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Abstract. 1t is well known that lithospheric seismic
processes are characterized by self-similarity or scale
invariance in terms of earthquake-size, time, space and
space-time distributions, although precise details of
underlying dynamics are not clear. In this study we apply
nonlinear dynamics theory tools, such as a correlation
dimension, “swrogate” data analysis and positive
Lyapunov exponent calculation, to investigate dynamical
characteristics of seismicity in the Caucasian region. Inter-
event time intervals and magnitude sequences are
considered for different area and magnitude windows, We
find significant evidence of a low dimensional nonlinear
structure of earthquake time distribution, obtained by
consideration of time interval sequences between all
events encountered, above some threshold magnitude, in
the original catalogue. However nonlinear structure is
absent in artificially generated sequences of time intervals
between independent events as well as time intervals
between aftershocks. It seems that this kind of filtration of
the original catalogue destroys the existing temporal
structure of considered lithospheric processes. Unlike
artificial inter-aftershock time interval sequences, obtained
by removing independent events from the original series,
the time interval sequence between the Racha earthquake
aftershocks reveals clear evidence of nonlinear structure.
Earthquake magnitude dynamics, for all considered
regions and magnitude windows, reveal high dimensional
nonlinearity.

1 Introduction

In spite of a number of scientific researches of lithospheric
processes related to earthquake generation (Kagan and
Knopoff, 1981; Nishenko and Buland, 1987; Keilis-
Borok, 1992; Korvin, 1992; Turcotte, 1992), dynamical
aspects of seismicity still remain almost unknown {Keilis-
Borok, 1994; Kagan, 1997). For instance, although it is
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well known that several earthquake characteristics, such as
magnitude, time and spatial distribution, follow a power
law, being self-similar or scale invariant (Omori, 1895;
Gutenberg, 1944; Kagan, 1994; Turcotte, 1992; Sailhac,
1997), underlying rules of the dynamics of seismic
processes are not clear.

In the scientific literature we find two main controversial
approaches dealing with the dynamics of earthquake
generation. According to Nishenko and Buland (1987)
strong  earthgquakes on a given fault occur  quasi-
periodically. That means that a seismic process should be
not too complex dynamically and may easily be predicted.
The second hypothesis considers the dynamics of seismic
activity to be extremely complicated, so that the level of
"turbulence" of the lithosphere exceeds that of  the
atmosphere (Kagan, 1992, 1994, 1997). In the latter case,
seismicity should be unpredictable, having  complex
dynamical properties, similar to a random process.

Unfortunately, the present situation in this field does not
allow us to identify clearly the dynamical aspects of
lithospheric processes responsible for the above mentioned
scaling laws even though self-similar fractal properties of
earthquake spatial and temporal distribution are well
established (Kagan and Knopoff, 1980; Korvin, 1992;
Henderson et al., 1994; Smirnov, 1995, Marzocchi et al.,
1997; Chen et al., 1998). Further clarification of earthquake
generation dynamics is very important, since self-similarity
per se is indigenous to systems for which behaviour can be
dynamically quite different, ranging from some randomness
up to the deterministic chaos.

The main goal of the present work is a qualitative and
quantitative evaluation of the dynamics underlying the
Caucasian  earthquakes’ self-similar size and time
distribution. .

To clarify the main features of the dynamics, it is
necessary to use modern practical tools of a nonlinear
dynamics theory (Abarbanel et al, 1993; Kantz and
Shreiber, 1997).These methods, based on the nonlinear
analysis of time series, i.e. uniformly distributed in the real
time data sequences, provide us with the quantitative and
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Fig. 1. Map of the
carthquake epi-
center  distribution
in the Caucasian
region from 1962
to 1993, The areas
of the present study
are outlined: the
Greater  Caucasus
by a solid linc,
Tavakheti region by
a dashed line and
Racha earthguakes
epicentral area by a
dotted line.
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qualitative  tools to distinguish dynamical behaviour of 2 Aims and methods of investigation

systems (Abarbanel et al., 1993). :

Nonlinear methods of time series analysis are now used
for analysis of different complicated natural systems
including the lithosphere (Feder, 1988; Korvin, 1992,
Abarbanel et al., 1993).

Besides  general scientific  interest, a complete
investigation of the dynamics of the lithosphere huas great
practical importance for revealing the inherent mechanism
of earthquake generation and possible prediction of an
impending catastrophe. For this reason, the number of
scientific publications, dedicated to a nonlinear analysis
of the seismicity (Pisarenko and Pisarenke, 19%91; Korvin,
1992; Turcote, 1992; Keilis-Borok, 1990, 1994; Kagan,
1994, 1997. Marzocchi et al., 1997) has increased
significantly over the last few years.

