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Abstract. We study the flow obtained from a three-
layer, eddy-resolving quasigeostrophic ocean circulation
model subject to an applied wind stress curt. For this
model we will consider transport between the northern
and southern gyres separated by an eastward jet. We
will focus on the use of techniques from dynamical sys-
tems theory, particularly lobe dynamics, in the form-
ing of geometric structures that govern transport. By
“govern”, we mean they can be used to compute La-
grangian transport quantities, such as the flux across
the jet. We will consider periodic, quasiperiodic, and
chaotic velocity fields, and thus assess the effectiveness
of dynamical systems techniques in flows with progres-
sively more spatio-temporal complexity. The numerical
methods necessary to implement the dynamical systems
techniques and the significance of iobe dynamics as a
signature of specific “events”, such as rings pinching off
from a meandering jet, are also discussed.

1 Introduction

In this paper we consider intergyre transport in the
top layer of & wind-driven, three-layer, quasigeostrophic
double-gyre ocean model. We use techniques from dy-
namical systems theory (invariant manifolds, lobe dy-
namics) to describe the flow structures associated with
intergyre transport as well as to perform precise calcu-
lations of the intergyre flux. Dynamical systems tech-
niques allow us to give a rigorous definition of the
boundary between the southern and northern gyres. By
“rigorous” we mean that at a given time, all fluid parti-
cles in the so constructed southern (resp., northern) gyre
either make a clockwise (resp., counterclockwise) revo-
lution around the southern gyre, or have earlier made
such a revolution to arrive at their location at the given
time. This boundary is constructed from pieces of two
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special curves; an unstable manifold emanating from the
western boundary and a stable manifold emanating from
the eastern boundary. These curves intersect to form re-
gions called lobes, and it is only the fluid that is inside
the lobes that can participate in intergyre transport.
Hence, the area of the lobes can be directly related to
the intergyre transport. Moreover, as these lobes are
the sole mechanism for intergyre transport, their move-
ment and geometrical shape give a complete description
of the intergyre transport process. For example, we are
able to give a detailed description of the “geometrical
alleyways” followed by particle trajectories that start in
the northern gyre, move downwards along the western
boundary current, transfer to the southern gyre, make
a clockwise journey around the southern gyre, moving
upwards along the western boundary current, and then
transferring back to the northern gyre. Moreover, since
these stable and unstable manifolds are the mediators of
intergyre transport, the role of eddies in intergyre trans-
port can also be analyzed. In particular, we are able to
study the formation and kinematics of ring structures
and determine their role in intergyre transport.

The dynamical systems approach to Lagrangian
transport has been applied to a variety of problems in
fluid mechanics. Babiano et al. [1994] and Aref & El
Naschie [1994] provide recent reviews. Dynamical sys-
tems techniques were first applied to Lagrangian trans-
port in the context of two-dimensional, fime-periodic
flows. In recent years these techniques have been ex-
tended to include flows having arbitrary time depen-
dence, see Wiggins [1992], Malhotra & Wiggins [1998],
and Haller & Poje [1998]. One aspect of our study is
to consider the effect of different types of temporal vari-
ability on transport. Accordingly, we compare trans-
port in flow regimes exhibiting periodic, quasiperiodie,
and chaotic time dependence. In this sense, our work
is in the same spirit as recent work concerned with un-
derstanding the bifurcation structure of the wind-driven
quasigeostrophic equations (Dijkstra & Katsman [1997])
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and the wind-driven shallow water equations (Jiang et
al. [1995]}. In recent years the dynamical systems
approach has been extended to a number of geophys-
ical fluid dynamics settings. See, for example Pierre-
humbert [1991a,b], Samelson [1992], Duan & Wiggins
[1996]. These early works mainly involved kinematically
defined velocity fields. Some of the first attempts to
treat dynamically evolving velocity fields were the works
del Castillo- Negrete and Morrison [1993] and Ngan &
Shepherd [1997]. The treatment of general dynamically
evolving velocity fields became possible with the devel-
opment of computational techniques to treat velocity
fields which only had a numerical representation, i.e.,
which were the output of the numerical solution of a
partial differential equation whose solution was a veloc-
ity field. Early work along these lines is Shariff ef al.
[1992], Duan & Wiggins [1997], and Miller et al. [1997).
Recent work of this type in a geophysical fluid dynam-
ics setting is that of Rogerson et al. [1999], which is
concerned with fluld exchange across a barotropic me-
andering jet, and that of Poje & Haller [1999], which is
focused on ring detachment. The numerical techniques
developed in this paper allow us to treat transport in
basin scale models, whereas the previous works were lim-
ited to transport issues associated with certain features
in flows (e.g., meandering jets, flow around obstacles,
ring detachment).

This work is organized as follows. In § 2 we describe
the model. In § 3 we describe the nmerical methods,
for which there are two parts. One is concerned with
the numerical solution of the quasigeostrophic equa-
tions, the next part is concerned with the numerical
methods for studying the trajectories of the velocity
field obtained from the numerical solution of the quasi-
geostrophic equations. In § 4 we review the basic ideas
from dynamical systems theory that are used and show
how they apply in the context of the intergyre transport
problem. In § 5 we describe the results.

2 Description of the Model

We use a three-layer eddy-resclving quasigeostrophic
model [Rowley, 1996] which has its origins in the two-
layer model developed by Holland [1978] and is similar
to the later models of Cummins & Mysak [1988], and
Lozier & Riser [1989, 1990]. The model uses the quasi-
geostrophic approximation in the context of a 8-plane
(f = fo + By) ocean modeled as three discrete isopyc-
nal layers, each of mean layer thickness and constant
density, as depicted in Fig. 1.

Following Rowley [1996], each layer & of the model
is of mean thickness H; and constant density pg. The

reduced gravity between layers k and £+ 1 in the model
is

H p
z=300m, ¥ B M
"‘-_..1—1
H, P
2=-1000 m —
H, Ps

Fig. 1. In the upper left panel is a qualitatitve depiction of a three
layer quasigeostrophic model. The other panels show streamiune-
tion contours for each of the three layers which are typical for the
parameter values chogen for this study. Note that the streamfunc-
tion contours are solid for positive values and dashed for negative
values, which in the first layer correspond to an anticyclonic gyre
and cyclonic gyre, respectively. A schematic profile of the pre-
scribed wind stress 7 is shown adjacent to the first layer.

Pr+1 — Py)
Ghirja = g(L, (1)

Po

where g and pg are the gravitational constant and a ref-
erence density. The pg with the set of Hy and py define
the mean stratification of the model ocean. Variations
of the total depth Hy are represented by hp(z,y), with
the restriction under quasigeostrophy that hg << Hy,
for a model with N layers.

We can write the governing N-layer quasgigeostrophic
equations on a 3 plane [Holland 1978,

ST = I+ )
+ é—i(wk—uz — Wgi1y2) T Fe + Dy, (2)
%hk-o-lﬁ J(Riy1/2, Vrarg2) + Wi j2, (3)
Ppriyz = ,fU (Wh41 — ¥r), (4)

Trt1/2
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where 1y, is the layer-k quasigeostrophic streamfunction
and J is the Jacobian operator defined such that

Oy, OA Oy OA

J(’ubksA) = —am_gy_—aﬁ
— 4,04
= uka 'L’kay.

The remaining variables in (2-4) are the interface
height perturbations kg2, interface vertical velocities
Wx1/2, and the interface streamfunctions 91 /2, which
are calculated as weighted averages of the corresponding
layer function [Phillips 1954], i.e.,

Hyhy 1 + Hy by,

herrje = Hy + Hrpn

Whir /2 Hywp g + Hepyun
Hy + Hk+1

Yriijz = Hyppp1 + He 1%k
Hy + Hy

the force term Fj and the dissipation term Dji. The
forcing is through the wind stress 7 = —m cos {2my/ LV},
so that Fy is nonzero for k = 1 only, when

curl 7
poH:L’

Irty (27ry)
—————gin | — ).

poHy Ly Ly
Note that the imposed wind stress is sinusoidal and pro-
duces a double-gyre in the first layer, with an anticy-
clonic gyre in the southern part of the basin and a cy-
clonic gyre in the northern part of the basin (as shown
in Fig. 1. In contrast, a more realistic forcing configu-
ration is possible by mapping data for a given regional
wind forcing from an acquisition grid to the model grid.

The dissipation is performed by lateral Laplacian fric-
tion, Dy = vV, which can include bottom drag,
Dy = vV*n —epV34x. The top and bottom bound-
ary conditions enter through w,;» = 0, for a rigid lid,
and wyi1/2 = D—gf = J{¢¥n,hp), for possible bottom
topography.

Our goal is to study transport under different types of
temporal variability. However, there are many parame-
ters in this problem. In choosing the parameters we are
guided by the work of Jiang et al. [1995] who isolated
and presented results for several flow regimes for a wind-
driven double-gyre, shallow water model. We have cho-
sen basin dimensions and lateral dissipation coefficient
identical to theirs. However, our resolution is signifi-
cantly higher than that of Jiang et al. [1995], which will
be discussed further in § 4.2. The wind stress ampli-
tude, 1y, was varied to obtain several fow regimes with
different time dependencies, namely steady, periodic,

F1 =

quasiperiodic, and chaotic. The remaining model pa-
rameters, layer thicknesses, reduced gravity, mean state
density, bottom friction coeflicient, and Coriclis param-
eters, were chosen to be consistent with typical values
used in three-layer quasigeostrophic models, such as that
of Lozier & Riser [1989]. The values of all the model
parameters used throughout this study are given in Ta-
ble 1.

Basin dimensions L% = 1000 km
L¥ = 2000 km
L = (I* + L¥)/2 = 1500 km
Number of grid points N=® =81
N¥ = 161
Lateral dissipation coefficient v = 300 m?/s
{Laplacian)
Time step Atppr =2 h
Layer thickness Hy =300 m
Hy =700 m
Hy =4000 m
Total ocean depth Hop = 5000 m

Reduced gravity g, =003 m/s?
2

I 2
93 = 0.02 m/s
fo=93x10"% 1/s
B=2x10"" 1/ms
Cp=1x10"7 1/s
Mean state density eo = 1.0 g/em®
Ekman number Eh=v/AL® =444 x 1078

Rossby number Ro= 27(‘1'0/,00,52[1[;3

Coriolis parameters

Bottom friction

Table 1. Model parameters.

For a thorough discussion of the quasigeostrophic ap-
proximations, see Pedlosky [1977] or Cushman-Roisin
[1994].

3 Some Key Ideas from Dynamjcal Systems
Theory Related to Transport

In this subsection we introduce the ideas from dynami-
cal systems theory that will be crucial for our analysis.
Qur discussion will be at an informal and intuitive level.
Details of the mathematical background can be found in
Malhotra & Wiggins [1998].

3.1 Hyperbolic Trajectories or “Moving Saddle Points”

First, we want to generalize the notion of a saddle-type
stagnation point of a steady flow to the setting of un-
steady flows. In the case of a steady flow, the saddle
point nature of a stagnation point is determined from
the linearization of the flow about the saddle point. In
that case the eigenvalues of the {constant) matrix as-
sociated with the linearization serve to characterize the
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saddle point nature of the stagnation point. In the case
of aperiodically time dependent velocity fields the sad-
dle point nature of a time dependent trajectory is also
determined from the linearization about the trajectory.
However, in this case the eigenvalues of the (time de-
pendent) matrix associated with the linearized velocity
field cannot generally be used to determine the stability
properties of the trajectory.

