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Abstract

Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Am-
plification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperi-
ment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the con-
text of marine, boundary-layer chemistry. A suite of other chemical parameters (NO,5

NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological
measurements, are used to present a detailed analysis of the role of peroxy radicals
in tropospheric oxidation cycles and ozone formation. Under the range of conditions
encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal
cycles showed an asymmetric shape typically shifted to the afternoon. Using a box10

model based on the master chemical mechanism the average model measurement
agreement was 2.5 across the campaign. The addition of halogen oxides to the model
increases the level of model/measurement agreement, apparently by respeciation of
HOx. A good correlation exists between j (HCHO).[HCHO] and the peroxy radicals
indicative of the importance of HCHO in the remote atmosphere as a HOx source,15

particularly in the afternoon. The peroxy radicals showed a strong dependence on
[NOx] with a break point at 0.1 ppbv, where the radicals increased concomitantly with
the reactive VOC loading, this is a lower value than seen at representative urban cam-
paigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and
0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy20

radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-
alkene chemistry to night-time peroxy radical production was shown to be on average
59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h−1.
The ozone production rate was strongly dependent on [NO] having linear sensitivity
(dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemi-25

cal rate of ozone production/destruction) will be strongly sensitive in the marine bound-
ary layer to small changes in [NO] which has ramifications for changing NOx loadings
in the European continental boundary layer.
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1. Introduction

Peroxy radicals (HO2 and RO2, predominantly CH3O2 in semi-polluted atmospheres)
can be thought of as the intermediates between the hydroxyl (OH) radical and ozone
formation or destruction (Monks, 2005). Peroxy radicals also control the removal of
primary pollutants such as NOx(NO+NO2) and Volatile Organic Compounds (VOCs).5

Understanding the radical chemistry that controls ozone formation will improve our
basic understanding of tropospheric photochemistry and the effect of natural and man-
made emissions on ozone formation.

The relative contribution of ozone production and loss processes in the troposphere
is highly sensitive to competition between the reaction of peroxy radicals with NO and
their self- and cross-reactions to form peroxides. In the presence of NOx, the reaction
of peroxy radicals with NO leads to the formation of NO2, which, upon photolysis, forms
ozone:

HO2 + NO → OH + NO2 (R1)

CH3O2 + NO → CH3O + NO2 (R2)

CH3O + O2 → HO2 + HCHO (R3)

NO2 + hν (λ < 424 nm) → O(3P) + NO (R4)

O(3P) + O2 + M → O3 + M (R5)

In conditions of low [NOx], a catalytic cycle leads to net ozone destruction, shown here
for the reaction with CO:

HO2 + O3 → OH + 2O2 (R6)

OH + CO → H + CO2 (R7)

H + O2 + M → HO2 + M (R8)

Overall : CO + O3 → CO2 + O2 (R9)
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OH oxidation and other VOCs forms peroxy radicals:

CH4 + OH → CH3 + H2O (R10)

CH3 + O2 + M → CH3O2 + M (R11)

Both urban and rural environments are affected by air pollution of photochemical origin,
and the modelling of photochemical ozone formation in the British Isles from European
emissions are important for the policy-makers in order to develop emission-reduction
targets for ozone precursors (Metcalfe et al., 2002; Derwent et al., 2003). Ozone is
one of the major components of photochemical smog, together with contributions from5

compounds such as carbonyls, peroxy acetyl nitrates (PANs) and various nitrogen ox-
ides. It has been seen in past studies in the relatively clean rural/marine conditions
of Mace Head (Salisbury et al., 2001, 2002) during the EASE 96 and 97 (Eastern At-
lantic Summer/Spring Experiment) and in the very clean air of Cape Grim in Tasmania
(Monks et al., 1998 and 20051) at the SOAPEX 2 (Southern Ocean Atmospheric Pho-10

tochemistry EXperiment) campaign in 1998 that ozone formation is part of a natural
cycle that can be easily perturbed by pollution events.