The majority of these investigations are devoted 1o
earthquake spatial distribution (Kagan and Knopoff, 1980;
Henderson et al., 1994; Berkovilz and Hadad, 1997); the
importance of earthquake time and size distribution is
undisputed.

The need for nonlinear analysis of seismicity s
especially important for the Caucasian region which
remains relatively poorly investigated by modern methods
of analysis in spite of some work dedicated (o the study of
spatial  distribution of earthquake foci {Sadovski and
Pisarenko, 1991; Smirnov, 1995; Matcharashvili et al.,
1996).

Te investigate dynamical propertics of the Caucasian
region earthquake time and size distributions, in the
present work, we have carried out the nonlinear time series
analysis of inter-event tme intervals and magnitude
sequences trom the corresponding catalogue.

Nonlinear analysis has been performed on the Caucasian
earthquake inter-event time interval and magnitude
sequences - "time series” (11683 events), as well as for
similar time series of the Greater Caucasus (3513 events)
and Javakheti region (6694 events) in 1962-1993. We have
also investigated inter-event time intervals and magnitude
sequences for the Racha earthquake (M=6.9, April 29, 1991}
aftershocks recorded in 1991- 1993 (3567 events).

All these time series were taken from the earthquake
catalogue for the Caucasus and the adjacent territories of
Northern Turkey and Northern Iran for the 1962-1993 time
period (Seismological Data Base of Institute of Geophysics,
Thilisi, Geargia).

The map of investigated earthquake epicenters is shown
inFigure 1.

Threshold magnitude, calculated for the ubove mentioned
tume period (L.e. 1962-1993) by the frequency-magnitude
relationship (shown in Figure 2). is 2.7 {or the whole
Caucasus, as well as for the Greater Caucasus (the area
outitned with solid line in Figure 1).

The thresheld magnitude for Javakheti region (the area
outlined with dashed line in Figure 1) is 1.5, due to the
dense local network. For Racha earthquakes epicentral area
(outlined with dotted line in Figure 1), the threshold
magnitude is 1.7.

For comparison, we have used a set of random numbers
generated in the same range as well as the randomized
seismic  catalogue - the “surrogate time series” set; ran-
domization has been realised followed the methods of
Theiler et al., (1992) and Rapp et al., (1993),

For reconstruction of p -dumensional phase spuces from

the scalar geophysical time series we employed the delay
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Fig. 2. Cumulative frequency-magnitude statistics in the investigated
arcas. The Caucasus (a), the Greater Caucasus (b), the Javakheti
region (¢ ) and the Racha earthquakes epicentral area (d).

technique (Packard et al., 1980, Takens, 1981). This
technique is based upon reconstruction of a set of
vectors in P -dimensional space,

r={x(), x(t, + D)o xt, +(p-D7]} (D

where x(1,) are data of a scalar time series and 7 is the

delay time. The p -value is known as an embedding

dimension. The delay method gives us several additional
quantitative tests, namely two- and three-dimensional
phase portraits, first return maps, and Poincare sections
which encapsulate the essential dynamical properties of
the complex dynamical process from which they were
extracted.

After reconstruction of the geometrical structure of the
process in the phase space, the main problem is
quantitative analysis of topological patterns or the
complexity of the structure by -methods of nonlinear
dynamics.

There are several methods for evaluation of complexity
of spatial structures in phase space (Eckmann and Ruelle,
1985; Abarbanel et al., 1993) or, what is the same, for
evaluation of dimensionality of process.

In this study we have used the well known Grassberger-
Procaccia correlation integral calculation algorithm
(Grassberger and Procaccia, 1983), in Theiler’s
modification (Theiler, 1986), as a quantitative method of
nonlinear time series analysis. This is the most popular

algorithm for evaluation of the fractal dimension of
processes.
Correlation dimension is defined as a set of slopes :

4, = 1im 128 @)
=0 logl
of the correlation function
C(l) = 2 X
(N-WYN~W +1)
N N-k
XZZH(Z_HHFH”) &)
k=W =1

in p -dimensional space. Here, N is the number of

attractor points in R? space, H - is Heaviside function
(H(x)=0when x<0 and H(x)=1 when x>0),

” “ is the Euclidean norm, [ - is the distance between

points in ~ R¥ space, {rl} is the set of vectorsin R’ and

W -is a constant of the order of a few autocorrelation

times of data. This modification of the Grassberger -
Procaccia method is very useful to avoid autocorrelation
effects in the data (Theiler, 1986; Theiler, 1990; Abarbanel
et al., 1993).

