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Abstract. Cellular automaton versions of the Burridge-
Knopoff model have been shown to reproduce the power
law distribution of event sizes; that is, the Gutenberg-
Richter law. However, they have failed to reproduce the
occurrence of foreshock and aftershock sequences corre-
lated with large earthquakes. We show that in the case
of partial stress recovery due to transient creep occurring
subsequently to earthquakes in the crust, such spring-
block systems self-organize into a statistically station-
ary state characterized by a power law distribution of
fracture sizes as well as by foreshocks and aftershocks
accompanying large events. In particular, the increase
of foreshock and the decrease of aftershock activity can
be deseribed by, aside from a prefactor, the same Omori
law. The exponent of the Omori law depends on the re-
laxation time and on the spatial scale of transient creep.
Further investigations concerning the number of after-
shocks, the temporal variation of aftershock magnitudes,
and the waiting time distribution support the conclusion
that this model, even “more realistic” physics is missed,
captures in some ways the origin of the size distribution
as well as spatio-temporal clustering of earthquakes.

1 Introduction

The dynamics of earthquakes has attracted much atten-
tion as a real-world example for a self-organized criti-
cal phenomenon, introduced by Bak et al. (1987). The
hallmarks of systems exhibiting self-organized critical-
ity (SOC) are spatial and temporal ¢~y relation functions
with power law hehavior.

In fact, earthquakes show several types of power law
behavior. In particular, their frequency-size distribution
is well defined by the Gutenberg-Richter law (Gutenberg
and Richter, 1954)

logigN=a-—-56-M, (1)

Correspondence to: 5. Hainzl

where NV is the number of earthquakes with magnitude
greater than or equal to M. Considering the relation
between the magnitude M and its source size S, i.e.
M ~ log S (Kanamori and Anderson, 1975; Purcaru and
Berckhemer, 1978), the Gutenberg-Richter law describes
a power law for the number of observed earthquakes
with sizes greater than S,

N~ 8§78 (2)

The exponent B varies over a wide range of values for
different faults, namely, between 0.80 and 1.05 (Ekstrdm
and Dziewonski, 1988; Pacheco et al., 1992).

The first generation of SOC earthquake models, de-
rived from the sandpile model (Bak et al., 1987), im-
plying a conservation law with regard to the internal
coupling rules {(Bak and Tang, 1989; Ito and Matsuzaki,
1990). They reproduce the power law size distribution,
but the observed B value was found to be universal and
too small.

On the other hand, a geophysically motivated fault
model, which was proposed earlier by Burridge and Kno-
poff (1967) (hereinafter referred to as BK), has also been
shown to reproduce the Gutenberg-Richter law. In this
case, a fault is modeled as a spring-block system lying
between two moving rigid tectonic plates. Several mod-
ifications of this model have been analyzed by diflerent
authors (e.g., Carlson and Langer, 1989a, b). In the
quasi-static limit; that is, if instantaneous block slips
are assumed (Nakanishi, 1990; Brown et al., 1991; Olami
et al., 1992; Rundle and Klein, 1995), this spring-block
model is very similar to the first generation of SOC mod-
els, differs only in a deterministic instead of a stochastic
forcing and in its nonconservative characteristics which
comes from a coupling by springs between the blocks
within the fault plane and the tectomic plate. Olami
et al. (1992) (hereinafter referred to as OFC) have shown
that the proper B value and its empirically observed
variability can be reproduced, if the level of conservation
decreases in these cellular automaton versions of the BK
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model. According to the OFC model, the exponent B is
close to 0 in the case of high levels of conservation and
increases to values above 2 for low levels of conservation.