Consider the following two dimensional, unsteady ve-
locity field

x=v(xt), x€R? teR, (5)
and let x = ~(t) be a trajectory of (5). Then ~(t) is
called a hyperbolic or saddle-type trajectory if the veloc-

ity field linearized about the trajectory:

£=0v(y(t). )¢, &€R? (6)
has two time-dependent, linearly independent solutions;
one that grows unboundedly at an exponential rate as
t — oo, which we refer to as ¢"(t), and one that decays
to zero at an exponential rate as £ — oo, which we refer
to as *(t). Hence, we can think of +y(f)} as a “moving
saddle point”.

3.2 Stable and Unstable Manifolds of Hyperbolic Tra-
jectoties

With the notion of a hyperbolic trajectory defined, we
can now define the stable and unstable manifolds associ-
ated with a hyperbolic trajectory. The term “manifold”
is from dynamical systems theory, in the context of fluid
mechanics it can be thought of as a distinguished mate-
rial surface, whose nature we describe more fully below.
Just as the notion of a hyperbolic trajectory follows from
the linearized behavior near the trajectory, the stable
and unstable manifolds associated with a hyperbolic tra-
jectory also are related to the linearized behavior near
the trajectory. In fact, we infer their existence based on
the linearized behavior. So first we will describe the lin-
earized behavior associated with the linearized velocity
field.

Since (6) is linear, aw¥(t), for all @ € R, is also a
solution of (6) that grows unboundedly at an exponen-
tial rate as ¢ — oo. At each instant in time, the set
of points defined by awp*(t), for all &« € R, defines a
one-dimensional subspace of IR*, which we refer to as
the unstable subspace, E*(t), associated with the hyper-
bolic trajectory ~(¢). As ¢ varies, this subspace may
move. Clearly, it has the interpretation as the set of ini-
tial conditions, at time ¢, corresponding to trajectories
that grow at an exponential rate as ¢t = cc.

Similarly, a@?(t), for all @ € R, is also a solution of
(6) that decays to zero at an exponential rate as t — oo.
At each instant in time, the set of points defined by

ap®(t), for all @ € R, defines a one-dimensional sub-
space of R%, which we refer to as the stable subspace,
E*(t), associated with the hyperbolic trajectory ~y(z).
As ¢ varies, this subspace may move, and it has the in-
terpretation as the set of initial conditions, at time #,
corresponding to trajectories that decay to zero at an
exponential rate as £ = oo.

One can view the stable and unstable manifold the-
orem for hyperbolic trajectories as saying that the be-
havior described above for the linearization of the ve-
locity fleld about the hyperbolic trajectory ~(t) per-
sists for the nonlinear velocity field (5). In particular, it
states that there exists time varying curves, W?(~y(¢))
and W*(~(¢)), that intersect in ~(¢), and are tangent
to E*(¢) and E%(¢), respectively, at +(f). The curves
W?a(y(t)) and W*(y(t)) are referred to as the stable
manifold and unstable manifold, respectively, associated
with the hyperbolic trajectory =y(¢), and they have the
following properties.

Invariance:. They are invariant curves, i.e., particle trajectories
that start on the curves must stay on the curves for all time. This
is the mathematical statement of the fact that they are material
curves. Hence, they are barriers to transport in the sense that no
particle trajectories can cross them.

Asymplotic Behawior:. Particle trajectories that start on
We(~(t)) approach ~{t) at an exponential rate as ¢ &+ co. Tra-
Jjectories that start on W (~y(t)) approach +{t) at an exponential
rate as t = —oo.

3.3 The Implications of Stable and Unstable Man-
ifolds of Hyperbolic Trajectories for Transport:
Lobe Dynamics

From the point of view of transport, the stable and un-
stable manifolds of hyperbolic trajectories are important
because they form the “frontiers” between qualitatively
different fluid particle trajectories. We now discuss the
implications that stable and unstable manifolds of hy-
perbolic trajectories have for transport. In the follow-
ing, -;(t) will denote a hyperbolic trajectory, with as-
sociated stable and unstable manifolds W* (v,(t)) and
W (v;(t)),i=1,2. ' We begin by defining the notion
of a lobe.

A lobe is formed from intersections of stable and un-
stable manifolds of hyperbolic orbits in two dimensional
flows and has played an important role in the study of
transport in time periodic and quasiperiodic flows.

We now describe the generalization of “lobe dynam-
ics” to two dimensional flows with aperiodic time de-
pendence. First we define the notion of a primary in-
tersection point of the stable and unstable manifolds of
a hyperbolic trajectory.

At a fixed time t =
W (2 () N We(7,(r).

!With no loss of generality we could consider the case -y, (t) =
~¥3(t)- This case is implicitly covered in our digcussion, but it is
not needed for the transport questions considered in this paper.

T consider a point p €
Let [v,(7),p] denote the
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segment of W¥(-y,(7)) connecting ~y,(r) to p and let
[¥2(7), p] denote the segment of W*(+,(7)) connecting
v5(7) to p. Then p is said to be a primary intersection
point (pip) if [y, (7),p] and [y,(7),p) intersect only in
P

With this definition in hand we can now define a
lobe. Suppose p and q are two pips such that there
are no other pips on the segments of W?(v,(r}) and
W4(vy,(7)) that connect p and q. Then the region at
the time ¢ = 7 bounded by the segments of W*(~, (7))
and W*(y,(7)) that connect p and q is called a lobe,
which we denote by I.P¢. The points p and g are referred
to as the defining pips of the lobe, see Fig. 2.

time="T
qu

LA GG P 4 WE(1,(1))

YI(T) 72(1:)

Fig. 2. A lobe, LP?, at a fixed time 7. Here the superseript “pg”
is used to explicitly denote the fact that this lobe is defined by
segments of the stable and unstable manifolds that intersect at
the primary intersection points p and g. It will not be used in our
[ater notation for lobes.

First we write down two “rules” that must be sat-
isfled by points on the stable and unstable manifolds
of hyperbolic trajectories, which essentially follow from
uniqueness of solutions and invariance of the manifolds.

Rule 1: Maintenance of Order Under Time Fwolution.. Since at
any fixed time ¢ = 7 the curves W (~,(7)) and W?{~,(7)) are
one dimensional, points on them can be ordered. We define an
ordering of points on W?*{~,(7)) as follows. For any two points
qr, 4r € W3(~,(7)) we say that q, <, 4 if q- is closer than g,
to 72(7) in the sense of arc length along the curve Wo (y3{r)). (A
similar type of ordering can be defined for points on W*(~,{7)),
but it will not be required in our construction.) Let x{t, T,q,) =
Qr 44, X(t, 7,9+ ) = Gr4¢ denote points at time T + ¢ that are the
time evolution of the points g, @-. By invariance, these points
are also in W*{-y, (7 + ¢)}. Moreover, we have

qr it <s Qr4i-

This follows from uniqueness of solutions, otherwise there would
be an intermediate time on which the trajectories passed through
each other.

Rule 2: Invarignce of Intersections.. If the stable and unstable
manifolds of a hyperbolic trajectory (or two different hyperbolic
trajectories) intersect at a fixed tirme, then they intersect for all
tirme. This simply follows from the fact that the manifolds are
invariant for all time.

3.4 Lobe Dynamics and Flux: Quantification of Finite
Time Transport

Suppose (¢} and ~y4(t) are hyperbolic trajectories.
We agsume that for some fixed time W¥(+,(t)) and
W(v,(t)) intersect in N points, where N can be in-
finity. By invariance of the manifolds, if they intersect
in N points at one time, they must intersect in N points
for all other times. We also assume that the intersec-
tions are topologically transverse {4.¢., heuristically, the
manifolds pass through each other, and are not tangent
at the intersection points of interest).

Let {t,}_, be a monotonically increasing sequence
of times, and we could have N == oo. These are the times
at which we observe the flow. If x(£, %y, xo) denotes the
trajectory passing through the point xq at £ = £y then,
for each n € {0,... , N}, we have the map

£ 0 xXn o Bu(Xp) = X(tng1,tn,%0) = Xnt1, (7)

which is just the mapping of points under the flow from
time ¢, to fr41. {This notation makes certain formulae
less cumbersome.) The inverse map is given by

fn_l D Xpy fn_l (xn+1) = x(tn,tn+1,xn+1) = Xp.

(8)

At time ¢ = ¢, choose a point q, on WE{vy,(£,)) N
W (v;(tn)). Let Uly,(tn),qn) denote the segment of
W (~,(tn)} beginning at -+, (t,) and ending at q,, and
let S[v,(fn}),qn] denote the segment, of W{~y,(t,)) be-
ginning at +,(t,) and ending at q,. The points in the
sequence {q,} are chosen such that

Gn <o £ (Qns1), YR EZ, (9)

and are referred to as boundary intersection points
(bips). The sequence {q,} can always be chosen to sat-
isfy this constraint as a result of the fact that all points
n

W (v, ()} N W9 (+,(¢)) on a given time slice will have
moved closer to W¥(v,(t)} (closer in the sense of dis-
tance in arclength from -, (¢)) at any later time.

The importance of this condition will be apparent
when we construct families of special lobes called “turn-
stiles” and describe their dynamical significance. This
sequence of bip’s is used to construct a sequence of time-
dependent boundaries and turnstiles.

Then By, = Uy, (tn),dn] U S[v5(tn), dn) i8 a curve at
time t, joining WU(~, (¢,)) and W?¥(~,(t,)). Locally,
this curve separates the flow into two regions, which
we denote by RT and RY (here the superscript on the
regions indicates that they vary as f,, varies; the super-
script is the same as the subscript of ¢,). We will be
concerned with transport across this family of curves
{Bo}L; at the sequence of times {t,}2_, under the
dynamics generated by the sequence of maps {f,}2 ;.
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For an arbitrary time t = #¢,_; consider the
point £,!, (an) € W (v, (tn_1)} N W?(v3(tn-1)} (by
the chmce of the sequence {q,}, we have qn—1 <,
£ (an)). Then there exists an odd number, K, 1,
of pips on

U2, (qn),qn-1] between £ ', (q,,) and q,—; (the odd
number is due to the fact that the maps f,, are orienta-
tion preserving due to uniqueness of trajectories passing
through a given initial condition). These define K, +1
lobes at time ¢ = ¢, _; with (K,_; +1) = J,_1 in R? 7!,
denoted by L{‘,;‘, and J, ., lobes in R}™", denoted by
L37'. % The lobes LP3" U LE7" are called the turn-
stile Iobes associated with the boundary B,,_, at the time
t = tp,_1. The turnstile lobes are important because
they mediate transport across the boundary 5,,_;.

The following theorem is the fundamental result, and
is proved in Malhotra & Wiggins [1998].

Theorem 3.1
fn—l (L?,El) - Rg,
f.-1 (L37) C BT

Moreover, the only points that move from R}~ (resp.
RE™') into R} (resp. R}) under the action of f,_; by
crossing Bn_y are those that are in LT3 (resp. L37'),
see Fig. 8

We remark that several “pathologies” for turnstile
lobes are possible, e.g., turnstile lobes that intersect
each other, and these can be treated in the aperiodic
case exactly as described in Wiggins [1992].