The dimensionality of a process is the value of d,
which does not change with increasing p . The maximal
after which the

slope of the correlation function does not change any more,
is defined as an embedding dimension. This value
corresponds to the dimension of a phase space in which the
attractor of a given process is embedded without distortion.

The above mentioned method of surrogate data analysis
(Theiler et al., 1992) was used to eliminate linear stochastic
processes from the observed time series for an unbiased
detection of a nonlinearity; this is an essential criteria for
revealing nonrandom dynamics.

For a more precise method of revealing dynamical
peculiarities in the process, we have used the largest
Lyapunov exponent A, calculating algorithm (Wolf et al.,
1985).

We have also used other common qualitative methods of
the analysis of chaotic data; the power spectrum and the
autocorrelation function calculation.

value of phase space dimension p,

In the present work, for the calculation of d;, Amus .

surrogate data generation etc., we have used software
created at our Institute, written in C++, as well as the
licensed versions of J. C. Sprott's Chaos Data Analyzer
(CDA) and Chaos Data Analyzer professional version (CDA
PRO).
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3 Results and discussion

3.1 Brief discussion of the necessity of nonlinear time
series analysis methods for seismic processes

It is well known that real processes, including seismicity,
are in effect multivariable, i.e. they are characterised by a
number of interdependent variables.

Modelling of such systems 1s an extremely difficult task.
That is why, in order to understand the real temporal and
spatial behaviour, an essentially empirical approach to
dynamic model reconstruction is used, namely, the
parameters are obtained from observations of the system
rather than from physical equations. Due to the inherent
complexity of seismic processes, data sequences (time
series) from real systems are, as a rule, highly irregular.
For a dynamical description of such time series, statistical
technigues which are linear in principle are insufficient as
they do not take into account nonlinear relationships.

Traditional signal-processing procedures which pick out,
through Fourier analysis or a similar technique, the
component frequencies in the data sequences, provide a
limited amount of one dimensional information. The
limitations of these methods becomes evident when the
signal is more complex than the quasi-periodic one
(broadband signals).

A nonlinear dynamical approach gives far more
information on complex systems behaviour than can be
obtained from linear classical tools (Berge et al., 1984,
Theiler, 1990; Abarbanel et al., 1993; Kantz and Shreiber,
1997).

To achieve the general objective of the nonlinear
analysis, i.e. a qualitative and, if possible, a quantitative
evaluation of dynamics, it is necessary to consider the
evolution of the system, given by the sequence of
appropriate variables, in phase space; i.e. in the space
which is spanned by system variables. Because of the
complexity of natural systems, full information about the
state of a system is generally lacking. So, from the
practical peint of view, nonlinear time series analysis
procedures are based on concepts of an embedding
theorem (Takens, 1981). It is suggested that if we can
measure any single suitable variable with sufficient
accuracy and for sufficiently long time periods, it is
possible to make quantitatively meaningful inferences
about the dynamics of an entire system from the behaviour
of the single variable (Theiler, 1990, Abarbanel et al.,
1993; Kantz and Shreiber, 1997). Moreover, a
monovariate reconstruction of multivariate dynamics
allows us not only to understand the integral behavior of
systems but, in cases where the ability to measure some
variables is circumscribed, to recover their dynamics from
other measured variables in the phase space (Abarbanel] et
al., 1994).

Although the monovariate reconstruction is often used
for analysis of different real processes, last vears
multivariate reconstruction of dynamics in phase space,
using several data sets’ simultaneously, has also ‘become
popular (Eckman and Ruelle, 1985). Multivariate

Yang: Nonlinear viscoelastic compaction in sedimentary basins

embedding is in fact more appropriate for complex real
dynamics because it reflects a temporal as well as spatial
structure in the system behaviour. Also, the muoltivariate
approach can distinguish states in phase space which appear
similar to univariate probes due to projection effects (Smith,
1992, Kantz and Shreiber, 1997).

Therefore, as a first step toward evaluation of Caucasian
earthquake dynamical properties, we have used a method of
monovariate reconstruction in spite of the fact that the
processes are multivariable in their origin.

We begin our analysis using traditional linecar methods
such as power spectrum and autocorrelation analysis; after
this we apply a nonlinear approach.

Qur computations of univariate time series show that, in
all cases examined, the autocorrelation function of
magnitude sequences decays drastically and tends to zero
as the delay time increases. This means that the self
resemblance of magnitude sequences in the time domain
decreases very rapidly; this indicates weak correlation
between the data.