However, all of these models fail to reproduce the
spatio-temporal clustering of smaller events accompa-
nying large earthquakes in real fault systems, namely
the occurrence of foreshocks and aftershocks. On aver-
age, both the decay of aftershock sequences and the time
distribution of foreshocks follow power laws. The after-
shocks are described by the modified Omori law (Omori,
1894; Utsu et al., 1995)

Ry~ (ca+t—ty)? (3)

and the foreshocks by a similar power law, an inverse
Omori law (Kagan and Knopoff, 1978; Jones and Mol-
nar, 1979)

Ry ~{ep +tm —1)77, (4)

where tpr indicates the occurrence time of the main-
shock; R, and Ry denote the occurrence rate of after-
shocks and foreshocks, respectively; and ¢,, ¢5 are small
constants scattering from 0.01 days to over 1 day with
a median of about 0.3 days (Utsu et al., 1995). Both
exponents p and g are found to be almost identical for
empirical earthquake catalogs, whereas their value can
vary between 0.9 and 1.5 (Papazachos, 1975; Utsu et al.,
1995).

An aseismic phenomenon, which is correlated with
large earthquakes in real fault systems, is postseismic
creep. This transient process is observed to oecur sub-
sequently to earthquakes in the vicinity of the fault over
days to years (Peltzer et al., 1996; Heki et al., 1997;
Savage and Svarc, 1997). We have shown in previous
investigations (Hainzl et al.,, 1999) that the introduc-
tion of postseismic transient creep characteristics in cel-
lular automaton versions of the BK model leads to a re-
production of the empirically observed spatio-temporal
earthquake clusters, especially to foreshock and after-
shock sequences obeying the Omori law. In our previ-
ous work, the effect of stress recavery due to the tran-
sient creep was restricted only to the slipped block or to
its four nearest neighbors neglecting more realistic long-
range effects. Thus it is important to analyze the model
results with regard to long-range interactions. This is
the first aim of this paper. Furthermore, we give some
more insights in the properties of the simulated spatio-
temporal event clustering, especially concerning the af-
tershock sequences and the distribution of waiting times,
and compare these results with empirical observations.

2 Model

Our aim is to characterize the qualitative behavior due
to a time-dependent stress modulation subsequently to
earthquakes. However, we do not want to model earth-
quake nucleation and rupture processes in detail. By
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Fig. 1. One-dimensional sketch of the investigated two-
dimensional spring-block model. The bottom blocks, which per-
form stick-slip motion, are connected to its neighbors by springs.
Furthermore, each block is coupled by a loader spring to the up-
per tectonic plate moving with a velocity V and frictionally to
the lower plate. The sliding of a block during an earthquake trig-
gers subsequently transient creep within the tectonic plate, which
leads locally to an increased loading after the earthquake.

analogy with the BK model, the fault is represented by
a network of interconnected blocks lying between two
tectonic plates. The blocks are driven by the slow rela-
tive movement of these two plates. Once the stress on a
block exceeds the static friction, sliding is initiated and
the frictional resistance of the block is assumed to drop
instantaneously to the dynamic friction. The slip of the
block redefines the stress of the blocks in the neighbor-
hood. This can result in further slips and a chain re-
action, i.e. an avalanche, can evolve, which is identified
with an earthquake.

In contrast to the BK model and its cellular automa-
ton version (OFC model), we do not assume total rigid-
ity of the tectonic plates, because material creep, plas-
ticity, fluid flow, and other processes are important in
real fault systems. For example, afterslip or transient
creep are known to induce a stress release in the or-
der of the coseismic release (Heki et al., 1997; DeMets,
1997). Therefore we study, as an extension of the BK
model, postseismic transient creep in the vicinity of the
sticked fault layer blocks. A one-dimensional sketch of
the investigated two-dimensional block system is shown
in Figure 1. In general, a local failure changes the stress
within the crust over a zone with a characteristic length
set by the screening of the elastic Green function. Tran-
sient creep is expected to occur in this region. In pre-
vious investigations (Hainzl et al, 1999), we have re-
stricted our analysis in a first-order approximation to
transient creep that affects only the slipped block and
its nearest neighbors. In this paper, we study alterna-
tively long-range interactions. Therehy, the relaxation
process of the crust is modeled by standard linear solids,
which exhibit elastic properties in addition to transient
creep characteristics. The response of a standard linear
solid to an instantaneous stress change is described by
a partial stress relaxation according to an exponential
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function (see, e.g., Dieterich, 1972).