Let A denote an arbitrary region (but one sufficiently
well-behaved that its area is defined) in the flow. We
denote the area of 4 by u{A). The instantancous flux
from RT' into R} across B, is given by

Tm— 1 n—
1,21 =T & (L1.21)‘ (10)
tn - tn—l

Similarly, the instantaneous fluz from R}~ into R}
across By, is given by

1
n = tn—l

n—1i

It =; w(Z53Y). ()

The weighted finite time average fluz from R} into R}
from time it =0 to t = £, is given by

P12 = (tr—£0)9% o+ (ta—t1)¢l o+ (tn—tn-1)9T3"
1,2 - (tj —to)+(t2—f])+"'+(tn_tn—l) !
1 n—1
n 0 k=0

2 As we will see in the different flows considered in the following,
the number of lobes in R} and R} may change as n varies. This
explains the need for the “time varying” integers Kp and Jp in
the notation.

Similarly, the weighted finite time average flur from R}
into R} from time t =0 to i == 1, is given by

(t1—t0) ¢S ) +{ta—t1) @3 1+ Hlfn—En_1)B57
(t1—to)+{ta—t1}+F+(tn—tn-1) ’

¢2,1 -

= Z H L’za 1 (13)

_to

3.5 Lobe Dynamics and Intergyre Transport

As a consequence of the double-gyre structure of the
flow, there are two hyperbolic trajectories, one on the
western boundary and one on the eastern boundary,
whose unstable and stable manifolds, respectively, form
the boundary between the southern and northern gyres.
Moreover, transport between these gyres is completely
governed by the evolution and geometry of these mani-
folds, which we now describe.

The hyperbolic trajectory on the western boundary
is the (moving) point at which the flow along the west-
ern boundary converges from the southern and north-
ern gyres and subsequently moves into the interior of
the flow. Mathematically, we know that such a trajec-
tory exists and that it has associated with it an unsta-
ble manifold that extends into the interior of the flow.
Similarly, on the eastern boundary there exists a (mov-
ing) point at which the flow separates as it collides with
the eastern boundary, resulting in some fluid moving
northwards along the eastern boundary and some mov-
ing south. This trajectory on the boundary has asso-
ciated with it a stable manifold that extends into the
interior of the flow.

The unstable manifold emanating from the western
boundary may intersect the stable manifold emanating
from the eastern boundary. An intersection point is pri-
mary (pip) if the segment of the unstable manifold from
the western boundary to the intersection point does not
intersect the segment of the stable manifold from the in-
tersection point to the stable hyperbolic trajectory. All
other intersection points are secondary (sips). It is im-
portant to distinguish primary and secondary intersec-
tion points because it is the sequence of primary inter-
section points (pips) and the segments of unstable and
stable manifolds between them that define the lobes. If
the time dependence of the flow is periodic or quasiperi-
odic, then an infinite number of lobes are created. In
the temporally chaotic cases we consider, numerical ev-
idence shows that an arbitrarily large number of lobes
exist.

Suppose that at some initial time, ¢ = g, the stable
and unstable manifolds intersect in a finite number of
points as shown in Fig. 4. We stress here that the illus-
trations in this section are schematic in the sense that
we show only enough detail of the manifolds to describe
the ideas we are trying to convey. For example, in Fig.
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4 we only show a relatively small piece of the unsta-
ble manifold in comparison with the length of the stable
manifold shown. In practice one can only compute finite
lengths of the manifolds even though in theory they are
infinite in length.

At time { = #p we define a boundary between the
southern and northern gyres by taking the pieces of the
stable and unstable manifolds only up to some (arbi-
trary) pip labeled ag in Fig. 4 (the significance of the
pip bp in this figure will be explained shortly). Once this
boundary is chosen, we denote the resulting fluid in the
southern gyre by the hatched region, see Fig. 4.

Now we consider the time evolution of these manifolds
from t = {; to some later time ¢ = ¢,,. Under time evo-
lution segments of the unstable manifold lengthen, seg-
ments of the stable manifold shorten, and intersection
points must remain intersection points (and obey the
rules of time evolution described earlier). We illustrate
the situation in Fig. 5. Hence we see that the boundary
between the southern and northern gyres constructed at

t = tp has deformed under time evolution.
We now ask the following question:

How much fluid from the southern (resp.
northern) gyre at time t = to has moved into
the northern (resp. southern) gyre at time
t=1,¢

The first thing we must do in order to answer this
question is to describe what the boundary is at t = ¢,
that separates the southern and northern gyres since
the corresponding boundary defined earlier at ¢ = ¢y has
undergone deformations in the meantime. Hence at time
t = t,, we choose a new boundary between the southern
and northern gyres. This boundary is formed by taking
pieces of the stable and unstable manifolds only up to
the pip labeled b,, as shown in Fig. 5. Now the point
b, is not arbitrary, but it is the evolution of the point by
at time #p to time ¢,. With this choice for the boundary
at t,, it follows that the lobes between the points &,
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~~~~~~ unstahle manifold
- stable manifold

Fig. 4. Pieces of the unstable manifold of the hyperbolic fra-
jectory on the western boundary and the stable manifold of the
hyperbolic trajectory on the eastern boundary at time ¢t = tp.

and a, are the time evolved lobes at time #; between
the points by and ag. Note that ag, by, a, and by, are all
pips by definition, but also, ag in Fig. 4 and b, in Fig. 5
are bips, because they are the pips which determine the
pieces of the stable and unstable manifolds that form the
Lagrangian fluid boundary between the northern and
southern gyres.

It is easily seen from Fig. 5 that the amount of fluid
that has moved from the southern gyre at ¢ = f3 into the
northern gyre at ¢t = £, is the area of the hatched lobes
between the points b, and a,. Similarly, the amount of
fluid that has moved from the northern gyre at £ = #
into the southern gyre at ¢t = &,, is the area of the non-
hatched lobes between the points b, and a,.

It is possible to describe this procedure in a differ-
ent way, but that gives the same meaning to intergyre
transport.

At some time t = t,, construct a boundary between
the southern and northern gyres by choosing an inter-
section point, say b, as shown in Fig. 5.

Once this boundary is chosen consider a set of lobes
that is defined by moving to the right along the stable
manifold and and stopping at some other intersection
point, denoted a,, if Fig. 5.

The area of these lobes is then the amount of fluid
that has crossed the boundary between the southern and

vvvvvv unstable manifold
stable manifold

Y

x

7

%

Fig. 5. The time evolution of the pieces of the unstable manifold
of the hyperbolic trajectory on the western boundary and the sta-
ble manifald of the hyperbolic trajectary on the eastern boundary
from time t = #; to t = t,.

northern gyres at t = t,, from an earlier time #p, where
the boundary at ¢y was formed by by taking the pieces
of the stable and unstable manifolds only up to point of
intersection labelled ay in Fig. 4, where ag is the point
at £ — tg that evolves to @, at £ =ty

In general, the areas of these two sets of lobes (i.e.,
the hatched lobes and the non-hatched lobes) are not
the same, even though the flow is incompressible. This
is because the boundary across which we are measuring
transport may be moving in the sense that the boundary
between the the southern and northern gyres at ¢ = {y
may not be the same as the boundary at ¢+ = ¢,,. This
raises another transport question:

How much fluid from the southern (resp.
northern) gyre at time t = ty has crossed the
boundary that was defined at {5 ?

The answer to this question is most easily seen by su-
perimposing Figs. 4 and 5, as shown in Fig. 6. We see
from this figure that the movement of fluid in the south-
ern (resp. northern) gyre is due to two effects: 1) the
change in the definition of the boundaries between the
southern and northern gyres between ¢t =4y and £ = 1t,,
and 2) the movement of the lobes. We call transport
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Fig. 6. Figures 4 and 5 superimposed.

due to the boundary movement reversible transport and
transport due the lobes érreversible transport. The term
irreversible transport derives from the fact that the fluid
inside the lobes may travel arbitrarily far throughout the
flow. This is due to the fact that the two primary inter-
section points that define the lobe get closer and closer
as time increases since they both must approach the hy-
perbaolic trajectory on the eastern boundary. Since the
flow is incompressible the area of a lobe must remain
the same for all time. Hence the lobe must develop into
a long, filamentary structure that winds throughout the
flow.

It is possible to quantify the relative amounts of re-
versible and irreversible transport. The (signed) # area
between the boundaries at t = ¢y and ¢t = £, is equal
to the difference between the areas of the lobes in the
southern gyre and the lobes in the northern gyre t = ¢,,.
This computation is an elementary application of in-
compressibility of the flow, which we do not perform
here but, rather, we explain the idea in Fig. 7. In panel
a) of the figure we show the boundary at £ = ¢p and
the boundary at t = #,, where along with the latter
we also show the lobes that have crossed this bound-
ary from the earlier time slice ¢ = 5. In panel b) we
show the boundary between the southern and northern

3When the area is computed as a line integral around a bound-
ary we take the positive sign when traversing the curve in a coun-
terclockwise sense.

gyre at £ = {g and the boundary between the southern
and northern gyre at + = ¢,. Here we show these two
boundaries not intersecting. However, it is possible that
they may intersect, but that does not have any effect on
our conclusion (but it is the reason that we emphasized
that we are computing signed areas}. In panel c) we
show the lobes in the southern and northern gyres along
the boundary between the southern and northern gyres
at t = t, (where we are only showing the segment of
the stable manifold that makes up the boundary). The
signed area between the two curves in b} is equal to the
area of the lobes in the southern gyre minus the area of
the lobes in the northern gyre shown in c).

4 Numerical Methods

The numerical methods necessary for this study are
divided into four parts: the solution of the quasi-
geostrophic equation described previously, integration of
Lagrangian trajectories, construction of invariant man-
ifolds of hyperbolic trajectories, and the determination
of pips and the resulting lobes.

4.1 Model Solution

After using (3} and (4) to eliminate wgy1/2 in (2), the
set of layer equations can be written in matrix form as
[Rowley 1996],

ﬁ(v%ﬁ -AD) =R, (14)
Ot

where ¥ is now a column vector of the 4, the source
terms on the right hand side are in a corresponding vec-
tor form R, and the matrix A contains the constant co-
efficients that couple the layer equations together. The
elements of R are

a”

Ry = J(f+ Vi, vs)
f3
+ ———J(Wk-1 — Yk, Vr_1/2)
9;5—1/2H’€ /
e T e = Yhat, Yrrase) + AV
Grt1/2tik
url 7 fohg
— ON eV + Ok T — S pJ (s .
NECDV g + 61 g o ~kd (Pr H, )
The tridiagonal matrix A is given by
al,l [241] 0 0 0
31 Qo3 Qg 3 0 0
0 o3z 03,3 3,4
A=
0 on_1N—2 ON_IN_I ON_IN
\ 0 0 0 N, N -1 avnN |/
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Fig. 7. a) The boundary at ¢ = to (with no lobes shown) and the boundary at ¢t = ¢, (with only the lobes shown that have crossed the
boundary from the earlier time ¢ = £o). b) The boundary between the southern and northern gyre at ¢ = tp and the boundary between
the southern and northern gyre at £ = t,. ¢) The lobes in the southern and northern gyres along the boundary between the southern
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which has nonzero elements

2
ak,k—l — _’f—o
Ir—1 2k
5y Iy
gk = 7 OH + DH
Jo1/2tk Gpypa 2tk
3
Qg g+l = g;H]/?Hk.