This peculiarity, together with the broad power spectrum
and the absence of a clear attractor in phase space (two-and
three-dimensional phase portraits, Poincare sections and
return maps, not shown here) qualitatively excludes
dynamical simplicity (Abarbanel et al., 1993; Sailhac, 1997)
of underlying earthquake size generation and indicates
complexity of this process.

For a detailed qualitative and quantitative study of
earthquake generation dynamics according to the familiar
nonlinear time series analysis, we have transposed the
dynamics given by monovariate magnitude and interevent
time interval sequences into phase space. Then we have
proceeded with the determination of some characteristic
quantitative properties or dimensions of structure in phase
space (Abarbanel et al, 1993; Kantz and Shreiber, 1997; and
similar references). As mentioned above, for this purpose
we have used a correlation integral calculation algorithm.
Calculation of a correlation dimension must be done for
different phase spaces in order to avoid distortion of the
embedded dynamics due to discrepancies between numbers
of freedom of the system and phase space dimension. If the
system, from which the time series originates, is
dynamically relatively simple, its dimension will reach
some limiting value. It is the dimension of a structure in
phase space which indicates the minimum number of
independent variables to be considered in the description of
the underlying dynamics.

It is well known that, generally, dimensionality of real
physical processes is not an integer; it is a fractal. If the
limiting dimension does not exist, the sequence of fractal
dimensions for different phase spaces can be used as a
distinguishing statistic. Of course this is only justified in
cases where nonlinear structure in data sequences is
established, i.e. if the observed dynamics are not caused by
different types of noises (Rapp et al., 1993 Kantz and
Shreiber, 1997).
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Fig. 3. Typical plot of comrelation dimension dz versus embedding
dimension P for the Caucasus, the Greater Caucasus, and the

Javakheti region, magnitude (middle curve) and inter-event time
intervals (lower curve) sequences. The upper curve represents the
random numbers set.

3.2 Variation of correlation dimension of earthquake size
and temporal distribution

In Figure 3, we show a typical plot of the variation of
correlation dimension versus embedding dimension for
the whole Caucasus, the Greater Caucasus region and the
Javakheti area earthquake magnitude sequences (middle
curve). Slopes for each embedding dimension were
obtained from log C( r ) - log( 1) plots {not shown here) for
linear intervals of appropriate time series, using standard
least squares regression.

Our computations show that patterns of earthquake
magnitude generation dynamics for all the regions
considered are not typical of low dimensional processes.
Namely, there were not sufficiently long scaling intervals
(Theiler et al., 1992; Rapp et al., 1993; Yedynak et al,,
1994; Kantz and Shreiber, 1997) with identical slopes on
the log C(r) - log r curves. It follows from Figure 3

(middle curve) that there is no asymptote in the d,
versus P relationship for these magnitude sequences.

As in the original time series, which included all
independent events and  aftershock  magnitudes
encountered in the catalogue above threshold magnitude,
artificially designed sequences of magnitudes, obtained by
removing aftershocks from the original magnitude
sequences, are high-dimensional.

Aftershock magnitude sequences, obtained from the
original magnitude series by removing the independent
events, also.reveal high dimensionality of the seismic
process for all regions.

In general, because -of the limited size of the real
seismic catalogues, the time series of magnitudes are too
small to carry out an exact guantitative analysis of high
dimensional lithospheric processes. Indeed, it is known
that for exact reconstruction of the attractor in phase
gpace and exact calculation of its dimension, the length

of time series (/N) should be at least of order of

d

N =102 (Eckmann and Ruelle, 1992; Abarbanel et al.,
1993); ie. unrealistically long for existing geophysical
time series. In our case, the maximum length of the time
series was about 12000; this is only sufficient for
calculation of dynamics with correlation dimension < 8.
As the analysis of magnitude sequences for the Caucasian
region does not show saturation at this value of correlation

dimension on d2 versus p plots, we can assume that

the fractal dimension of these time series is larger than 8.
Thus, as already noted, the analyzed process reveals
dynamical properties quite different from the deterministic
chaos which is characterised by low dimensionality, namely

d,<5.

Consequently, our results give evidence of high

dimensionality (d, > 8), for the dynamical properties of

earthquake size distribution. Hence, unlike the Caucasian
earthquake spatial distribution (fractal dimension of order of
1-1.5 for epicenters) (Sadovski and Pisarenko, 1991;
Pisarenko and Pisarenko, 1991; Smirnov, 1995), dynamics
of earthquake size distribution is more complex {(Abarbanel
et al, 1993; Saithac, 1997), i.e. depends upon more
independent variables.