In real fault systems, the duration of large earth-
quakes is of the order of minutes, whereas the dura-
tion of aftershock sequences is of the order of weeks or
months, and the recurrence times of large earthquakes
are of the order of hundreds years. Consequently, the
dynamics of a single earthquake are much faster than the
assumed crust relaxation and tectonic loading. There-
fore we assume that the crust relaxation and the tectonic
loading have no effect on the dynamics of an individual
event. Thus the evolution of a single earthquake de-
pends only on the elastic properties of the block system
and can be described by analogy with the OFC model.
In the inter-occurrence time intervals between successive
earthquakes, the stresses increase according to the tec-
tonic loading and, additionally, in contrast to the OFC
model, according to the transient creep in the crust.

We implement our model in the form of a continuous
cellular automaton by defining an Lx L array of blocks
(,7), where 4,7 are integers, 1 < 4,7 < L. The total
force (or stress if unit area is assumed) on each block is
given by &(z,7). The model algorithm consists of two
steps, (1) the evolution of a single earthquake and (2)
the stress changes in the inter-occurrence time between
successive events.

1. The evolution of a single event is described in
the following way: The friction law adopts the Mohr-
Coulomb law with a spatially constant static failure
threshold oF and residual stress ogp. If the stress on a
block (k,l) exceeds the static failure threshold, o(k,1) >
o, sliding is initiated at this block. The moving block
slips to the position with the residual stress g, and the
stress &g = o(k,l) — og is distributed to the adjacent
blocks and to the crust. The stresses of the four nearest
neighbors (k4,l1) are set according to the rule

olks,le) = ofks,ly) + a Ao (3)
and the stress of the sliding site is reset to
ok, ) = o . (6)

The elastic coupling constant « depends on the spring
constants and can vary in the range of 0 < a < (.25,
where a = 0.25 refers to the conservative case (Olami
et al., 1992; Hainzl et al., 1999). The block sliding leads
to a reduced expansion of the loader spring, which con-
nects the block with the tectonic plate; that is, to a
reduced resistance force of the fault layer in this region
(1 — 4a)Ao. This stress change is assumed to cause
the relaxation process within the crust following sub-
sequently to the earthquake (step 2)}. We introduce
the stress levels o\.(4, j) indicating these stress changes.
The values of o(i,j) are set to 0 at the beginning of
the earthquake (with index N) occurring at time tx.

{(a) Nearest neighbor interactions (NN model): !

Y'This case is called nonlocal model in {Hainzl et al., 1999).
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The stresses in the crust are assumed to increase in
the positions of the four adjacent blocks:

ol (ke le) = ol (ke ls) + (025 -a) Ao (7)

{b) Long-range interactions (LR model):

In this case, the stresses in the crust are assumed
to increase spatially according to a Gaussian distri-
bution:

L4 —S_."—klzqﬂg'—l)g Ao (8)

olh(i,5) = all(i,5) + 5% e
mQ

Instead of the Gaussian function, we could use al-
ternatively the appropriate form to a perfectly elas-
tic solid 1/r* or an exponential screening function.
However, the Gaussian function has the numerical
advantage that it can be normalized and that it is
spatially localized. Hence, finite size effects are less
important and huge grid-sizes with high computa-
tional efforts can be avoided.

According to Eq. (5), the sliding of block (k,l) rede-
fines the stresses o(k4, i1} acting on the adjacent blocks.
This may lead to an instability, i.e., o(ky,l1) > oF, in
one or more adjacent blocks. In this case, a chain reac-
tion starts and the stresses are distributed according to
Egs. (5), (6), and (7), respectively (8), until the earth-
quake is terminated, i.e., until o(i, j) < op for all blocks
(%,7). The spatial size S of the event is measured; that is,
the blocks, which slipped at least once in the avalanche,
are counted.