Tropical maritime air which is depleted in ozone can be advected to Mace Head over
a distance of several thousand kilometres without significant net ozone formation oc-
curring (Derwent et al., 1998). Measurements at Mace Head found that the site experi-15

enced more photochemical ozone production than destruction during the EASE 96 and
97 campaigns (Salisbury et al., 2002) and at ATAPEX-95 (Atlantic Atmospheric Photo-
chemistry Experiment) (Carpenter et al., 1997). Cape Grim experienced far more days
with net ozone destruction as in SOAPEX 1 in 1995 (Monks et al., 1998, 2000; Car-
penter et al., 1997) and in 1998 at SOAPEX 2 (Monks et al., 2005). Andres-Hernandez20

et al. (2001) also found that during the Atlantic and Southern Indian Ocean cruise of
AEROSOL 99 that net ozone destruction predominated.

1Monks, P. S., Salisbury, G., Fleming, Z. L., et al.: The role of peroxy radicals in photochem-
ical destruction of ozone at mid-latitudes in the Southern Hemisphere, in preparation, 2005.

12316

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/12313/acpd-5-12313_p.pdf
http://www.atmos-chem-phys.org/acpd/5/12313/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 12313–12371, 2005

Peroxy radical
chemistry at Mace

Head, Ireland

Z. L. Fleming et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Penkett et al. (1997) showed that the relationship between the sum of peroxy radicals
and the ozone photolysis rate coefficient (to the singlet oxygen atom), j (O1D) can
serve as a diagnostic for photochemical ozone production and destruction. In high
NOx conditions HO2+ΣRO2 is generally proportional to j (O1D) and in clean conditions,
to

√
j (O1D) (Penkett et al., 1997; Monks et al., 1998; Zanis et al., 1999; Creasey5

et al., 2003). The shape of j (O1D) throughout the day produces a typical summer
peroxy radical diurnal cycle with maximum values towards solar noon, and minimum
values during the night. Photolysis of other photo-labile compounds (e.g. HCHO and
HONO) becomes noticeable in the early morning or evening, when the light is of longer
wavelengths than those at which ozone photolysis occurs, and can lead to a broader10

peroxy radical diurnal cycle than that expected from ozone photolysis alone.
In the absence of photochemistry, there is a series of night-time peroxy radical-

producing channels. NO3 (nitrate) radical (Allen et al., 1999; Penkett et al., 1999;
Salisbury et al., 2001) and ozone reactions with alkenes (Hu and Stedman, 1995;
Rickard et al., 1999; Salisbury et al., 2001) were found to be two dominant channels in15

the marine influenced atmosphere.
In this paper, by use of peroxy radical measurements coupled to a suite of sup-

porting trace species measurements, the photochemical environment of Mace Head
is explored. In particular, the shape, concentration and form of the diurnal cycle are
explored in relation to both primary production and the potential contribution of the20

photolysis of secondary compounds such as carbonyls (e.g. HCHO). The dependence
of peroxy radical concentration with changing NOx and VOC is described. The role of
both NO3 and O3-alkene reactions as night time source of peroxy radicals is investi-
gated. Finally, role of the peroxy radicals in the in situ photochemical formation and
destruction of ozone is quantified.25
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2. Experimental

2.1. Site

NAMBLEX took place from 27 July to 2 September 2002 at the Mace Head Atmo-
spheric Research Station (53◦20′ N, 9◦54′ W). Mace Head is located on the west coast
of Ireland, 88 km west of Galway city, and is in the path of the mid-latitude cyclones5

which frequently traverse the North Atlantic. Heard et al. (2005) describe the location
in more detail, together with the local meteorology of the site, and Norton et al. (2005)
provide a detailed analysis of the specific boundary layer conditions encountered dur-
ing NAMBLEX. The prevailing wind direction is from a westerly marine sector but sig-
nificant pollution events also reach the site from European continental air-masses, from10

easterly directions.

2.2. Peroxy radical measurements (PERCA)

Measurements of peroxy radicals (HO2+ΣRO2) were carried out using the jointly oper-
ated University of Leicester – University of East Anglia (UEA) PEroxy Radical Chemical
Amplifier (PERCA IV) instrument, reported for the first time in Green et al. (2005)2 and15

Fleming et al. (2005)3. The technique was pioneered by Cantrell et al. (1984) and de-
scribed by Clemitshaw et al. (1997), Monks et al. (1998) and Green et al. (2003) and
the current apparatus uses a dual channel inlet and detection system (as in Cantrell et
al., 1996).