The vertical boundary conditions (rigid lid, rigid bot-
tom) are imposed through the a;; by setting g /2 and
Gy 41/ B0 00 In practice, we non-dimensionalize (14)
and solve the system by transforming to modal form,
so that the layer equations are decoupled. This yields a
transient solution for the streamfunction ¢ in each layer,
which can be used directly for our analysis.

4.2 Lagrangian Trajectories

For incompressible two-dimensional flow the velocity
field is given in terms of the streamfunction ¥(z,y,t},
with u(z,y,t) = —O¢/0y and v(x,y,t) = O¢/0z. La-
grangian trajectories of fluid particles satisfy

i s
E = u= ay ($7yrt):
dy oy

Ei' - v a(zayat)- (15)

Although the model of Rowley [1996] has the capability
of non-rectangular boundaries, in this study the spa-
tial domain is rectangular, defined by 0 < ¢ < L*®
and 0 < y < L¥ The temporal domain is defined by
—-T < ¢t < 7T, with the magnitude of T determined by
the particular case under consideration. For a periodic
case, T is simply the length of the period, but for more
general time dependencies, T is chosen to provide a large
encugh data set for analysis.

The numerical solution of the streamfunction dis-
cussed in § 4.1 is known only at discrete temporal
and spatial grid points, i.e. ¥{z:,y;,tn), where i =
1,2,... ,N%, 7 = 1,2,... ,N¥ and n = 1,2,...,N;.
The values of N?, N¥, L* and LY used throughout
this study are given in Table 1 and N; is given by
Ny =T/AT, where AT is the temporal resolution to be
discussed in more detail below. The spatial resolution is
thus Az = Ay = L*/(N*-1) = LV /(N¥—-1) = 12,5 km
throughout this study, which is selected so that the
Munk layer, with length §pr = (V/ﬁ)l/S, is described
by two grid points. The motivation to resolve the
Munk layer with at least two grid points is described by
Meacham & Berloff [1997]. The lateral boundary con-
ditions are {ree-slip, as opposed to the partial-slip and
no-slip conditions used by Munk {1950], which means
that model’s dissipative boundary layer is not a Munk
layer in the strict sense. However, the free-slip bound-
ary condition used in the model creates the necessary
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Fig. 8. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when 7 = 0.140 dyn/cm?,
indicating a period of 160 days.

vorticity gradient for the establishment of a dissipative
boundary layer, although weaker than the Munk layer.
Thus, the Munk layer is a conservative quantity to use
for resolution selection.

To integrate (15), we use an adaptive step-size Runge-
Kutta-Fehlberg (RKF45) method, which substantially
reduces the computational time needed by constant step
size methods, such as the typical fourth-order Runge-
Kutta (RK4) method. For the RK4 method, we found
that a step size of Atgrxy = 2 h is necessary for most
of our test cases to avoid numerical instabilities (indica-
tive of too large of an integration step). The step size of
the RKF45 method is controlled by setting a tolerance
er, a minimum step size Afmin, and a maximum step
size Atmax, the values of which are shown in Table 2.
We found that choosing e; = 0.001 yields a solution
devoid of visible numerical instabilities, while simulta-
neously allowing the integration to efficiently proceed at
a rate of Atmax throughout most of the flow, only slow-
ing to Afmin in the jet and a few other nearby regions.
Far the aforementioned values of Atrka, 5, Atwmin, and
Atmax, the computational time required by RKF45 inte-
gration is approximately a factor of eight less than RK4
integration. In general, we found that the step size of
the RKF45 method was inversely proportional to the
norm of the velocity field, ¢.e., taking small steps when
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Fig. 9. The location of the hyperbolic trajectory and the instan-
taneous location of the stagnation point for the western bound-
ary {upper panel) and the eastern boundary (lower panel) when
7o = 0.140 dyn/cm?.

the speed of the flow was fast and large steps when the
speed of the flow was slow. This suggests that a simpler
adaptive step sizing method could be used by setting
Atpgg = 8/ |v|, where § is an empirically found con-
stant [Pozrikidis 1992). The disadvantage of this type of
adaptive method is choosing 4 for each individual flow.

During integration, the velocity field is needed at an
arbitrary point (z,y,t), which requires interpolation in
the three-dimensional space. Following the example of
Miller et al. [1997], we divide the three-dimensional
interpolation task into a two-dimensional spatial inter-
polation and a one-dimensional temporal interpolation.
To maintain the Hamiltonian structure of (15) and pre-
serve area of the incompressible flow, it is necessary to
interpolate the discrete streamfunction with a method
that provides smoothness through the first derivative.
We use local bicubic interpolation for the spatial in-
terpolation of the streamfunction [Press et al. 1992],
which directly yields values for » and v. Bicubic in-
terpolation requires values of o, Ov/0z, Oy/8y, and
8%/ Bz By at the four discrete points nearest to (z,y,t),
t.e. (Zisit1,¥i;+1,8)- The derivatives of 3 are approx-
imated by second-order numerical differentiation, thus
requiring the value of ¢ at eight additional grid points
adjacent to the aforementioned four points.

In order to obtain values for v and v at arbitrary
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RKF45 tolerance e; = 0.001
Minimum step size Atpin=1h
Maximum step size Atmax =24 h
Ternporal resolution AT =24 h

Table 2. Temporal integration constants used in all of the results.

t, temporal interpolation is performed using Lagrange
polynomials. The motivation for using Lagrange poly-
nomials, instead of a simpler method such as linear
interpolation, is to decrease the temporal resolution
AT, thus reducing storage requirements and: allowing
a longer time evolution for data sets of general time de-
pendence. The order of the Lagrange polynomial was
varied from 1st degree through 6th degree. Higher de-
gree polynomials allowed larger AT, thus reducing stor-
age requirements, but computational time increases due
to the increasing number of arithmetic operations. The
computational time was found empirically to increase
at the rate of 2.8¢%3%7™¢, where Ny is the degree of
the Lagrange polynomial. We chose to use 3rd degree
polynomial interpolation for all of our tests, which of-
fered the best compromise between storage requirements
and computational time, decreasing the storage require-
ments by a factor of twelve over linear interpolation with
AT = 2 h, while increasing the computational time by
only a factor of two over linear interpolation.

Since 3rd degree polynomials require values for the in-
terpolant at two temporal grid points before ¢ and two
grid points after 2, i.e. ¢,_1, tn, tny1, and £n.4 9, the en-
tire three-dimensional interpolation scheme requires in-
formation from (4 + 8) x 4 = 48 grid points. These grid
points can be used in an interpolation scheme by per-
forming bicubic spatial interpolation first or Lagrange
polynomial temporal interpolation first. Our spatial-
temporal interpolation method performs bicubic inter-
polation using twelve ¢ grid points in each of the four
temporal data slices, then uses 3rd degree polynomials
on the resulting four values of 4 and v. Our temporal-
spatial interpolation method uses 3rd degree polynomi-
als to generate the necessary twelve grid points of ¢ at
some arbitrary ¢, and then performs bicubic interpola-
tion with those 1 grid points to obtain u and v. Al-
though both the spatial-temporal and temporal-spatial
methods use the same 48 grid points, efficiency and ac-
curacy differ. Temporal-spatial interpolation is approx-
imately 40% faster than spatial-temporal due to less
arithmetic operations, but numerical oscillation occurs
during computation of Lagrangian trajectories with the
temporal-spatial method and not with the the spatial-
temporal method. This is due to the inherent numerical
error of the Lagrangian polynomials being magnified by
the bicubic interpolation. We thus chose to use a spatial-

temporal interpolation scheme for all of our results.

The temporal resolution AT is not equivalent to the
time step used in solving the model Atppg, which is
given in Table 1. AT may be chosen independently of
Atppg, with the only restriction that AT must be an
even multiple of Atppg. To choose AT, we used the
REK4 method with Atpky = 2 h and 3rd degree poly-
nomials, varying AT such that AT = 2,4,...,24 h.
The Lagrangian trajectories computed with AT =24 h
were nearly indistinguishable from those computed with
AT =2 h. So, we chose to use AT = 24 h for all of the
computations in this study. A larger AT could perhaps
have been used for interpolation purposes, but would be
inconvenient for congtructing the manifolds, as will be
explained in the next section. To summarize, RKF45 in-
tegration using a spatial-temporal interpolation scheme
with local bicubic splines and 3rd degree Lagrange poly-
nomials is an excellent computational method for con-
structing Lagrangian trajectories, decreasing the com-
putational time by a factor of four and simultanecusly
decreasing the storage requirements by a factor of twelve
over a method with AT = Atgga, such as that used by
Miller et al. [1997] and other workers that have followed
their example.

4.3 Hyperbolic Trajectories and Invariant Manifolds

Since the hyperbolic trajectories we are interested in for
studying intergyre transport are located on either the
western or eastern boundary, a rather straightforward
method can be designed for finding and tracking the
location of a hyperbolic trajectory, ~(¢). As a hyper-
bolic trajectory travels vertically up and down either
the western or eastern boundary, there will be a corre-
sponding instantaneous stagnation point, ¥*?(t), which
ig also traveling up and down. There is a relationship
between the range of travel of the hyperbolic trajectory
and the range of travel of the stagnation point: across
a sufficiently long time span, the range of travel of the
hyperbolic trajectory will always be within the range
of travel of the stagnation point. This relationship be-
tween the stagnation point and the hyperbolic trajec-
tory is further explained and proven by Ide & Wiggins
[2000]. Thus, if we know the bounds on the range of
travel of the stagnation point, then we also know the
bounds on the range of travel of the hyperbolic trajec-
tory. So, we begin by first devising and employing a
method for finding the stagnation point. We estimate
the location of the stagnation point *P(r) at a time
t = 7, either by visual inspection of the streamfunc-
tion contours or from a known location of the stagnation
point at some previous time ¢ = 7—At, i.e. v*?(r—At).
We then initialize (15) with z = ¥ and y = P £ 4,
at £ = 7, where 4, is chosen large enough such that
VP (T — At) — & < yP(T) < P(T — At) + 6, is ex-
pected, and then integrate each resulting pair of (15)
through At. In practice, 2P is not set exactly egual
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Fig. 10. Lobes created by the intersection of the stable and unstable manifolds of the hyperbolic trajectories on the eastern and western

boundaries, respectively, for mp = 0.140 dyn/cm?.

to the z-coordinate of the boundary, but rather is set to
position that is a small distance from the boundary. The
integration is performed by a constant step size integra-
tor, such as RK4, and At is a small value. In our case we
chose At = X1 h, where At > 0 for hyperbolic trajecto-
ries on the western boundary and At < 0 on the eastern
boundary. It should be pointed out that the sign of At
is indirectly a result of which boundary the hyperbolic
trajectory resides; directly, it is determined by the objec-
tive to compute either the unstable or stable manifold,
being positive for the former and negative for the latter.
In either case, if both trajectories resulting from the in-
tegration of the pair of (15) move toward the estimate
¥g¥(7), then we have two points which straddle the stag-
nation point. If we have not straddled the stagnation
point, then we may either try to improve our guess for
the present location of the stagnation point, or increase
&, and check again if the stagnation point is straddled.
Once we have straddled the stagnation point, then we
proceed by letting (af?,a?) = (v, (r) —4§,) and
(B3P, B57) = (vaF,1,F(1) + 6y). The simplest method
to find 7, is-to initialize (15) with (af?,e;?) and in-
tegrate through At, then initialize (15) with (537, 8;F)
and integrate through Af. We then project back to 2P
by letting P = B3P = 4P We continue this proce-
dure, integrating each pair of (15) and projecting back
to ;P until 8P — o < &, where ¢ is the desired ac-

curacy. We found that for the size of the basin used in
these computations, ¢ = 1 km was sufficient. The stag-
nation point is then given by v = (&P, ;(aZP + 8P ))-
This entire procedure can be repeated at each time step
to track the vertical position of the instantaneous stag-
nation point as a function of time along the boundary.
To accelerate convergence, a bisection method can be
employed. Once the stagnation point is straddled, we
initialize (15) with our estimate for «*?(r) and inte-
grating through At¢. If this trajectory moves toward
afP, that is, [vjF(1) — ajf| < &y, then the actual loca-
tion of JP(7) must be between aj? and y;P(r). Thus,
we let 857 = ~fP(7) and yjP(r) = (aif + B;7)/2. I
[¥gP(T)~afP| > dy, then the actual location of y(7) must
be between 3, and 4;?(7). In that case, we would let
aff = y3P(r) and again 7 (1) = (a;f +5;7}/2. We then
initialize {15) with the new +P(r} and repeat the entire
procedure until satisfactory convergence is obtained, i.e.
B —ogf <.