2. In the inter-occurrence time interval between suc-
cessive events, the dynamics are described in the follow-
ing way: The evolution of a single earthquake is set to
be instantaneous; that is, the crust relaxation process
and the tectonic loading have no effect during the evo-
lution of an earthquake. After an earthquake occurring
at time t,, transient creep is assumed to lead to a stress

"increase

Ac™(i,j,t) = k ol (i, §) (1—e” T, (9

where the relaxation time T as well as k& are parame-
ters of the model. The parameter x denotes the frac-
tion 0 < & < 1 of the instantanecus stress jump in the
crust o, which is redistributed to the fault in time. A
schematic plot of this temporal dependence is shown in
Figure 2. The overall dynamics due to all relaxation pro-
cesses, triggered by the earthquakes in the past, can be
determined by superposition. Additionally to the crust
relaxation process, the movement of the tectonic plates
increases the stress on each block with a constant rate
(6rp —oRr)/To, where T is the tectonic reloading time.
Therefore the time evolution of the stress distribution
following an earthquake at time t=¢5 can be described



24

I e
a
[ ]

o |

'T!; . adjacent block

_9 []
[ ]

% [ ]

= [ .

E e ] K.

o‘..‘ )
MG
TR g

0 2 4 6 8 10

time after earthquake ¢ [T

Fig. 2. The schematic plot illustrates the time-delayed stress
changes subsequently to the instantaneous stress jumps due to an
earthquake at time 0. At the occurrence time of the earthquake,
the stress drops instantaneously at the slipped block and increases
at adjacent blocks. As a result of the crust relaxation process with
relaxation time T, the stresses increase after the earthquake on the
four nearest neighbors (NN model), respectively, on the slipped
block as well as on its extended neighborhood (LR model).

by
.. . aogr —
U(@:J!t) = a(?‘sjstN)'i-“—Frﬂ]—R (t_tN)
N
+3 [A0"(yd,t) — Aa™(i, j, tw)]
n=1 (10)
.. T — T
= oli,jtn) + —— L (t—tn)

To
+ 5 Snli,5) (1=e""T5) .

The function Sa(,7) can be calculated iteratively by

N
Sn(i,§) = D oh(i,j)e T
n=1

(11)
L4 —_tpr

= oN(i, )+ Snoali ) e T
where t,, is the occurrence time of the nth event. To
determine the onset of the following earthquake (index
N+1), the equations o(i,j,{;;) = op are solved with
Newton’s method and the block with the minimal time
tmin = min{i;;|i,j € 1,...,L} is picked up. The next
earthquake is initiated at this block and occurs at time
tN31 = tmin. All stresses are changed to the values
o (i, 7, tmin) according to (10), and step 1 is repeated for
the next earthquake.

3 Numerical simulations
For the numerical simulations, we use open boundary

conditions and start with random values of {4, ) uni-
formly distributed in the interval [op, o). The values
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of o and o have no influence on the dynamics. They
are set arbitrarily to og=0 and op=1. Furthermore,
the tectonic reloading time Tp can be fixed arbitrarily,
because it defines just the time scale. Therefore, apart
from the system size L x L, the parameters of our model
are the elastic coupling constant «, the relative stress
relaxation time T'/T}, the feedback strength «, and ad-
ditionally in the case of long-range interactions, the spa-
tial coupling length ¢}. The system is iterated until it
reaches a statistically stationary state.

By setting £ =10, our model is equivalent to the OFC
model. To illustrate the consequences of & # 0; that is,
the effect of the memory term in Eq. (10}, an example
of the seismic activity accompanying a large event is
shown in Fig. 3 for both cases. The transient creep
leads obviously to a clustering of smaller events in the
temporal vicinity of the mainshock, whereas clustering
is absent in the case of the OFC model. In the following
sections, the simulations are analyzed in more detail.
At first, we study the distribution of event sizes. In the
second part, we investigate the spatio-temporal patterns

()
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Fig. 3. The effect of transient creep is illustrated by means of typ-
ical examples of the seismic activity accompanying large events:
(a) without the relaxation mechanism (k=0, a = 0.2); that is,
the OFC model; and (b) including the relaxation mechanism (NN
model with k=0.5, ®=0.2, and T/Tp=10"7). For both 100x100
block simulations, the mean stress level (o) = Z o{i, 53/ L (upper
curve) and the size of occurring events (bottom curve} are shown
as a function of time. In the case of the extended madel, the
assumed transient characteristics are responsible for the partial
siress recovery subsequent to earthquakes leading to a pronowmced
bunching of cvents in the vicinity of the largest carthquake. Note
that transient creep oceurs subsequently to all events, although
the plotted curve {7)(t) reflects this for the largest events only.