2Green, T. J., Reeves, C. E., Fleming, Z. L., Brough, N., Rickard, A. R., Bandy, B. J., Monks,
P. S., and Penkett, S.A.: An improved dual channel PERCA for atmospheric measurements of
peroxy radicals, J. Environ. Monitoring, in review, 2005.

3Fleming, Z. L., Monks, P. S., Rickard, A. R., Bandy, B. J., Brough, N., Green, T. J., Reeves,
C. E., and Penkett, S. A.: Seasonal dependence of peroxy radical concentrations at a Northern
hemisphere marine boundary layer site during summer and winter: evidence for photochemical
activity in winter, Atmos. Chem. Phys. Discuss., in preparation, 2005b.
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Briefly, the method relies upon the HO2 and OH radical-catalysed conversion of NO
and CO into CO2 and NO2 respectively, through addition of NO and CO into the inlet
region viz.,

HO2 + NO → OH + NO2

OH + CO → H + CO2

H + O2 + M → HO2 + M

Overall : NO + CO + O2 → CO2 + NO2 (R12)

Organic peroxy radicals are readily converted into HO2 in the presence of NO with
varying efficiencies (Ashbourn et al., 1998). The yield of both CO2 and NO2 is equal
to CL×([RO2]+[HO2]+[OH]), where CL is the chain length, i.e. the number of HO2/OH
inter-conversion cycles that occur before radical termination. The ratio of [HO2]/[OH]
ranges from ∼50–200 in the atmosphere, therefore the PERCA technique effectively5

measures the sum of inorganic and organic peroxy radicals. The yield of NO2 is
measured using commercial LMA-3 detectors (calibrated daily using NO2 permeation
sources) and this is converted into [HO2+ΣRO2] using ∆[NO2]/CL. The chain length
was calculated on a weekly basis, using a calibration source based upon the photol-
ysis of CH3I at 253.7 nm to yield CH3O2 at varying concentrations (Clemitshaw et al.,10

1997).
Background [NO2] signals (caused by the reaction of ambient ozone with NO in the

inlet) were measured by changing the addition points of the reagent gases, so that
the amplification reactions are not initiated. The overall radical levels are calculated by
subtracting the termination signal from the amplification signal.15

The dual-inlet system comprises two distinct sampling systems, inlet reaction sites
and detectors. The advantage of this dual-inlet system is that the two systems are run
out of phase in two modes, with one in amplification and the other in termination mode.
Switching the two inlets between phases on a minute time scale leads to a continuous
amplification and termination signal.20

Mihele et al. (1998, 1999) have shown that the chain length of a chemical ampli-
12319
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fier is reduced in the presence of atmospheric water vapour (see also Reichert et al.,
2003). Salisbury et al. (2002) demonstrated that the chain length of the Leicester-UEA
PERCA instrument falls approximately linearly with increasing specific humidity. From
a series of laboratory experiments, a humidity correction factor equation (using ambi-
ent humidity and inlet temperatures) was derived and applied to all PERCA data. In5

order to minimise the applied correction factor, the inlet temperature was kept above
ambient temperatures at the constant value of 30◦C. The humidity correction factor
varied between 1.5 and 2.5 during NAMBLEX (see also Fleming et al., 2005b3).

The accuracy and precision of the dual-inlet PERCA have been assessed in detail by
Fleming (2005a). The overall uncertainty for any give peroxy radical measurement is10

38% (at 1σ) from a combination of uncertainties associated with the radical calibration,
NO2 quantification and humidity correction. The precision on a 1 pptv measurement
averaged over a minute assessed from the reproducibility of the radical calibration was
15%. The detection limit of the instrument was of the order of 0.5 pptv at a S/N of 1 on
a 1 min average.15

The PERCA instrument inlet box was securely attached 6 m above ground level to
a tower on a temporary laboratory building (sea container) close to the main shoreline
site and an umbilical line carried the reagent gases and sample lines down to the main
rack in the laboratory (see Heard et al., 2005, for a site plan). The PERCA instrument
took measurements continuously during the campaign in minute averages and analysis20

was carried out with ten minute- or hourly-averaged data.