The observed high dimensionality of earthquake size
distribution is in good agreement with existing data (Korvin,
1992; Kagan, 1994; Marzocchi et al.,, 1997), thus excluding
low dimensionality and quasiperiodicity of self similar
earthquake size {magnitude) generation.

Contrary to magnitude sequences, the correlation

dimension d, of earthquake temporal distribution given by

interevent time intervals sequences saturates close to 1.5 in
all cases (Figure 4), thus revealing surprising properties of
low-dimensional nonlinearity. This is a nonrandom,
somewhat similar to, the determined chaos type of a
dynamical behaviour (Theiler and Prichard, 1997).

It must be emphasised that the creation of ordered sets for
time series analysis, by plotting interevent time interval size
versus the interval number in the sequence of measured
data, gives an indication of variations in the rate of the
dynamics (Rapp et al., 1993; Kantz and Shreiber, 1997). The
necessity for such an approach is clear because in certain
scientific areas “"equidistant” time series, i.. sequences of
data measured for uniform time intervals are not available;
consequently the data, measured from a dynamical process,
are often collected as interevent time intervals, either
because that form is more convenient or because it is more
representative of the process than an equidistant time series
{Rapp et al, 1993; Castro and Sauer, 1997). Moreover,
according to Rapp and his colleagues, event interval
sequences allow us to construct an approximate continuous
function in time and to use analysis procedures that
presuppose the existence of a continuous function defined at
uniformly spaced time intervals (Rapp et al, 1993).
Recently, from interspike interval sequences, R. Castro and
T. Sauer have argued, that there are no theoretical or
practical objections to computing a correlation dimension
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Fig. 4. Typical plots of correlation dimension dz versus embedding
dimension P for the Cancasus, the Greater Caucasus and Javakheti

region:  inter-event time interval sequences (lower curve), phase
randomized interevent time interval surrogates (upper curve) and
Gaussian scaled random phase surrogates (middle curve).

Table 1. Values of the correlation dimension (dz) and the largest

Lyapunov exponent O‘fmax) of the interevent time interval sequence,
for the Caucasian region.

The whole The Javakheti Racha
Parameter  Caucasus Greater area earthquake
Caucasus epicentral
area
d, 1.52 170 142 34
+0.42 +0.51 +0.13 .55
Amax 0.241 0.539 0.784 0.129
(bits / +0.018 +0.041 +0.026 +0.038
events)
using interevent time intervals measured from

experimental data sequences (Castro and Sauer, 1997).

In our case, for a detailed analysis of the dynamics of
earthquake time distribution, it is appropriate to examine
time series of interevent {inter-earthquake) time intervals,
At (in sec), where n  is the earthquake's ordinal
number in the appropriate catalogue.

As shown in Figure 4 (lower curve) and Table 1, all the
interevent time interval sequences indicate a low

correlation dimension d,, which is always low and

significantly smaller than the above mentioned threshold
of dimensionality. As Table 1 shows, we have also
obtained positive A, for all the interevent time interval
sequences at the appropriate’ embedding dimension

(d, +1).

3.3 Testing of nonlinear structure in the data sequences

The above results, 6 or 7 years ago, could have been
regarded as evidence of chaotic determinism in time series
but, nowadays, such findings must be interpreted with
greater care as it is well known that linear stochastic
processes can also mimic low-dimensional dynamics
(Theiler et al., 1992; Rapp et al., 1993). In other words, the
saturation of a correlation dimension and the existence of
positive Lyapunov exponents cannot always be considered
as proof of deterministic chaos (Rapp et al., 1993; Kantz and
Shreiber, 1997).

Since linear correlations lead to many spurious
conclusions in nonlinear time series analyses, we have used
the surrogate data approach to test the null hypothesis that
interevent time interval lime series are generated by a
linear stochastic process, i.e. they are indistinguishable from
coloured noise having the same power spectrum and
autocorrelation function (Theiler et al., 1992). The method
compares the original time series with an artificially
generated random series or surrogate data that mimics linear
properties of the original data sequences. In this study we
have generated and used random phase surrogate sets, as
well as  Gaussian scaled random phase surrogate sets
{Theiler et al., 1992; Rapp et al., 1993).

Random phase surrogate sets (obtained by destroying the
nonlinear structure through randomization of the phases of a
Fourier transform of the original time series and following
invert transformation) were used to test the null hypothesis
that the time series are linearly correlated with Gaussian
noise (Theiler et al., 1992).