Once we know the basic behavior and range of travel
of the stagnation point, we can find and track the hy-
perbolic trajectory. The procedure for doing this is very
similar to the first procedure described for finding the
stagnation point. We know that the movement of the
hyperbolic trajectory will always be less than or interior
to the movement of the stagnation point, so we may let

(az,ay) = (’Y;pa'yzplmin) and (3, 8y) = (7;pa7;p|maz)v
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where 7;¥|min and v,?|ma; are the minimum and max-
imum values of ;P over the time span that we wish
to track the hyperbolic trajectory. We are thus certain
that the hyperbolic trajectory is straddled and integrate
from t to T+ At, then project back to the boundary by
letting oy = 8 = ~%P. Note that in the previously-
described procedure for the stagnation point we were
integrating through Af, but the streamfunction which
was used for the right-hand side of (15) was frozen at
t = 7, so we were finding the instantanecus location
of the stagnation point. To find the hyperbolic trajec-
tory, we continue integrating forward in time, i.e. from
T + Af to 7 + 2At, again letting a, = f; = 4IP after-
ward. This is an important, albeit subtle, difference in
the procedures for tracking stagnation points ws. hy-
perbolic trajectories. We continue this method, always
integrating forward in time and projecting back to 2P
until 8, — a, < g, at which point we have found the
hyperbolic trajectory. Depending on the character of
the flow along the boundary, a, and 3, may converge
very rapidly, or may take a considerable amount of time.
Once ay, and 8, have converged to a satisfactory accu-
racy, though, we then let ¥ = (727, 3 (@, + 8,)) and just
integrate ~y directly, and of course, project back to the
boundary after each integration step. Note that it is not
possible accelerate the procedure for finding and track-
ing the hyperbolic trajectory with a bisection or similar
type of method.

Once the hyperbolic trajectories can be tracked on
each boundary, we may use the techniques discussed in
§ 4.2 to construct invariant manifolds corresponding to
these hyperbolic trajectories. Numerically speaking, a
stable or unstable invariant manifold is an ordered ar-
ray of points, i.e. wi, wi, ... ,whi € W? and w}, w},
.., Wh € WY, which follows directly from Hule I in
§ 3.3. N and M are the number of points in the stable
and unstable manifolds, respectively. The location of
these points are computed by first finding the location
of the hyperbolic trajectory -y at the present time and
then setting w]'* = ~. We then integrate wi™ = =
through A", where A¢™ is the temporal resolution
of the manifold, and then let w;'* = 7, integrate both
wi" = v and wy'* = ~ through A{™®, so that N in-
creases by 1 each A" and thus the manifold continues
to grow in length. Empirically, we found that for all
values of 7y that we studied, A¢"? = 24 hours was suf-
ficient for the western boundary, and A#™® = 168 hours
was sufficient for the eastern boundary. Inserting points
at regular intervals ensures that the temporal resolu-
tion is sufficient, but the manifold will experience rapid
stretching as it grows in length, so it is necessary to also
check the distance between adjacent points in the man-
ifold and to insert new points between adjacent points
if necessary to ensure that sufficient spatial resolution is
maintained. There are many methods for checking the
distance hetween points and inserting new points. Each
has its advantages depending on the accuracy required
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Fig. 11. Flux as a function of time where 75 = 0.140 dyn/cm?®.
The flux ¢g v is computed from lobes which transported fluid
from the southern gyre into the northern (black dashed line) and
the flux ¢ 5 5 is computed from the lobes which transported from
the northern gyre into the southern {red dashed line), Their time
averages ES.N and $N.5 are shown by the solid black and red
lines, respectively.

of the manifold and the level of algorithmic complexity
that one wishes to tackle. The simplest approach is to
consider the manifold as a polyline, i.e. a collection of
straight line segments and simply check the linear dis-
tance between adjacent points and if necessary, insert a
new point midway along this segment. The advantage of
using this linear approach is that it is straightforward to
implement, the disadvantage is that a high spatial res-
olution is necessary, thus requiring a large value for V.
Another option is to use circular arcs, fitted through
each consecutive triplet of pointg along the manifold.
The angle subtended by the circular arc can then be
used to determine if a new point should inserted between
existing adjacent points along the manifold. The circu-
lar arc method is a bit more difficult to implement, but
it has the advantage of generally requiring less points to
be maintained in the manifold. The reason for this is
that more points are needed along the manifold where
it has high curvature and less points are needed where
the manifold has lower curvature. Using the subtended
angle of the circular as a criteria for point insertion auto-
matically accomplishes this objective. A more accurate
method yet, is to describe the manifold as a series of
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cubic splines, fit through each of four adjacent points
in the manifold. The curvature along the spline can
then be computed as a function of the arc length along
the spline [Spivak 1979, p. 11], and used to determine
whether or not a new point should be inserted between
the two existing middle points of the four. We experi-
mented with all three of these methods, but eventually
decided to use the linear approach for the all of the man-
ifold computations in this paper. Note that whenever
it is necessary to insert a new point between existing
points, say between w;;" and w;fl, it is impractical
to shift all of the points in the array Wi, Wik, s
wy" up one index to make room for the new point. In-
stead, a “link list” can be maintained which described
the physical order of the points in the array w;;“, which
is a functional extension of Rule 1. An entry in the link
list, say £; is equal to the index value of the point which
physically follows the point w;™ in the manifold. If the
manifold was generated strictly by inserting points at
the hyperbolic trajectory, then the link list would be
trivial, £; = £;11. In fact, when a point is inserted at
the hyperbolic trajectory, we simply set wyi%, = and
£y = N + 1, and then increment N, which generates
this trivial link list. To insert a new point between say
wit 3 (w;‘“ + wfj_“), and
then set £y 41 = £; and £; = N + 1, in that order.

, #u su
and W, we set Wiy, =

4.4 Pips and Lobes

Once we have computed both stable and unstable man-
ifolds, it is next necessary to determine the pips of the
manifolds and the resultant lobes. If each manifold is
considered a polyline describe by the arrays wf, wi, ...,
w#, for the stable manifold and w¥, w¥, ..., w}, for
the unstable manifold, then the all of the intersection
points can be determined by computing

Py = (m“w;‘,j —miwg , +wy; — w;j’j) / (m* —m®),

py=m* (p; —wi;) +wy;, (16)

where 1 = 1,2,... ,N and 7 = 1,2,... M, m%% =

(it — ) / (w2 — ).

unique intersection point of the line defined by w{ and

wi., and the line defined by w} and w,, which is an
3 ]

The point p is the

intersection only if

[p — Wil < [wh — wi

-3 8 5
, 'p_—wg; < lw_e‘, -—w;l,
U
i

v
M

a7

[p—-w;-‘l < ’w}j‘}, -w

< ‘w}i‘ -w
2

U
3 ’p - wt;e‘

Note that finding all of the intersection points is an
N x M procedure, so as the manifolds grow in length,
it can become computationally expensive. There is a
method for reducing the computational expense of find-
ing intersection points far below N x M operations, but

describing it is beyond the scope of this paper. It is
described by Coulliette et al. [2000]. Once all of the in-
tersection points are found, they must be classified as ei-
ther primary (pips) or secondary (sips). An intersection
point can be determined to be a pip by applying (16)
and (17), and checking that the segment of the unstable
manifold from the hyperbolic trajectory of the western
boundary does not intersect the segment of the stable
manifold from the intersection point to the hyperbolic
trajectory on the eastern boundary. After the intersec-
tion points are classified, a lobe is defined simply by the
segment of the unstable manifold and the segment of
the stable manifold between each adjacent pair of pips.
Numerically speaking, the lobes themselves are simply
a concatenation of two series of points, each from a link
list array. The set of points describing the perimeter of
each lobe can then be used for visualization, i.e. col-
orizing the lobe, or computing the areas of the lobes,
and thus transport quantities, using Green’s Theorem.
Using Green’s Theorem is also useful for determining if
a given lobe has or will move across the boundary from
south to north, or if has or will move across the bound-
ary from north to south. I we always apply Green’s
Theorem by integrating along the stable manifold in the
direction of incrementing index value, then the integral
with either be positive or negative. Lobes with negative
area integrals have or will move across the boundary
from south to north, and vice versa, lobes with positive
area integrals have or will move across the boundary
from north to south.

Identifying lobes should not be thought of as a static
procedure, i.e. as an analysis only of the present man-
ifolds. Rather it needs to be considered a dynamical
procedure. In order to completely harness the theoreti-
cal potentials of lobe dynamics for flows of general time
dependence, it is necessary to be able to find all of the
lobes that result from a stable and unstable manifold,
and then at some short time later to again find the lobes
that result from the same stable and unstable mani-
fold, and then a short time, again finding the lobes that
results from another realization of the manifolds, ete.
Once the lobes have been identified at each realization
of the manifolds, they must be matched from realization
to realization, so that it can be determined which lobe
at a given time is actually the same lobe at a later time.
This follows directly from Rule 2 of § 3.3. Developing a
robust algorithm for lobe matching iz an essential, yet
challenging task, especially when numerical errors in the
computed manifolds and hence intersection points must
be considered. Describing such an algorithm is beyond
the scope of this paper, but is discussed in detail by
Coulliette et al. [2000].
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Fig. 12. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when 19 = 0.160 dyn/cm?,
indicating a period of 154 days.

5 Resulis

In the following we present results on intergyre transport
in the top layer for the different values of the wind curl
stress shown in the table. In each simulation the Huid
starts from rest and is allowed to spin up for 25,000 days.