2.3. Other measurements

Meteorological data were obtained from the site’s fixed meteorological station, which
recorded ambient air temperature, relative humidity, wind speed and wind direction.
The other instruments were housed in the permanent cottages of the site or in similar25

self-contained temporary buildings (sea-containers). Details of the instruments, their
detection limits and accuracy are given in Heard et al. (2005).
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2.4. Modelling studies

The Master Chemical Mechanism (currently MCMv3.1, available online at http://mcm.
leeds.ac.uk/MCM/) Developed by Jenkin et al. (1997) and subsequently refined and
updated by Saunders et al. (2003), Jenkin et al. (2003) and Bloss et al. (2005a and
b). MCMv3.1 contains the oxidation mechanisms of 135 primary emitted VOCs. This5

mechanism was added to a campaign optimised box model used to simulate HO2, RO2
and OH radical concentrations constrained with H2, CO, CH4, O3, NO, NO2, HCHO,
measured VOCs, chloroform, temperature and various photolysis rates measurements.
In general, the most complete model shown in this analysis is termed “full-oxy” and is
detailed extensively in Sommariva et al. (2005a). The model was constrained to CO,10

CH4, 23 hydrocarbons, 3 oxygenates and 2 peroxides and to temperature and photol-
ysis measurements. OH and HO2 model/measurement comparisons are reported in
Smith et al. (2005), Sommariva et al. (2005a) and night-time HO2 and RO2 in Som-
mariva et al. (2005b)4. Model results at NAMBLEX for HO2 were in much better
agreement with the measurements when the model was additionally constrained to15

measured halogen oxides (Sommariva et al., 2005a; Bloss et al., 2005c).

3. Results

3.1. Meteorological conditions

Local wind speed and direction measurements were recorded on an hourly basis dur-
ing NAMBLEX. During the EASE campaigns Salisbury et al. (2002) and Rickard et20

al. (2002) divided all the data into five sectors, according to local wind direction.

4Sommariva, R., Ball, S. M., Bitter, M., Bloss W. J., Fleming, Z. L., Heard, D. E., Jones, R. L.,
Lee, J. D., Monks, P. S., Pilling, M. J., Plane, J. M. C., and Saiz-Lopez, A.: Night-time radical
chemistry during the NAMBLEX campaign, Atmos. Chem. Phys. Discuss., in preparation,
2005b.
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More detailed boundary layer structure measurements in combination with back tra-
jectory analysis during the NAMBLEX campaign is described by Norton et al. (2005).
However, caution must be used when assigning air-mass sectors only according to
local in-situ wind direction as measurements during the NAMBLEX data did not neces-
sarily correspond with the origin of the air-mass back-trajectory analysis. For example,5

there were a number of land-sea breeze events (particularly at night). From 1 to 5
August, these breeze events brought local easterly winds to the site during westerly
trajectories.

The British Atmospheric Data Centre’s (BADC) trajectory service (http://www.badc.
nerc.ac.uk) was used to plot five-day air-mass back-trajectories at six-hourly intervals.10

According to the origin of the air-masses of these trajectories, a new division into seven
areas of origin was developed as shown in Tables 1, 2 and 3. The most common air-
mass sector was the north-westerly (NW), followed by westerly (W) and then south-
westerly (SW) as shown in Fig. 1a (see also Heard et al., 2005). Examples of three
typical NW, W and north-easterly (NE) air-mass sector back-trajectories are shown in15

Fig. 1b. The effects of local sea and coastal breezes were removed from the analysis
by only selecting data where the local wind speed was greater than 3 m s−1 (Salisbury
et al., 2002).

Table 1 shows the average HO2+ΣRO2, NOx, CO, CH4, O3, CH3OOH, H2O2, HCHO,
DMS, isoprene, benzene and methanol mixing ratios and j (O1D) for the corresponding20

air-mass sectors. The data in Table 2 corresponds to the daylight (06:00–19:00) av-
erages. Table 3 shows the night-time concentrations of the same species, as well as
[NO3] and total alkenes.