Gaussian scaled random phase surrogate set were
generated in a three step procedure. At first was generated a
(Gaussian set of random numbers, which has the same rank
structure as original time series. After that, the phase
randomized surrogates of this Gaussian distributed set was
constructed. Finally, the original time series were reordered
s0 that, rank structure of the original time series agrees with
the rank structure of the phase randomized Gaussian set.
The Gausian scaled random phase surrogate sets addresses a
null hypothesis that the original time series is linearly
correlated noise that has been transformed by a static,
monotone nonlinearity (Rapp et al., 1993, 1994).

Generally these two methods of generation of surrogates
are based on shuffling of the original data set but, in the case
of Gaussian scaled random phase surrogates, the controlled
shuffles (Rapp et al., 1994) can give more precise and
reliable results than the unstructured shuffles of the random
phase surrogates.

Commonly, for testing the null hypothesis, d, is used as

the discriminating metric. There are several ways to measure
the difference between the discriminating metric measure of
the original ( given by M ;. ) and the surrogate (given by
M}, time series of interevent time interval sequences,

The most commonly used measure of the significance of the
difference between the original time series and the
surrogate data is given by the criterion S = |(M,,.) - Mg |/
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correspond to inter-event time intervals, their phase randomized and
Gaussian scaled random phases surrogates respectively.

O o .« Where O g denotes standard deviation of M., .
The details of the procedure, as well as an analytic
expression for AS, - the uncertamnty in S, are described in
Theiler et al., (1992).

Alternatively, we have used the Monte Carlo
probability, defined as Py = (number of cases M < M 4,
J(number of cases) where Py is an empirical measure of
the probability that a value of M,,, will be less than M origs -
It is particularly appropriate when the number of
surrogates is small, or when the distribution of values of M
obtained with surrogates is non-Gaussian (Rapp et al.,
1994).

For rejecting the null hypothesis, we have used the
Barnard and Hope nonparametric test (Rapp et al., 1994).
With this criterion, the null hypothesis is rejected by a
confidence level p; = 1/(Nyy +1), if M < M, for alt
the surrogates.

In the case where the inter-event interval sequences and
surrogates have significantly different metrics for a chosen
discriminating statistic, we can conclude that the time
series is not correlated noise and that the corresponding
processes are characterized by the inherent nonlinear
structure,

For each of our data sequences, we have generated 200
random phase surrogates.

The criterion S, according to Theiler et al. (1992), for the
whole Caucasus, the Greater Caucasus region and Javakheti
area inter-earthquake time interval sequences has
significant values: 49.3 + 0.4, 522 &+ 02, 584 = 0.3
respectively. It was found that, in all the cases considered
here, M, values are greater than M ., giving Py ~ 0 with
a confidence level p, < 0.005. Hence we can reject the null
hypothests that earthquake inter-event time interval
sequences correspond to linearly correlated Gaussian noise.

To study further the earthquake time distribution
dynamics, we generated 200 Gaussian scaled random phase
surrogates. These surrogates, as mentioned above, enable us
to test the null hypothesis that the original time series is
linearly correlated noise that has been transformed by a
static, monotone nonlinearity. The values of S for the
Caucasian, the Greater Caucasus and the Javakheti area
inter-earthquake time interval sequences are 14.5 £ 0.2, 9.7
+ 0.1, 124 *+ 0.1 respectively. These values are still
significant, although there is a decrease in S compared to the
random phase surrogates. For all cases, M, is greater than
M .i; leading  to confident rejection of the null hypothesis.
The value of Py~ 0 and p. < 0.005.

The general result of both type of surrogates, random
phase and Gaussian scaled random phase surrogate time
series, is a clear indication of the presence of nonlinear
structure in the earthquake temporal distribution, given by
inter-earthquake time interval sequences.

As stated previously, we have investigated time interval
sequences for all events in the catalogue for corresponding
threshold magnitudes, obtained from a frequency magnitude
relationship. In order to reveal the contribution of events
with particular magnitudes to nonlinear structure of
temporal distribution properties, we have carried out an
analysis of inter-event time interval sequences for different
magnitude windows. So, for the whole Caucasus region,
where we have the longest time series, we have carried out
a nonlinear analysis of inter-event time interval sequences
between earthquakes inside two magnitude windows: 2.7 <
M, £ 3.7 (number of events n = 9894), and 3.7 £ M, < 4.7.
(n = 1567). Further, for the Javakhety area, where we have
the lowest threshold magnitude due to the dense local
network. we considered inter-event time interval sequences
for magnitude windows 1.5 <M, < 2.5(n=5775), and 2.5
< M,< 3.5 (n=830).