5.1 71g = 0.140: A Time-Periodic Velocity Field

For this value of the wind stress a time-periodic velocity
field is obtained. Evidence for this is presented in Fig. 8.
In the top panel of Fig. 8 the spatially-averaged kinetic
energy as a function of time is shown for the three lay-
ers, which are denoted by the curves KE;, KF,, and
K Ej3, respectively, for 15 = 0.140 dyn/cm®. KEr de-
notes the total kinetic energy. We see from the top
panel of Fig. 8 that KErp is nearly identical to KE;,
so for this value of 1, and also for the other values of
7o studied in this paper, most of the energy remains
in the top layer of the model. In the lower panel of
Fig. 8 we show the power spectrum of the time varying
part of the spatially-averaged kinetic energy in the first
layer after the 25,000 day spin up, K E; — KE?"¥, where
KE" denotes the time average of K E,. The average
is computed from day 25001 until day 29000 (4000 days
total). From the spe¢trum, we see that the top layer has
a period of T = 160 days. The spin up time of 25000
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Fig. 13. Lobes created by the intersection of the stable and
unstable manifolds of the hyperbolic trajectories on the eastern
and western boundaries, respectively, for o = 0.160 dyn/cm2 at
tn = 26580 days.

days is much longer than typically used in other work
on quasigeostrophic models. The objective in using such
a long spin up was to be certain that we had reached
a statistically steady state. We found that the spin
up time necessary to reach a statistically steady state
varies inversely with the magnitude of 75. In this study
we prescribe 0.140 dyn/cm®? < 15 < 0.170 dyn/cm?,
which is low in magnitude relative to a more typical
value of 79 = 1.0 dyn/cm? used in the other literature
on quasigeostrophic models (e.g. Cummins & Mysak
[1988], Lozier & Riser [1989,1990]).

Before we can compute the manifolds and lobes, we
must first be able to track the hyperbolic trajecto-
ries along the western and eastern boundaries. Fig. 9
demonstrates the result of the numerical method de-
scribed in § 4.3 for tracking hyperbolic trajectories on
boundaries. The upper panel shows the vertical position
of the hyperbolic trajectory on the western boundary as
a function of time and the lower panel shows the verti-
cal position of the hyperbolic trajectory on the eastern
boundary as a function of time. In both panels, the
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Fig. 14. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when 7y = 0.165 dyn/em?,
indicating a period of 151 days.

blue line is ay, the lower bound on the hyperbolic tra-
jectory, and the green line is 3, the upper bound on
the hyperbolic trajectory. Also included in both panels
is a red line, which is the instantaneous vertical location
of the stagnation point, ;7 . Note that in the upper
panel, @, and 3, converge rapidly to each other, that
is By —a, <1 km at ¢ = 25021 days, and then fol-
low a path very similar, yet distinct, from that of v;P.
As mentioned in § 4.3, we see from Fig. 9 that once a,
and 5, have converged, the range of travel of the hy-
perbolic trajectory is bounded by the range of travel of
the instantaneous location of the stagnation point, i.e.
Yo¥lmin € @y < %P lmaz and 1 Plnin < 8y < 'Y;plmaz-
This principal also applies to the lower panel of Fig. 9,
but there are some distinctions between the upper and
lower panel. The hyperbolic trajectory does not follow a
path that is nearly identical to the stagnation point, as
in the upper panel. In fact, its range of travel is consid-
erably less than that of the stagnation point. Also, ay
and 3, converge much more slowly in the lower panel, re-
quiring over 2000 days to converge to 1 km or less. This
is a result of the velocities near the eastern boundary he-
ing much slower than those near the western boundary.
In both panels, though, we see that the hyperbolic tra-
jectory changes direction, that is, the sign of the vertical
velocity of the hyperbolic trajectory changes, as the in-
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Fig. 15. Lobes created by the intersection of the stable and
unstable manifolds of the hyperbolic trajectories on the eastern
and western boundaries, respectively, for 7p = 0.165 dyn/cm? at
t = 27925 days. To make it easier to see the lobes, they have
been colorized with alternating green and purple.

stantanecus location of the stagnation point crosses to
the opposite side of the hyperbolic trajectory.

Once we are able to track the hyperbolic trajecto-
ries on both boundaries, we can compute the associ-
ated manifolds. In Fig. 10 we show the lobes created by
the intersecting stable and unstable manifolds of the hy-
perbolic trajectories on the eastern and western bound-
aries, respectively, for p = 0.140 dyn/cmz. These are
the manifolds that govern intergyre transport. In the
left panel of Fig. 10, we show the manifolds at time
to = 25075 days, that is, 75 days after the spin up.
Two points are labeled in the panel, ap and by, which
are pips of the unstable and stable manifolds. In addi-
tion, ag is the bip for time t = 4y, which means that the
boundary between the northern and southern gyre is de-
fined by the red unstable manifold to the left of ag and
the blue stable manifold to the right of ag. Between ag
and by is a series of eighteen others pips and correspond-
ing lobes, nine of which are in the northern gyre and ten
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Fig. 16. A series of snapshots showing the formation of a ring
in the southern gyre when =) = 0.165 dyn/cm?. The upper-left
panel starts at ¢t = 27945 days, and then each following panel
depicts the ring formation process at 30 days intervals.

of which are in the southern gyre. The right panel of
Fig. 10 shows what happens to the manifolds and lobes
ten periods later, i.e. when ¢t = ¢, = 26635 days. Note
that ag has mapped to a, and by has mapped to by.
Now, by, is the new bip and of the lobes between a,, and
b, illustrate the transport that has occurred between
the northern and southern gyre during the time inter-
val t, — 2p. So, in the left panel, the lobes which are
shown there indicate the fluid which will be transported
across the boundary between the northern and south-
ern gyre, while in the right panel, the iobes indicate the
fluid which has been transported across the boundary.
Not only do the lobes illustrate the location and shape
of the fluid which will be or has been transported across
the boundary, but, in addition, they can be used to pre-
cisely calculate the amount of transported fluid. For ex-
ample, we use Green’s Theorem to compute the areas of
each lobe, sum the areas of the lobes between a,, and b,
on the north side of the boundary, multiply by the upper
layer thickness, H;, and then divide by ¢, — 5, which
gives ¢ v = 0.0590 Sv. This represents the amount of
irreversible flux from the southern gyre into the north-
ern gyre during the interval between #; to t,. Likewise,
we perform a similar calculation for the lobes in the
southern gyre to get ¢n 5 = 0.0563 Sv. If we subtract
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Fig. 17. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when 1y 2 0.1672 dyn/em?.
However, now the spectrum is not dominated by a single period,
but rather two periods. One of 153 days and the other 402 days.
We refer to this situation as “quasiperiodic®.

this value from ¢g v we get ¢g = 2.67 x 1072 Sv, which
denotes the instantaneous value of the reversible compo-
nent of the flux at ¢t = ¢,, described in the previous sec-
tion, which is attributed to the movement of the bound-
ary between the southern and northern gyres from &g to
t,,. For a point of reference regarding these transport
quantities, we can compute the transport along the jet,
¢, by taking the difference in the instantaneous stream-
function values at £ = £, from the centers of the eddies
above and below the jet near the western boundary and
multiplying by the distance between the two centers.
In this case, ¢y = 6.12 Sv, which is two orders of mag-
nitude larger than ¢g n and five orders of magnitude
larger than ¢x. However, it is important to explore and
estimate the numerical accuracy of the flux computa-
tions which rely on the lobes. To do this, we can exploit
certain behaviors of this particular case. First, in many
time-periodic solenoidal fields, such as this case, all of
the lobes on a given side of the boundary should theo-
retically be identical in area. So, we compute the vari-
ation, ¢, in the lobe area for all the lobes on the north
gide of the boundary by subtracting the minimum and
maximum lobe areas, dividing the result by the maxi-
mum lobe area, and multiplying by 100%. In this case,
¢, = 0.429%, which serves as a measure of the global rel-
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Fig. 18. Lobes created by the intersection of the stable and
unstable manifolds of the hyperbolic trajectories on the eastern
and western boundaries, respectively, for 7y 2 0.1672 dyn/cm? at
t = 26057 days. As in Fig. 15, the lobes have been colorized with
alternating green and purple.

ative error. Another measurement of the global relative
error takes a bit more effort to obtain, but the neces-
sary computations yields other insights into the physics
of the transport processes. If we re-compute the man-
ifolds and corresponding flux computations for Fig. 10,
but start and stop the computations five days later, that
is, {p = 25085 days and &, = 26635 days, and maintain
the same number of points in each manifold, 18000 in
the unstable, and 3000 in the stable, then we will get
slightly different values for ¢5 n, ¢~ s and @g. If we re-
peat this computation at five day intervals for 750 days,
the result is Fig. 11. Note that ¢35 ~ is the black dashed
line and ¢, 5 is the red dashed line in the upper panel
of Fig. 11. The red and black solid lines in the upper
panel are ¢g v and ¢ g, which represent the time av-
erage of ¢g v and ¢n g from the present ¢ back to g,
respectively. Since ¢s,5 — ¢~ s represents the reversible
flux due boundary movement, and flow is time-periodic,
then ¢ y and ¢ g should approach the same constant

value when £, —ty >> 7. In this case, tp = 25080 days,
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Fig. 19. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when 79 = 0.1675 dyn/em?.
However, now the spectrum is broad band and not dominated by
a small number of frequencies. This situation is typical of chaotic
dynamical systems.

t, = 27385 days, and T = 160 days, which satisfies
this condition. From Fig. 11 we can see that although
55, w and EN,S both approach constant values over the
750 day span shown, there is a small difference between
their final values, i.e. ¢r = |bsn = BN 5|, yrggs- THIS
difference is another measure of the globai error of the
computations, which in this case is 0.387%. So, by the
value given for ¢, and this difference between ¢g  and
ES'N, 5, it i8 safe to say that for the parameters chosen to
control the accuracy of the numerical methods, such as
the temporal interpolation, spatial interpolation, inte-
gration, spatial resolution of the manifolds, ete., chosen
for the computations in the these studies, the overall
global error is less than 1%. The lower panel of Fig. 11
shows ¢g, corrected by ¢pr. Note that ¢r is truly re-
versible, in the sense that it oscillates above and below
the zero line, and that it has a period of 160 days, equal
to the period of the spatially-averaged kinetic energy
of the entire basin shown in the lower panel of Fig. 8.
Note that ¢g is a very small quantity relative to that
of ¢s, v OF P, 5, so the boundary between the northern

‘and southern gyres is nearly stationary and nearly all

of the flux across the boundary is of a long-term irre-
versible nature. The discontinuities in the curvature of
¢s.n, ¥n,5, and ¢p are a natural consequence of the
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Fig. 20. Lobes created by the intersection of the stable and
unstable manifolds of the hyperbolic trajectories on the eastern
and western boundaries, respectively, for =g = 0.1675 dyn/cm?
at t, = 26600 days. As in Fig. 15, the lobes have been colorized
with alternating green and purple.

discrete changes in the bip at ¢ = ¢, as the manifolds
are advanced forward in time.

5.2 15 =0.160: A Time-Periodic Velocity Field

Since our objective is to develop methods for and study
flows with periodic, quasiperiodic and chaotic time de-
pendence, it is important to increment o gradually and
examine the resulting implications on the lobe dynam-
ics. If we increase the magnitude of the wind stress to
70 = 0.160 dyn/cm?®, the flow remains time-periodic.
Evidence for this is presented in Fig. 12. The spectrum
of the mean spatial kinetic energy of the top layer in the
basin is similar to that shown in Fig. 8, but indicating
a period of 154 days.

