - Hard, T., Chan, C. Y., Mehrabzadeh, A. A., and O'Brien, R. J.: Diurnal HO₂ cycles at clean air and urban sites in the troposphere, J. Geophys. Res., 97, 9785–9794, 1996.
- Harrison, R. M. and Shi, J. P.: Sources of nitrogen dioxide in winter smog episodes, Sci. Total Environ., 189/190, 391–399, 1996.
 - Hilliard, J. C. and Wheeler, R. W.: Nitrogen dioxide in engine exhaust, SAE Transactions 88 (SAE 790691), 1979.
- Jenkin, M. E.: Analysis of sources and partitioning of oxidant in the UK. Part 1: the NO_xdependence of annual mean concentrations of nitrogen dioxide and ozone, Atmos. Environ., 38, 5117–5129, 2004a.
 - Jenkin, M. E.: Analysis of sources and partitioning of oxidant in the UK. Part 2: contributions of nitrogen dioxide emissions and background ozone at a kerbside location in London, Atmos.
- ²⁵ Environ., 38, 5131–5138, 2004b.
 - Jimenez, J. L., McCrae, G. J., Nelson, D. D., Zahniser, M. S., and Kolb, C. E.: Remote sensing of NO and NO₂emissions from heavy-duty diesel trucks using tunable diode lasers, Environ. Sci. Tech., 34, 2380–2387, 2000.

Lenner, M. and Lindqvist, O.: The NO_2/NO_x ratio in emission from gasoline-power cars: high

NO₂ percentage in idle engine measurements, Atmos. Environ., 17, 1395–1398, 1983.
 Seakins, P. W., Lansley, D. L., Hodgson, A., Huntley, N., and Pope, F.: Mobile laboratory reveals new issues in urban air quality, Atmos. Environ., 36, 1247–1248, 2002.

5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
	►I			
•	►			
Back	Close			
Full Screen / Esc				
Print Version				
Interactive Discussion				

12735

Turns, S. R.: An introduction to combustion-concepts and applications, McGraw-Hill Inc. New York, 1996.Yao, X. H., Lau, N. T., Fang, M., and Chan, C. K.: Real-time observation of the transformation

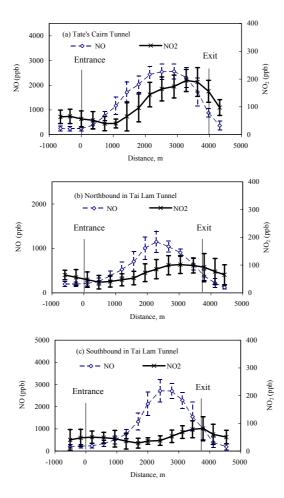
5 Soltic, P. and Weilenmann, M.: NO₂/NO emissions of gasoline passenger cars and light-duty

trucks with Euro-2 emission standard, Atmos. Environ., 37, 5207–5216, 2003.

10

- Yao, X. H., Lau, N. T., Fang, M., and Chan, C. K.: Real-time observation of the transformation of ultrafine atmospheric particle modes, Aerosol Sci. Technol., 39, 831–841, 2005.
- Yao, X. H., Lau, N. T., Fang, M., and Chan, C. K.: Use of stationary and mobile measurements to study power plant emissions, J. Air Waste Manag. Assoc., in press, 2005.

- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics from Air pollution to Climate Change, John Wiley & Sons, Inc, New York, 1998.
- So, K. L. and Wang, T.: On the local and regional influence on ground-level ozone concentrations in Hong Kong, Environ. Pollut., 123, 307–317, 2003.

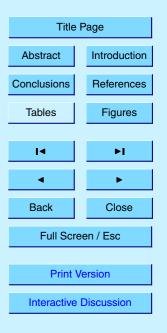

ACPD

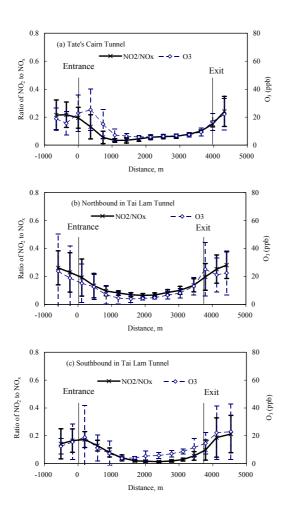
5, 12723-12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
	►I		
•	►		
Back	Close		
Full Screen / Esc			
Print Version			
Interactive Discussion			




Fig. 1. Profiles of NO and NO₂ in tunnels.

5, 12723-12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

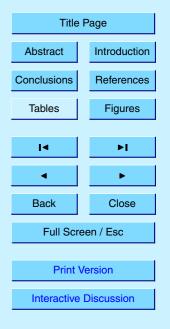
X. Yao et al.

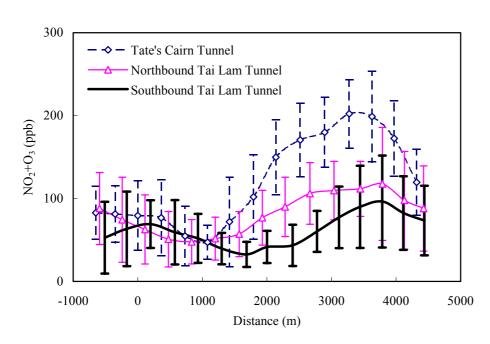


Fig. 2. Profiles of NO_2/NO_x and O_3 in tunnels.

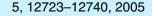
5, 12723-12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles


X. Yao et al.


5, 12723-12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles



EGU

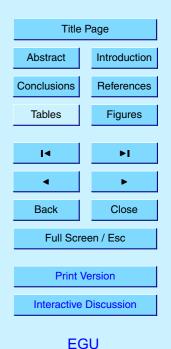


Fig. 3. $(NO_2 + O_3)$ profiles in tunnels.

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

600 (a) NO_x Average 251 ppb NO_x (ppb) 450 300 150 0 THE THE PAR COLOCATION DE THE SOL WE STATED THE PART Month 0.6 (b) Ratio of NO₂ to NO_x Average 0.28 Ratio of NO₂ to NO_x 0.4 0.2 0 Jund Jula Here Sept Octor Nor Dec Janos ESD WALD STUDY NAL JULD JAHD SUB

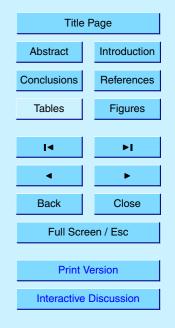

Month

Fig. 4. Seasonal variations of NO_2/NO_x and NO_x in on-road vehicle plumes.

5, 12723–12740, 2005

The ratio of NO₂/NO_x directly emitted from vehicles

X. Yao et al.

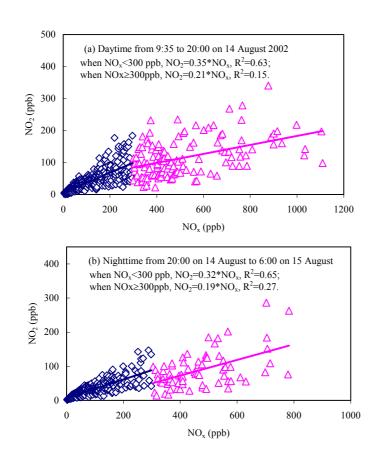


Fig. 5. Correlations between NO_2 and NO_x in daytime and nighttime measurements.