The results obtained from this analysis indicate that the
nonlinear structure found is almost entirely due to inter-
event intervals between relatively low (for the catalogue)
magnitude earthquakes. Indeed, all the whole Caucasian
region earthquakes with threshold magnitude 2.7 and inter-
event time interval sequences, inside a 2.7 £ M, £ 3.7
window (Figure 5a}, are characterized by a low-dimensional

structure : d,=1.28,8 =572+ 0.2, Py ~ 0. p. < 0.005 and

S =95+ 0.1, p, < 0.005, for random phase and Gaussian
scaled random phase surrogate tests, respectively. The same
procedures show the absence of clear structure inside a
37 M; £ 47 window (not shown here). For the latter
case, inter-event time interval sequences also have
a low correlation dimension but this set is indistingui-
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Fig. 6. Correlation dimeasion d2 versus embedding dimension
P of a sequence of time intervals between independent events

{circles) and inter-aftershocks time interval sequences (squares) for the
whole Caucasus (a) and the Javakheti area (b). Triangles and asterisks
correspond to phase randomized and Gaussian scaled random phase
surrogates of inter-aftershock time interval sequences respectively.

shable from correlated noise, perhaps due to the smaller
number of data.

For the Javakheti area inter-event time interval
sequences with threshold magnitude 1.5, the situation is
the same; significant nonlinear structure is found for low
magnitude earthquakes 1.5 < M; <€ 2.5 ( Figure 5b).

Here, d,=1.17£0.09,S=53.2£ 0.1, Py ~ 0. p,<0.005

and § =11.0 £ 0.15, p. < 0.005 for both type of surrogates,
respectively. Again, no clear structure is found for the
window 2.5 € M, £ 3.5 (not shown).

For a better understanding of the role of aftershock time
distribution in the nonlinear structure, the original
catalogue has been ™iltered” to some extent. Artificially
generated sequences of aftershocks, obtained by removing
independent events from the original series, were
analysed. Inter-event time sequences between events as
recognised independent, obtained by removing aftershocks
from original series, were analysed separately.

It was found that, for all the regions considered,
sequences of time intervals between independent events
are characterised by a high correlation dimension (see
upper curves of Fig. 6.a, b).

On the other hand, inter-aftershock time interval
sequences for the whole Caucasus and Javakhti area reveal

a low correlation dimension, significantly different from
linearly correlated noise but indistinguishable from the
linearly correlated noise transformed by a static monotone
nonlinearity (see lower curves of Figures 6 a and b). This
means that the existence of a nonlinear structure for filtered
time series must eventually be rejected. Despite the absence
of structure in separated independent event and aftershock
time distribution dynamics, these results, nevertheless, give
some indication that aftershocks contribute more to the
regularity of earthquake temporal distribution than time
distribution of independent events characterized by clear
high dimensionality. Of course, this does not mean that a
nonlinear structure is entirely conditioned by peculiarities of
inter-aftershock time interval distribution.

Taking into account the well known causal relationship in
the aftershock time distribution, our results lead to the
conclusion that the insignificance of a low dimensional
nonlinear structure in the inter-aftershock time interval
sequence may be caused by complicated filtering effects
during generation of artificial aftershock sequences.
Therefore, it is necessary to rule out effects related to
filtration because it is quite possible that the artificially
generated catalogue does not adequately reflect the general
properties of earthquake temporal distribution and leads to
distortion of the original features of earthquake clustering.

Such caution is justified by well known effects of different
types of filtering procedures on raw data sets, namely the
occurrence of spurious dynamical characteristics (Theiler et
al.,, 1992; Rapp et al, 1993; Kantz and Shreiber, 1997).
With this in mind, we have further considered the Racha
earthquake epicentral area aftershocks original data set, their
magnitudes and inter-event time interval sequences with
threshold magnitude 1.7,

As shown in Figure 7 (upper curve) the aftershock
magnitude sequence is a high dimensional whereas the inter-
event time interval series (Table | and lower curve of Figure
7) reveal a low dimensional nonlinear structure. The criteria
for significance of differences were signiticant both for the
random phase (S = 34.2 £ 0.2 Py -0. p. < 0.005) and the
Gaussian scaled random phase (S= 7.82 + 0.1, p. < 0.005)
surrogates.

In the case of the Racha earthquake aftershock sequences,
a low dimensional structure is also related to the specific
time distribution of small events. Indeed, the inter-
aftershock time interval distribution above M = 2.5 (n =
1100), does not have a low correlation dimension.