3.2. Chemical climatology

Heard et al. (2005) provide a comprehensive overview of all the other species and25

supporting measurements made during NAMBLEX and their respective time series.
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3.2.1. Peroxy radical levels and diurnal cycles

The data in Table 1 and the peroxy radical time series in Fig. 2 show that peroxy radical
concentrations are highest when the air is of continental origin (S, E and NE air-mass
sectors). Also the concentrations of NOx, isoprene and formaldehyde were significantly
higher in these sectors than in the marine W sector.5

The lowest peroxy radical concentrations during the campaign were near the detec-
tion limit of the instrument (see experimental section) at around 1 pptv but were rarely
less than 4 pptv, even at night. The maximum peroxy radical concentration reached
60 pptv for the occasional short-lived spike and 40 pptv for midday maximum values
(see Fig. 2). Generally, the day-time peroxy radical concentrations were between two10

and three times higher than night-time levels.
The campaign average [HO2+ΣRO2], [NOx] and j (O1D) diurnal cycles and the W

and NE air-mass sector-averaged diurnal cycles are shown in Fig. 3. Peroxy radicals
track the j (O1D) diurnal cycle fairly closely, with the cycle being shifted towards the end
of the day as high midday concentrations persist well into the afternoon. This form of15

asymmetrical diurnal cycle has been noted before in low-NOx environments by Monks
et al. (1996) at Cape Grim, Carpenter et al. (1997) at Mace Head in 1995, and in high
NOx environments by Holland et al. (2003) and Mihelcic et al. (2003) at the BERLIOZ
campaign near Berlin. In each of these environments there are different mechanisms
that drive this asymmetry. The peroxy radical diurnal cycle for the W air-mass sector20

has less relative variability, tracking j (O1D) with a slight bias in maxima towards the
afternoon. The NE sector peroxy radical diurnal is broader in both the morning and
the evening. The S sector diurnal cycle (not shown) follows a similar pattern to the NE
average in that it has a broader shape in both the morning and the afternoon.

An extensive modelling study by Sommariva et al. (2005a) has investigated the im-25

pact of oxygenate and halogen chemistry on the radical chemistry. Table 4 shows the
sensitivity of the average model/measurement agreement for HO2+ΣRO2 with varying
model assumptions. Figure 4a shows the results using the full oxygenate chemistry
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constrained to measured IO with corrected heterogeneous uptake model and mea-
sured peroxy radical concentrations for the 15–22 August, and the same model run
with the measured HO2 from the FAGE instrument (Smith et al., 2005). For the model
run with full oxygenate chemistry constrained to measured IO with corrected hetero-
geneous uptake (see Table 4), the peroxy radical measurement-model agreement is5

within the uncertainty of both the model and measurements. In general, the radical
measurements are slightly higher than the model during the day-time. However, the
model HO2 constantly over-predicts the measured HO2 concentrations, by at least a
factor of 2–3 (Sommariva et al., 2005a). Inclusion of the halogen chemistry, in terms of
measured IO seems to give some small improvement in the agreement. It is worth not-10

ing that there is some evidence for spatial inhomogeneity in the [IO] and the “local” [IO]
could be a factor or 10 higher than that measured by long-path DOAS methods (see
Sommariva et al., 2005a; Smith et al., 2005). The effect of halogens on the partitioning
of NO and NO2 and OH and HO2 is dealt with later. Figure 4b shows a correlation plot
of modelled PERCA peroxy radical (full+oxy, heterogeneous with IO chemistry, see Ta-15

ble 4) concentrations against measured values for all fifteen minute-averaged data and
also the hourly-averages with their corresponding standard deviation. From Fig. 4b,
there is a good correlation with the slope =1.02 (R2=0.73). At low [HO2+

∑
RO2], the

model-measurement comparison lies below the 1:1 line. At higher [HO2+
∑

RO2], there
is a wider spread of data and the model, particularly for the hourly averages around20

solar noon over-predicts the measured peroxy radical levels.
j (O1D),

√
j (O1D) vs. [HO2+ΣRO2] correlations and diurnal cycles for the 23 and 24

August are shown in Fig. 5. The back trajectories shown in Fig. 5 suggest a SW air-
mass origin on 23 August coming off the French coast, bringing higher concentrations
of CO, CH4, acetone, methanol and NOx. The following day, the air-mass changes25

to a cleaner NW origin, where the NO/NOx ratio and [NMHC] are significantly lower.
The narrower shape of the diurnal cycle on 24 August could be due to a reduction in
species that could be photolysed to form peroxy radicals.