Hainzl, et al.: Self-organization of spatio-temporal earthquake clusters

of the earthquake dynamics, in particular, we analyze
the characteristics of foreshock and aftershock sequences
as well as the waiting time distribution.

3.1 Frequency-size distribution

For the NN model, previous investigations (Hainzl et
al., 1999} have shown that the model dynamics evolve
independent of the initial conditions in a statistically
stationary state which is characterized by a power law
scaling of the size distribution, limited only by the finite
system size. By analogy with the OFC model (Olami
et al., 1992), the observed exponent B (Eq. 2) is signif-
icantly influenced only by the elastic parameter v and
increases, if o decreases. Realistic values, B = 1, can be
reproduced with a ~ 0.2,

In the case of the long-range interactions, these char-
acteristics are maintained. For the coupling constant
a=0.2, Fig. 4 shows the distributions for different cou-
pling length ¢ in comparison to that obtained using
nearest neighbor interactions. No significant deviations
are found.

10°
@ 1077} 1
Al
@
-2
o 1072} ]
=
;E 1077 e NN model 1
® —— Q=1
S -4
£ 10°%F _._. Q=2 }LRmodel 1
....... =3
1075 ? |
100 10" 102 10° 10

S

Fig. 4. Probability density of observing an earthquake of size
greater than S as a function of S for the model with nearest
neighbor, respectively long-range interactions. Each distribution
results from a simulation of a 100x 100 block-system with model
parameters T/To=10‘4,a=0.2, and x=0.5.

In the following sections, we restrict our analysis to
simulations with the parameter a =0.2 yielding a real-
istic Richter B value.

3.2 Foreshock and aftershock sequences

In this section, we analyze our model simulations with
regard to spatio-temporal clusters accompanying main-
shocks. A mainshock is defined as an event of size 5>
Stut, which is the largest event within its temporal vicin-
ity £Atnr. For the analyzed 100x100 block simulations,
we use the definitions S,y = 1000 and Aty =T5/10.
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Fig. 5. Averaged earthquake occurrence rate per spatial volume
formed by stacking the records of seismic rate relative to main-
shock occurrence times. The rate depends on the distance r to
the hypocenter of the mainshock. The curves show the average
of the seismic rate regarding the 5000 mainshocks occurring in a
100x 100 block simulation of about 107 earthquakes (NN model
with T/Tp=10"%, =02, and k=0.5).

3.2.1 Rate of foreshocks and aftershocks

We compute the setsmic activity, especially the rate
of events, occurring on average relative to those main-
shocks. For the NN model, Fig. 5 shows the averaged
occurrence rate per spatial volume in dependence on the
spatial distance r to the hypocenter (initiation point}) of
the mainshock. An increasing number of foreshocks is
generated, on average, just before the mainshock. Af
tershocks turn on instantaneously with the mainshock,
followed by a decay of the aftershock rate. The rate of
aftershocks exceeds the rate of foreshocks by about 1 or-
der of magnitude. It is important to note that the num-
ber of foreshocks as well as the number of aftershocks
decreases with increasing distance r from the hypocen-
ter of the mainshock; that is, the clusters are localized
around the hypocenter of the mainshock. These charac-
teristics are not restricted to the case of nearest neighbor
coupling, rather it is also observed in the case of spa-
tially extended regions of transient creep (LR model).