At the same time, contrary to the raw data sequences,
inter-aftershock time interval sequences for the low
magnitude windows 1.7< M; £ 2.7 (n= 2464) and 2.7 M,
< 3.7 (n = 901) do not reveal a nonlinear structure although
the correlation dimension in both cases is about - 3. This
absence of a structure, in principle, seems quite reasonable
s0 far as data included in the time series, belong to the same
event, the Racha earthquake. Hence the data must be highly
interconnected and any perturbation or filtration in the data
sequences could lead to distortion of the underlying
dynamics. Thus it is reasonable to assume that low
dimensional nonlinearity is mostly related to the
clusterization of small earthquakes and their aftershocks.
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for the Racha earthquake aftershock magnitudes (rircles) and
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3.4 Stability of results

Finally, it was necessary to test the stability of our results
with respect to choice of the investigated spatial region.
So we carried out an additional analysis of earthquakes in
the Javakhety region. A set of magnitude and inter-event
time interval sequences was obtained by increasing and
decreasing the size of the tested area (linear sizes were
changed by 10 and 20 km). As shown in Figurcs 8 and 9,
these changes do not alter the general characteristics of the
carthquake temporal distribution - the correlation
dimension s always low (about 1.5}, Again, the
correlation dimension of magnitude sequences does not
change, it remains high dimensional for spatial variation
of the size of the test area. We have also carried our an
analysis of the stability of our results with regard to the
uncertainty in the magnitude. Namely, we suppose that
earthquakes with magnitudes slightly below the threshold
really have magnitudes above the cut-off. So tar as the
magnitude. uncertainty i1s 0.2 tor our catalogue we have
randomly added different numbers of carthquakes: 1000,
500, 200 events from the magnitude range {M-0.2, M}
and removed from the range {M, M+0.2} 500, 250, 100
events, respectively.

Time series obtained from such modified catalogues
confirm evidence tfor the low dimensionality of time
interval sequences (Figure 10) and high dimensionality of
magnitude sequences. These experiments show that our
resulls are consistent  with  respect  to magnitude
uncertainty.  Thus, the results of this investigation give
evidence of a4 nonlincar structure in a raw catalogue.
underlying the self~ similar scaling laws of earthquake
time distribution. From this result it becomes more
understandable that the fractal dimension of earthquake
temporal clustering (about .3 for ditferent magnitudes). in
ene dimensional  time interval set obtaimed by non
dynamical iractal dimension analysis, s significantly
difterent from a uniform Poisson distribution (Chen et al.,
1998). At the same time. there is insufficient evidence to
establish a chaotie deferomnism in the considered process,
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Fig. 8 Correlation dimension  versus embedding  dimension  for the
Javakheti enlarged area inter-event time interval sequences: a) !0 km
cnlargement. by 20 km enlargement. Lower curves: original sequences.
middle and upper curves: Gaussian scaled random phases and phase
randomized inter-event time interval surrogates. respectively.

In other words, these results suggest the possibility of using
non statistical (based on a nonlinear approach) methods for
prediction of earthquake time distribution. although further
investigation is needed to reveal the precise nature ot the
low dimensional structure.

It must be emphasised that the existence of hidden arder.
discovered in earthquake time distribution. cannot be
considered as an argument for earthquake quasiperiodicity,
a quastperiodicity was proposed for a time distribution of
strong events on a given fault while. as it was shown. a
nonlinear structure 1s mainly caused by the temporal
distribution of low magnitude events. On the other hand, our
results provide additional evidence that the earthquake
generatton process cannot be considered as random and
unpredictable, at least in space and time distribution
domains,

4 Conclusions

We have investigated the dynamical properties of the
carthquake size and tume distribution. It is shown that the
correlation dimension of earthquake magnitude generation
dynamics is a high dimensional process for all three regions
considered in the Caucasus.
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Fig. 9 Correlation dimension versus embedding dimension for the
Javakheti narrowed area inter-event time interval sequences: a} 10 km
narrowing, b) 20 km narrowing. Lower curves: original sequences,
middle and upper curves: Gaussian scaled random phases and phase
randomized inter-event time intervals surrogates respectively.

Specific properties of the earthquake time distribution
were analysed using two modern tests of surrogate data
sets.

It was shown that the time distribution of earthquakes for
all the regions considered reveals clear evidence of a
nonlinear structure which is mostly caused by weak event
temporal distribution properties. However we cannot
identify this process as low dimensional chaos; the
problem needs additional study.

The nonlinear structure of time interval sequences,
observed in the original raw data catalogues, disappears in
cases of filtered series, apparently due to the distortion of
the dynamical properties of the time series by the filtering
procedure.

Thus it becomes clear that well-known scaling laws of
the earthquake time and, size distribution have different
underlying dynamics and from the point of view of

possible prediction of hazardous events, must be

considered separately.
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