On the NW day (24 August), peroxy radicals track j (O1D), whereas on the SW day
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(23 August), the peroxy radicals have a broader shape than j (O1D). The correlation
with both j (O1D) and

√
j (O1D) (r2=0.87 and 0.89, respectively) is good on the NW day

but poor (r2=0.30 and 0.43) on the SW day. Since the correlation with j (O1D) on the
SW day is poor, this is suggestive of an increased secondary source of HOx from the
photolysis of other compounds. This is particularly apparent in the early morning and5

the evening.
Photolysis of species other than O3 (e.g. HCHO, HONO, H2O2, CH3O2H) could lead

to a broadening of the peroxy radical diurnal cycle noted in the afternoon or early morn-
ing, when j (O1D) (primary production) is reduced. [HO2+

∑
RO2] vs. j (HCHO) corre-

lations are divided into five different periods of the day in Fig. 5. On the 23 August, the10

largest increase in peroxy radicals as j (HCHO) increases was seen at 06:00–08:00 and
15:00–17:00. Despite the large increase in peroxy radicals with increasing j (HCHO)
between 06:00 and 08:00, the j (HCHO) values were very low and would not have led
to significant peroxy radical formation from this channel alone. Between 17:00–19:00
the product j (HCHO).[HCHO] was significantly large as to produce peroxy radicals at15

this time when j (O1D) was greatly reduced. The 24 August showed very poor trends.
The same form of analysis with j (HONO) showed no observable trends (N.B. [HONO]
estimated).

Figure 6a shows the campaign averaged [HCHO] and [HO2+
∑

RO2] diurnal cycles
and the amount of HCHO photolysed each hour (j (HCHO).[HCHO]). Formaldehyde20

has a shifted diurnal cycle with values persisting into the evening. Daily maximum
[HCHO] were around 1.6 ppbv (Still et al., 2005), much higher than the 0.2–0.8 ppbv
found during a comparable campaign at Mace Head (Cardenas et al., 2000). The
relative performance of the different HCHO measurement methods are discussed in
Still et al. (2005).25

Figure 6b shows correlation plots of [HO2+
∑

RO2] and [HCHO] against the amount
of formaldehyde photolysed per hour (j (HCHO).[HCHO]). Both peroxy radicals and
formaldeyde show a good correlation with formaldehyde photolysis. Formaldehyde is
both a source of peroxy radicals (through photolysis and OH oxidation) and is pro-
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duced from the peroxy radical reactions with NO. Figure 6b correlates peroxy radical
and formaldehyde concentrations to the HO2 production rate from formaldehyde pho-
tolysis. In the radical channel (14), one HCHO molecule yields two HO2 molecules
upon photolysis

HCHO + hν → H2 + CO (R13)

→ H + HCO (R14)

H + O2 + M → HO2 + M (R8)

CHO + O2 → HO2 + CO (R15)

Overall : HCHO + O2 + hν → 2HO2 + CO (R16)

The good correlation is suggestive of persistent peroxy radical levels in the late after-
noon having a major contribution from formaldehyde photolysis.

An interesting phenomenon was observed on a number of days (namely the 9, 15,5

17 and 31 August and 1 September); when the solar intensity and photolysis rates
showed a sudden increase in the early evening and a disproportionately large peroxy
radical increase was observed. On 21 August (see case day 21 August in Fig. 7a) a
peak in the j (O1D) was accompanied by a sudden peroxy radical increase at around
17:00. The same increase in [OH] was observed by (Smith et al., 2005) on this day, and10

was reflected in the modelled [OH] (Sommariva et al., 2005a). The HO2 measurements
did not show a similar increase. One possible explanation for the phenomena is that if
there are clouds at a given height as the sun nears the horizon light passes beneath
the cloud at high zenith angles, rather than been attenuated by them, giving a short-
lived boost to photochemical peroxy radical production (see for example, Monks et al.,15

2004).
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3.3. Peroxy radicals and NOx