In Fig. 13 we show the lobes created by the intersect-
ing stable and unstable manifolds of the hyperbolic tra-
jectories on the eastern and western boundaries, respec-
tively, for 7o = 0.160 dyn/cm? at ¢ = ¢,, = 26580 days.
There are 26 intersections of the unstable and stable
manifold segments shown, all of which are pips. As in
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Fig. 21. A series of snapshots showing the formation of a ring in
the southern gyre when m = 0.1675. The upper-left panel starts
at t+ = 25855 days, and then each following panel depicts the ring
formation process at 30 days intervals.

the right panel of Fig. 10, two of the pips are labeled,
an and b,,. b, is the present bip and a is the map of ap
from ¢ = ¢y = 25075 days. The two manifolds and 26
pips define 13 lobes in the northern gyre, and 12 lobes in
the southern gyre. The overall geometric pattern of the
lobes is very similar to the previous 7 = 0.140 case. In
fact, for all values of 7y the motion of the lobes follows
the same general pattern. Note the lobes at the top of
the figure. Under time evolution they move to the left,
toward the western boundary. After reaching the west-
ern boundary they move downwards along the western
boundary until they reach a neighborhood of the hyper-
bolic trajectory on the western boundary. Then they
move back to the interior of the flow, and in the process
cross from the northern to the southern gyre. However
in this case of 7o — 0.160 the lobes move around the
gyre more rapidly than in the my = 0.140 case.

For the lobes shown in Fig. 13, the intergyre trans-
port is ¢gn = 0.136 Sv while the transport along
the jet is ¢y = 6.98 Sv. So, we see that the inter-
gyre transport has increased significantly (almost by
a factor of two); yet the increase in transport along
the jet does not experience as significant an increase.
Note also that the asymmetry between the patterns
of lobes in the northern and southern gyres is more
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Fig. 22. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when 79 = 0.170 dyn/cm?,
The spectrum shows the same characteristics as in the case shown
in Fig. 19.

pronounced than for 7y = 0.140. This is due to the
fact that the meandering of the jet is more pronounced
for p = 0.160. The instantanecus value of the re-
versible flux is ¢g = 0.00335 Sv and the lobe variation
for the northern lobes is ¢, = 0.435%, both of which
are increased from the their corresponding values when
To — 0.140.

5.3 7 =0.165: A Time-Periodic Velocity Field

For this value of the wind stress another time-periodic
velocity field is obtained, which is clear from the wind
up and power spectrum of the spatially-averaged kinetic
energy of the first layer presented in Fig. 14. The period
is 151 days.

In Fig. 15, we show the lobes created by the inter-
secting stable and unstable manifolds of the hyperbolic
trajectories on the eastern and western boundaries, re-
spectively, for 7p = 0.165 dyn/cm?® at ¢ = 27925 days.
The lobes have been colorized with alternating green
and purple, so that it is easier to see the lobes. The
colorization also makes it easier to see the transport be-
havior. In Fig. 15, purple lobes can be seen in the south-
ern gyre along the western boundary, in the jet, and in
the northern gyre. Green lobes can be seen along in the
northern gyre along the western boundary, just past the
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Fig. 23. The location of the hyperbolic trajectory and the instan-
taneous location of the stagnation point for the western bound-
ary (upper panel) and the eastern boundary (lower panel) when
7o = 0.170 dyn/em?.

jet, and in the southern gyre. Since the flow is periodic
and one lobe of each color is generated each period, each
purple lobes can be thought of as a map of any other pur-
ple lobe, and likewise, each green lobe can be thought of
as map of any other green lobe. So, the colorized lobes
allow us to “see” the transport process: green lobes
descend the western boundary, and then cross the jet
into the southern gyre. Purple lobes ascend the west-
ern boundary, and then cross the jet into the northern
gyre. An animated version of Fig. 15 is available on the
authors’ web site at http://transport.caltech.edu, along
with anitnations of several of the other similar figures in
this paper. The reader is encouraged to view the anima-
tions, since they clearly illustrate the intergyre transport
process. In addition to elucidating intergyre transport,
the lobes also show the geometric shape of fluid both
before and after it has crossed the boundary. Note that
the geometric pattern of the lobes shows new behavior
that is different than that observed for 75 = 0.140 and
0.160.

In particular, one notices that the purple lobes in the
northern gyre have developed a ring-like structure due
to the rolling up of the tips, which occurs as a result of
the interaction with the eddy above the jet.

Fig. 16 shows several steps in the formation of the
ring-like structures at a northern meander starting at
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Fig. 24. Lobes created by the intersection of the stable and
unstable manifolds of the hyperbolic trajectories on the eastern
and western boundaries, respectively, for 7o = 0.170 dyn/em? at
t = 27925 days. As in Fig. 15, the lobes have been colorized with
alternating green and purple.

t = 27945 days and spanning a 150 day period, at
30 day intervals. Since the flow has a period of 151
days, the last panel in Fig. 16 is nearly identical to the
first. In the first panel of Fig. 16, a purple lobe can
be seen just after it crossed the jet. The panels which
follow show a ring-like structure pinch off from the jet,
remaining attached to the remainder of the lobe by a
very thin filament. From the last panel, it is evident
that only a small amount of the fluid in the ring-like
structure is purple, i.e. from the southern gyre. The
ring-like structures are similar to the well-known rings
often discussed in oceanographic literature, particularly
in discussions of transport processes in the vicinity of
the Gulf Stream. They are similar in the sense that
they are quasigeostrophic coherent Lagrangian struc-
tures, but dissimilar in that they do not have associated
with them typical velocity and potential vorticity gra-
dients. As a result, their path of travel after they are
formed is simply the result of the ambient velocity field,
moving slowly around the gyre, such as seen in Fig. 15,
whereas rings, once they are formed, typically travel in
a direction opposite to that of the ambient fluid, e.g. in
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Fig. 25. A series of snapshots showing the formation of a ring
in the northern gyre when 7p = 0.170 dyn/cm2. The upper-left
panel starts at t = 27781 days, and then each following panel
depicts the ring formation process at 30 days intervals.

the case of the Gulf stream, they move in a direction
parallel to, but opposite that of the Gulf stream. From
some further studies that we have done corresponding
to significantly larger values of rg, the same Lagrangian
structures that we see here do develop associated veloc-
ity and potential vorticity gradients and have a path of
travel parallel and opposite to that of the jet. So, we will
refer to these Lagrangian structures as rings throughout
the remainder of this paper, since they seem to be the
low 7y analog of classical rings. It is important to realize
that because these rings at low 79 do not have associ-
ated velocity or potential vorticity gradients, that they
are undetectable or invisible by any method other than
that which we describe using lobe dynamics. In this
particular case, note from Fig. 15 and Fig. 16 that the
fluid in the interior of the ring is fluid from the northern
gyre. Therefore we see that these rings for this value of
75 do not transport fluid, or at least transport very small
amounts of fluid, from the southern to the northern gyre
since these lobes originated earlier in the southern gyre.
This is an interesting observation since there has been
much debate in the literature about the how much the
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rings contribute to intergyre transport. We will also
look at the formation of rings at higher values of 7y in
the following sections to determine if there is a direct
relationship between magnitude of the wind stress curl
and the amount of intergyre transport contributed by
rings.

The intergyre flux computed from the northern lobes
shown in Fig. 15 is ¢gn = 0.152 Sv, the reversible
flux is ¢p = 0.00372 Sv, and the flux of the jet
is ¢, = 7.18 Sv, all of which represent a linear in-
crease over the values corresponding to 1y = 0.140 and
19 = 0.160. The variation computed from the northern
lobes is ¢, = 0.263%, which is a decrease from the vari-
ation corresponding to both m = 0.140 and 7p = 0160.
This is probably due to the fact that only seven lobes
were computed for this case, whereas ten lobes were
computed for both of the previous cases, thus the vari-
ation in lobe size is likely to be less.

54 1 =20.1672: A Time-Quasiperiodic Velocity Field

For this value of the wind stress we obtain a velocity field
that is clearly not temporally periodic. We show the
spectrum in Fig. 17. We see two dominant peaks in the
spectrum. One at 153 days and the other at 402 days,
and we refer to this situation as “quasiperiodic™. The
precise value of the wind stress curl necessary to obtain
this quasiperiodic condition is 0.16715087 dyn/cm?,
which was not a trivial value to find, requiring the model
to be spun up from rest over 60 times.

In Fig. 18 we show the lobes created by the inter-
secting stable and unstable manifolds of the hyperbolic
trajectories on the eastern and western boundaries, re-
spectively, for 7y 2 0.1672 dyn/cm?®. There are 18 inter-
sections of the stable and unstable manifold, all of which
are pips. The manifolds and pips define 17 lobes, 9 of
which are purple and 8 of which are green. Of the purple
lobes, 2 of them in the southern gyre along the western
boundary indicate fluid which will be transported across
the boundary, while the 7 of them in the northern gyre
indicate fluid which hag recently been transported across
the boundary. Of the green lobes, 2 of them in the north-
ern gyre along the western boundary indicate fluid which
will be transported across the boundary, while the 6 of
them in the southern gyre indicate Auid which has been
recently transported across the boundary. As for the
geometry of the lobes, we see some similarity with the
situasion far 1 = 0.165 in that the tips of most of the
purple lobes in the northern gyre have rolled up to form
rings. However, there is one very important difference.
For this case we see a small “ring within the ring”. This
interior ring is filled with fluid from the southern gyre
(but it is surrounded by fluid from the northern gyre).
Thus, the lobes rings now contribute to the transport of
fluid from the southern to the northern gyre.

The intergyre flux for the lobes shown in Fig. 18 ig
g .y = 0.160 Sv. The reversible lux is gy = 0.0142 Sv

and the flux along the jet is ¢y = 7.28 Sv. Note thas
both the intergyre flux and the flux along the jet have
again increased linearly from the values corresponding
to previously discussed magnitudes of w. But, the
reversible flux has increased non-proportionally. We
should note that although the reversible flux values
have thus far increased with increasing 7, these are in-
stantaneous values only, and are indicative only of the
present boundary position and shape relative to the ini-
tial boundary. This reversible lux value could change
significantly as the boundary fluctuated. The variation
for northern lobes shown in Fig. 18 is ¢, = 24.2%,
which is a significant and non-proportionate increase.
This significant increase in the lobe variation is expected
since this quasiperiodic case represents a transition to a
chaotic flow.

5.5 1 = 0.1675: A Time-Chaotic Velocity Field

For this value of 7y the velocity field is temporally
chaotic, as can be seen from broad band spectrum in
the lower panel of Fig. 19.

In Fig. 20 we show the lobes created by the intersec-
tion of the stable and unstable manifolds manifolds of
the hyperbolic trajectories on the eastern and western
boundaries for 1y = 0.1675 and ¢, = 26600 days. There
are 14 intersection points, all of which are pips. The
manifolds and pips define 13 lobes, 6 of which are pur-
ple and 7 of which are green. All of the purple lobes in-
dicate fluid which has recently been transported across
the boundary from the southern gyre to the northern
gyre. Of the green lobes, one of them in the northern
gyre along the western boundary indicates fluid which
will be transport across the boundary, while 6 of them
in the southern gyre indicate fluid which has been re-
cently transported across the boundary. From these
lobes, we can compute the usual transport quantities
that we have in previous sections: the intergyre trans-
port is ¢s v = 0.090 Sv and the flux along the jet is
¢y = 712 Sv. So, in the transition to chaotic flow,
there has been a steep decrease both in intergyvre trans-
port, as well as flux along the jet. The reversible flux in
Fig. 20 is ¢ = —0.00106 Sv. Which is the first so far
that the boundary fluctuation is such that the present
boundary at t = {,, is on the average, south of the orig-
inal boundary at t = #j.