In Fig. 6 the occurrence rates of events are shown in
log-log plots for the NN model as well as for the LR
model with ©=1, 2, and 3. The relative relaxation time
is set to T/Tp=10"" in all cases. The variations in each
data set, namely the increase of foreshock as well as the
decrease of aftershock activity, can be fitted quite well
by, aside from a factor, identical modified Omori laws
{Eq. 3, respectively 4). This is in good agreement with
findings for real fault systems (Papazachos, 1975; Ka-
gan and Knopoff, 1978; Jones and Molnar, 1979; Davis
and Frohlich, 1991). In previous investigations of the
NN mode], we have found that the relative relaxation
time T /Ty determines the power law exponent (Hainzl
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Fig. 6. Log-log plots of earthquake clustering formed by stacking
the records of seismic activity relative to mainshock times. The
plots show the average of event clustering corresponding to 5000
mainshocks of size S > 1000 occurring in 100x100-grid model sim-
ulation with T/Ty = 10~%, 2 =0.2 and & = 0.5. The results are
shown for the NN model {upper plots), and the LR model with
@=1, 2, and 3 (bottom plots}. For each data set the increase of
foreshock activity {(left column} as well as the decrease of after-
shock activity (right column} can be fitted by similar power laws
differing in a prefactor only.

et al., 1999). The exponent of the power law decreases
approximately by 1.6, 1.1, and 0.6 for increasing ratio
T/To =107, 1074, and 103, respectively. Thus the
empirical values p, ¢ 1 can be reproduced in this case
by a ratio T/T; of the order of 10~%.

Here, we find that also the spatial extension of tran-
sient creep changes significantly the exponent: The larger
¢} the larger is the exponent. An explanation is that
mainshocks occur when the block-system is critical load-
ed. The stress redistribution due to the mainshock un-
loads the system only partly remaining other parts of
the block-system critical loaded. The subsequent stress
increase owing to transient creep triggers aftershocks
which trigger further aftershocks and so on, until the
whole system is subcritical. In the case of long-range
interactions, each event can trigger more subsequent
events, thus the process decays faster.

Therefore in addition to different relaxation times, a
variable spatial scale of transient creep can be respon-
sible for the variation of empirically observed p values
scattering between 0.9 and 1.5 (Utsu et al., 1995).

In summary, the main characteristics, in particular
the power law distribution of event sizes and the occur-
rence of foreshock and aftershock sequences cbeying the
Omori law, are reproduced independently of the spa-

Hainzl, et al.: Self-organization of spatio-temporal earthquake clusters

tial range of creep. Only in the unrealistic case that
transient creep is restricted to the slipped blocks, the
empirical observations cannot be reproduced (Hainzl et
al., 1999). For the further investigations we use nearest
neighbor instead of the long-range interactions, because
of less computational efforts. The model parameters are
set to T/Tp=10"% and @ =0.2 leading to the empirically
observed power law exponents B, p, and gq.

3.2.2 Temporal variations of aftershock sizes

Up to now, we have analyzed only the temporal varia-
tions of the aftershock rate. Now, we want to character-
ize the aftershock size in dependence on the aftershock
occurrence time relative to the mainshock. The sizes of
aftershocks occurring subsequently to 1000 mainshocks
are measured in time bins of At=T. Fig. 7 shows the
temporal variation of the mean as well as of the maxi-
mum size of aftershocks occurring in these time bins, on
average, after a mainshock. The mean aftershock size
is almost independent of time, whereas the maximum
size decreases with time from approximately 100 imne-
diately after the mainshocks down to approximately 14.
Therefore the maximum aftershock size is on average at
least one order of magnitude less than the mainshock
size. This is in good agreement with empirical find-
ings (Scholz, 1994). The decrease of the maximum size
is due to the fact that the rate of aftershocks decreases
with time (see Fig. 6); thus the probability to observe
larger aftershocks is higher in the vicinity of the main-
shock, although the probability distribution for event
sizes is almost stable.

100 ’ 1

maximum size

b
--__-.-
-
-

mean size

size of aftershocks
b
(]

1 10 100
time after mainshock [T}

Fig. 7. The size of aftershocks in dependence on their occur-
rence times after the mainshock. The mean and the maximum
aftershock size are computed by averaging over the 1000 main-
shocks with size greater than 1000 which have occurred in a
100 100-1attice simulation of about 2 x 108 events (NN model
with T/Tp =10"%,2=0.2, and k=0.5).
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Fig. 8. The cumulative number of aftershocks occurring on aver-
age within 10xT after mainshocks of size S,,. The three curves,
corresponding to different system sizes Lx L, are compared with
the power law ~ +/5,,. The analyzed simulations {NN model with
T/Te =104, =0.2, and x =0.5) consist in the case of L =65,
respectively 100, of 107 events and in the case of L =150 of 2x10¢
events.

3.2.3 Cumulative number of aftershocks

The number of aftershocks depends on the size of the
triggering mainshock. This is shown in Fig. 8. For that
plot, we have counted all events occurring within the
time window of 10xT subsequently to mainshocks of size
S Here, we have used a slightly different definition for

a mainshock of size S,,, namely, it is defined as an event.

of size S € [5,—5m /10, Sz+Sm,/10], which is the largest
event within a time interval +10xT.

The characteristics of all three curves, corresponding -

to different lattice sizes, are the same: The number of
aftershocks increases almost according to a power law
~ 8%, limited only by the finite system size. The
finite size effect manifests itself in the deviation from
power law behavior observed for the largest mainshocks.
However, the larger the lattice size, the later occurs this
deviation. In agreement with our results, a power law
increase can also be fitted to the cumulative number of
real aftershocks, although approximations of the expo-
nent vary largely, mainly between 0.3 and 1 (Reasen-
berg, 1985; Guo and Ogata, 1997). The exponent of
nearly 0.5, which is found in our model simulations, in-
dicates that aftershocks are triggered mostly on the edge
of the fracture area of the mainshock. In the case of a
circular fracture area Sy,, the edge is proportional to the
radius, i.e. proportional to +/Spm.

3.3 Distribution of waiting times

To study the overall characteristics of temporal cluster-
ing in our model simulation, we analyze the distribution
of waiting times t,,; that is, the inter-occurrence time in-
tervals between successive events. This distribution is
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Fig. 9. The probability density of observing a waiting time ¢,
between two successive events. The plot results from a simulation
of 10° events (NN model with T/Th =10~%, e =0.2, k= 0.5, and
L=100). The dotted line indicates the power law t3'2.

shown in Fig. 9 for a simulation of the NN model with
a relative relaxation time T/Tp = 10~%. The distribu-
tion can be fitted over almost three orders of magnitude
by a power law with exponent -1.2. This power law
behavior is in good agreement with empirical observa-
tions (Tto, 1995; Utsu et al., 1995). However, this is
not surprising owing to the power law behavior of af-
tershock sequences. Senshu (1959) showed that if the
aftershocks are represented by a non-stationary Poisson
process whose intensity is proportional to {77, a power
law distribution ¢,7+ of waiting times is derived directly
and the relation between p and p,, should be

pu=2-p . (12)

In our model, simulations with 7'/Ty =107* lead to an
exponent p = 1.1 of the modified Omori law (Eq. 3).
Thus Eq. (12) is nearly fulfilled for our deterministic
model, although the exponent of the waiting time distri-
bution p., is obtained in this case for the whole sequence
including all events belonging to the background activ-
ity.

In the following part, we want to characterize the
waiting time distribution, if events greater than a min-
imal size 8., are considered only. A suitable measure
to characterize the waiting time distribution is the co-
efficient of variation Cy, which is defined as the stan-
dard deviation normalized by the mean waiting time
{t.,} (Kagan and Jackson, 1991)

((tw)?) — (t)?
(tw) '

For a simple periodic signal Cv vanishes, whereas for
a Poisson process the distribution function of the wait-
ing times i3 an exponential function yielding Cv=1. A
clustering of events is indicated by Cy>1.

Cy = (13)
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Fig. 10. The coefficient of variation Cy (Eq. 13), calculated for
all events greater than S;u¢, as a function of the lower cut. The
result is shown for the same simulation analyzed in Fig. 9. Small
and large earthquakes are characterized by a coefficient greater
than 1, implying earthquake bunching.

We compute the coefficient of variation for the simu-
lation analyzed in Fig. 9. Now, we consider only carth-
quakes with a size greater than S,4. Figure 10 shows
the value of Cy in dependence on this lower cut. The co-
efficient Cy is greater than 1 for small and large values
of Seyut, implying earthquake clustering. The decrease
for very large earthquakes is a finite size effect and thus
related to the cutoff in the frequency-size distribution
(Fig. 4). For intermediate values of Sy, the earthquake
occurrence seem to be uncorrelated.