From Fig. 20, we see that the geometric pattern of
the lobes is much more irregular than in the periedic or
quasiperiodic cases. In fact, the variation in lobe areas
is almost 100 %, a dramatic increase over the variation
at lower values of 1p. We also note that some of the
lobes have forined rings, while others have not. Oune of
the purple lobes in the northern gyre has pinched off to
forin a ring, and two of the lobes in the southern gyre
have pinched off to forin rings.

Fip. 21 shows several steps in the formation of the
eastern-most ring in Fig. 20 several months earlier, at
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transported from the northern gyre into the southern (green dashed line). Their time averages $g y and @, ¢ are shown by the solid
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t = 25855 days and spanning a 150 day period, at 30
day intervals. The green lobe represents fluid which has
been transported across the jet from the northern gyre.
Thus, we can clearly see from this series of snapshots
that only the fluid in the exterior of the ring has con-
tributed to intergyre transport and the majority of the
fluid in the interior of the ring does not contribute to
intergyre transport.

5.6 7 =0.170: A Time-Chaotic Velocity Field

Here we have another temporally chaotic case, as is
evident from the time series and the spectrum of the
spatially-averaged kinetic energy shown in Fig. 22.

Despite the different time dependencies, the behavior
of the hyperbolic trajectory for chaotic flows is similar
to that for periodic flows. In Fig. 23 we show the hy-
perbolic trajectory as a function of time along the west-
ern and eastern boundaries, similar to Fig. 9, but for
79 = 0.170 dyn/cm®. The convergence of oy and Sy to
the hyperbolic trajectory for both the western and east-
ern boundary in Fig. 23 is similar to that of Fig. 9, rapid
on western boundary, requiring only 34 days to converge
to less than 1 km, and much slower for the eastern
boundary, again requiring over 2000 days to converge
10 less than 1 km. As expected, we see that neither the
instantaneous vertical position of the stagnation point,
nor the vertical position of the hyperbolic trajectory fol-
low a sinusoidal path, as they did in Fig. 23. But, the
behavior of the hyperbolic trajectory relative to that of
the stagnation point in both the upper and lower pan-
els of Fig. 23 is similar to that of Fig. 9. In the upper
panel, the hyperbolic trajectory follows the stagnation
point closely, while in the lower panel, the vertical move-
ment of the stagnation point is much more rapid than
that of the hyperbolic trajectory. So, we note that the
principal previously discussed: the range of travel of the
hyperbolic trajectory is bounded by the range of travel
of the stagnation point, also holds in this time-chaotic
case.

The lobes created by the intersection of the stable
and unstable manifolds of the hyperbolic trajectories
on the eastern and western boundaries, respectively, for
790 = 0.170 dyn/cm? at t = 27925 days is shown in
Fig. 24. The lobes have again been colorized with al-
ternating green and purple to make them easier to see.
There are 16 interesction points, all of which are pips.
The manifolds and pips define 15 lobes, 7 of which are
purple and 8 of which are green. Of the purple lobes, one
of them in the southern gyre along the western bound-
ary indicates fluid that will cross the boundary, while
6 of them in the northern gyre indicate fluid which has
recently crossed the boundary. Of the green lobes, 2
of them in the northern gyre along the western bound-
ary are difficult to see, because they are very thin, but
still indicate fluid which will cross the boundary into
the southern gyre. The remaining 6 green lobes are in

the southern gyre and indicate fluid which has recently
croas the boundary from the northern gyre. Note that
the lobes vary significantly in size and shape, and in
fact, the variation in area of the northern lobes is again
nearly 100 %. The intergyre flux is ¢gn = 0.195 Sv
and the flux along the jet is ¢; = 7.158 Sv. So, af-
ter the drop in transport that was experienced in the
transition from periodic to chaotic time dependence, we
see that both ¢g & and ¢, continue to increase as 1y
is increased in the chaotic regime. As in the last case,
the instantaneous value of the reversible flux happens
to be ¢ = —0.0594 Sv, which again indicated that the
present houndary is, on the average, south of the original
boundary at £ = t3. We also observe from Fig. 24 that
there happen to be two rings present at ¢ = 27925 days,
one in the southern gyre which was formed some time
ago, and another in the northern gyre which is just fin-
ishing its pinching or formation process. Note that this
ring, which located in the northern gyre, directly above
the eastern end of the jet, is significantly different in
character than the other rings that we have looked at
and discussed so far. The formation of this ring over
30 day intervals is shown in Fig. 25. Note that when
this ring is formed, the interior of it is entirely purple,
indicating that all of the fluid contained by the ring has
contributed to intergyre transport. So, the contribution
of rings to intergyre transport can vary tremendously,
depending on the time dependence of the flow. In a per-
fectly time-periodic, the rings contribute almost nothing
to the intergyre transport and in time-chaotic flow, their
entire contents can contribute to intergyre transport.
In Fig. 26 we present results similar to that of Fig. 11
for the reversible and irreversible intergyre flux. Iden-
tical to the methods used for Fig. 11, the flux ¢ggn
shown in the left panel of Fig. 26, is computed from lobes
which transported fluid from the southern gyre into the
northern (purple dashed line) and the flux ¢y g is com-
puted from the lobes which transported from the north-
ern gyre into the southern (green dashed line). Their
time averages Es, N and ‘;—bN,S are shown by the solid
purple and green lines, respectively. The black and red
lines which appear as nearly a gingle line, are the four
flux quantities shown in Fig. 11, provided in this fig-
ure for comparison purposes. Although the wind stress
cutl for these two cases presented in Fig. 26 differs by
only 0.03 dyn/cm?, there is a striking different in the
behavior of the intergyre flux. First, the magnitude of
the flux for the r = 0.170 case is typically more than
twice that of the flux for the v = 0.140 case. Second,
the fluctuations in ¢g n and ¢, s, indicated by the pur-
ple and green dashed lines, are several orders of magni-
tude larger than the fluctuation indicated by the red and
black dashed lines. Third, the amount of reversible flux,
¢r = ¢s,n — $n,s, shown in the right panel of Fig. 26
has considerably larger variations than that shown in
the lower panel of Fig. 11. Note that the units of the
vertical axis of the lower panel of Fig. 11 are in m*/s
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and the units of the vertical axis of Fig. 26 are in Sv,
s0 the reversible flux in the 73 = 0.170 case has varia-
tions which are approximately three orders of magnitude
larger than the 7y = 0.140 case. Also note that ¢g w,
¢n,s and ¢r have smooth continuous changes over short
time segments, and then sudden discontinuous changes,
which are a direct result of re-labeling a new pip as the
bip. This is necessary since we are maintaining only fi-
nite segments of infinitely long manifolds, and therefore
only having finite knowledge of the present transport
processes. The time averages smooth the discontinuities
due to the changing bip, but it becomes smoother and
smoother as the time average becomes longer. There-
fore, the time average is useful for obtaining a steady or
quasisteady value for the intergyre flux, but not useful
for understanding the present or transient intergyre flux.
A better method for computing the flux would be to
maintain an average over certain time interval or a par-
ticular number of lobes. However, this is a challenging
task, and is thus beyond the scope of this paper. Coulli-
ette et al. [2000] further discuss the details in the com-
putational methods necessary for Fig. 11 and Fig. 26,
and those necessary to maintain an average flux over a
certain time interval or particular number of lobes.

5.7 Summary of the Flux Results

We summarize our flux results in Fig. 27. The left
panel in the figure shows the values of intergyre trans-
port (¢g,n) on the left-hand vertical axis as a function
of 79 and values of the transport along the jet (¢7) on
the right-hand vertical axis as a function of rp. For both
types of transport we see that the flux increases linearly
with respect 7y in the periodic regime, a catastrophic
change oceurs in the flux-wind relationship occurs in the
transition from periodic to chaotic time dependence, re-
sulting in a decrease in flux.

In the right panel of the figure we show the reversible
flux and the lobe variation as a function of . Note
that the variation is very small, i.e. always less than
1 % for the periodic flows, then rises to 24 % for the
quasiperiodic case, and then to nearly 100 % for each of
the chaotic cases. The reversible flux does not follow this
type of pattern, simply because it is the instantaneous
value of the reversible flux at each of the times discussed
in the previous sections, which represents the present
position of the boundary relative to that of the original
boundary.

6 Conclusions

The most typical approach used to try to understand
Lagrangian transport is to release drifters or particles
from various locations throughout the flow (e.g. Lozier
& Riger [1989]). The result iz a collection of parti-
cle pathways that are often referred to as “spaghetti

plots”. Very little useful information can be extracted
from these plots, other than the observation that La-
grangian transport is difficult to understand. The prob-
lem is the nonlinearities inherent in (5) cause seemingly
straightforward velocity fields to yield seemingly unin-
telligible Lagrangian trajectories. Rather than releasing
particles from randomly chosen locations, the dynami-
cal systems approach releases a series of particles from
specific locations (hyperbolic trajectories), which iden-
tifies two material surfaces (unstable and stable mani-
fold) that intersect each other {pips and sips) and divide
the basin into qualitatively different Lagrangian regions
{lobes). The visualization of these regions allows us to
understand, for example, why a particle released from
a specific location at a given time follows a completely
different path than a particle released at exactly the
same location at a slightly later time. In addition, these
Lagrangian regions can be used to compute the precise
amount of flux crossing a moving fluid boundary, and
to visualize the Lagrangian shape of the regions both
before and after crossing the fluid boundary. This is
not possible with any other conventional method. More
specifically we can make the following conclusions re-
garding Lagrangian transport and intergyre flux:

— It is possible to quantify Lagrangian transport for
periodic, quasiperiodic and chaotic time depen-
dence using lobe dynamics with numerically gen-
erated velocity fields.

— The intergyre flux is proportional to the flow rate
of the jet.

— The intergyre flux and the flow rate of the jet are
linear functions of the wind magnitude for periodic
flows.

— A catastrophic change occurs in the flux-wind re-
lationship during the transition from periodic to
chaotic time dependence.

- The intergyre flux and the flow rate of the jet
are nonlinear functions of the wind magnitude for
chaotic flows.

Concerning flow structures and the use of invariant
manifolds and lobes in describing their influence on
transport, we can make the following conclusions:

- It is possible to precisely study the geometric struc-
ture of transported fluid using lobe dynamics with
numerically generated velocity fields.

- Ring formation from a meandering jet is evident in
periodic, quasiperiodic and chaotic flows.

— Ring formation dees not contribute significantly to
intergyre flux in periodic flows.

— Ring formation does contribute to intergyre flux in
chaotic flows.
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— All of the fluid that crosses the jet must pass
through the western boundary current.

— Fluid that makes a transition around both gyres
must follow the “figure eight” pattern dictated by
the lobes.
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