Clustering for small values of S.,; can be explained
by foreshock and aftershock sequences triggered by tran-
sient creep. These clusters consist mainly of smaller
events (see Fig. 7). Thus increasing of S, leads to par-
tial deletion of these sequences and consequently to a
decrease of Cy.

In contrast, large events are correlated in time because
they are correlated in space. This correlation emerges
because of dissipation (@<0.25 and x<1). This is al-
ready known for the nonconservative, cellular automa-
ton versions of the BK model; that is, for our model
with £=0. In this case, Rundle and Klein {1995) found
strong correlations between the spatial fracture areas
of subsequent large earthquakes and Christensen and
Olami (1992) obscrved, in analogy to our results with
£ #0, temporal clustering of large events. For the case
of K=0.5, Fig. 11 shows an example of large events oc-
curring subsequently in a simulation of the NN model.
They are obviously bunched, which is in good agreement
with observations of the occurrence of large earthquakes
in nature (Kagan and Jackson, 1991). These clustering
characteristics are found to be independent of the as-
sumed spatial extension of transient creep, namely they
are obscrved also in the LR model.
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Fig. 11. An cxample of temporal occurrence of successive large
events (S > 3000) in the NN model.

4 Summary and conclusion

It was known before that nonconservative, cellular au-
tomaton versions of the BK model can reproduce the
empirically observed power law behavior of the frequen-
cy-size distribution of earthquakes. However, they have
failed to reproduce the most conspicuous characteris-
tics of spatio-temporal clustering observed in real fault
systems, namely the occurrence of foreshock and after-
shock sequences accompanying large earthquakes as well
as the occurrence of swarms of small events. We have
shown that this inability can be redressed by considering
transient creep, which is observed to occur subsequently
to earthquakes in real fault systems. In a first order ap-
proximation we have modeled the characteristics of tran-
sient creep by an exponential function decay in time and
nearest neighbor as well as long-range effects in space.
The maodel reproduces independently of the parameters
and the spatial range of transient creep (as long as the
effect of transient creep is not restricted to the slipped
blocks) the most obvious characteristics manifested in
real earthquake catalogs: (a) the distribution of earth-
quake sizes fulfills a power law (Gutenherg-Richter law),
(b).the temporal increase of foreshock as well as the de-
crease of aftershock activity is characterized by similar
power laws (modified Omori law), (¢) foreshocks and
aftershocks are spatially localized in the vicinity of the
mainshock, (d) much more aftershocks than foreshocks
oceur, {c} the size of the largest aftershock is on average
at least one order of magnitude less than the mainshock
size, (f) the number of aftershocks increasing with the
mainshock size according to a power law, and (g) small
as well as large events are more likely to occur clustered
than random. In further agreement with observations,
we have shown in a previous work (Hainzl et al., 1999)
that (h) the simulated foreshocks are characterized by
a significant smaller Richter B wvalue in comparison to
aftershocks, or other events, and that (i) swarm events
oceur.

While the choice of model parameters does not change
these characteristics in principle, the exponents of the
frequency-size distribution B as well as of the Omori law
p is found to dependent on this choice: The B value iy
determined mainly by the coupling constant o, whereas
the relative relaxation tiine /T, as well as the spatial
scale () of transient creep change the p valne, On the
other hand the parameter characterizing the strongth of
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transient creep & and the spatial size of the system L
do not influence any of the power law exponents signif-
icantly. However, the number of foreshocks and after-
shocks occurring in the simulations are positively corre-
lated with x and L (Hainzl et al., 1999).

In summary, we have shown that block systems, in-
volving nothing else than elastic interactions with an ex-
ponentially decaying memory in addition, self-organize
into a statistically stationary state with striking simi-
larities to empirical observations. In spite of the fact
that the actual dynamical processes involved in earth-
quake faults are much more complicated, we believe that
our conceptual model bears a strong resemblance to the
mechanisms most important for the vnderlying dynam-
ics of earthquakes.
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