NOx concentrations of greater than 0.5 ppbv and up to as high as 2 ppbv were reached
on 1–4 August and 8, 16 and 21 August (see Fig. 2). Between 1–4 August, air ar-
rived from the E air-mass sector and the trajectories on the 8, 16 and 21 August were
classified as W, despite some local polluted SE winds. [NOx]/[NOy ] were higher than5

average on the 13, 14 and 16 August (days where local pollution re-circulated at the
site). All the case days (8 August, 16 August and 21 August) in Figs. 7a, b and c had
very high [NOx] and a peroxy radical diurnal profile that is shifted towards the evening.
This may be due to a suppression of peroxy radical formation when NOx was high, and
a sudden period of formation later in the day when NOx levels dropped.10

The campaign average [NOx] diurnal cycle is shown in Fig. 3. The values are highest
between 09:00 and 12:00. High NOx levels in the morning suppress via the repartition-
ing of HO2 to OH. Peroxy radical concentrations and this NOx suppression may, indeed,
contribute to the apparent shift in the peroxy radical diurnal cycle. On the 16 August in
Fig. 7b a sudden NOx spike in the morning perturbed the peroxy radical concentrations,15

moving the apparent maximum towards the afternoon.
Peroxy radical concentrations vs. binned [NOx] (on a logarithmic scale) for all

10-min data are shown in Fig. 8a. The peroxy radicals were divided into three
regimes according to j (O1D) values; j (O1D)>7.5×10−6 s−1 represents daylight val-
ues, 3×10−7 s−1<(j (O1D))<7.5×10−6 s−1 represents dusk and dawn values or very20

cloudy conditions and <3×10−7 s−1 represents night-time conditions, which are dis-
cussed later.

The data with j (O1D)>7.5×10−6 s−1 (daylight hours) are used for investigating the
effect of NOx on peroxy radicals during the day. Peroxy radical concentrations decrease
with increasing [NOx] until values of about 0.1 ppbv [NOx]. This shift is a result of25

changes in the HO2:OH ratios towards OH (reactions of HO2 and RO2 with NO to
form NO2). Between values of 0.1 and 0.2 ppbv [NOx], there is a sudden increase
in [HO2+

∑
RO2], which suggests a switch between NOx- and VOC-limited conditions
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with respect to ozone production. The corresponding increase in VOCs at [NOx] above
0.1 ppbv would lead to a rise in OH oxidation of VOCs, producing more peroxy radicals.
Above 0.2 ppbv [NOx], increasing [NOx] appears to lower [HO2+

∑
RO2].

Hourly averaged daylight (06:00–19:00) alkane, isoprene, HCHO, CO and CH4 con-
centrations, as well as peroxy radical levels, are plotted against binned NOx in Fig. 8b.5

The right-hand axis is scaled for each hydrocarbon. The sharp increase in all VOCs
at [NOx]>0.1 ppbv would have a strong link to the rise in peroxy radicals at this time.
These high VOC levels change the reactive mixture with respect to peroxy radical speci-
ation. Sudden NOx increases could reflect changing air-mass composition. Concentra-
tions of the biogenic hydrocarbon, isoprene peak at a lower [NOx] than the correspond-10

ing anthropogenic hydrocarbons. At higher [NOx], it is not clear which hydrocarbons
govern the organic peroxy radical concentrations. Until 0.1 ppbv [NOx], the peroxy rad-
ical trend with increasing [NOx] is very similar to the HCHO trend. At [NOx] between
0.5 and 1 ppbv the dependence of peroxy radicals on VOCs is very clear, as a drop in
all VOCs is reflected in the peroxy radical data.15

The rural marine boundary location of Mace Head was seen to be representative
of background chemistry but polluted air masses regularly reach the site, bringing
higher NOx levels than experienced in the marine W air-masses as shown in Rickard
et al. (2002). The switch to a significant VOC contribution to [HO2+

∑
RO2] occurs at

a lower [NOx] level than at more polluted continental urban locations, such as at the20

BERLIOZ campaign where the maximum [HO2] was at 1 ppbv [NOx] (Holland et al.,
2003).

3.4. Hydrocarbons and HO2/(HO2+
∑

RO2) ratios

The highest mixing ratio of anthropogenic source compounds such as ethene, toluene
and benzene was observed between 1 and 5 August. This illustrates the more pol-25

luted VOC-laden air masses, originating from the NE sector, passing over Scandinavia,
northern Britain and Ireland, as shown in Fig. 1b.

High isoprene concentrations between 2 and 4 August were followed immediately
12328
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by a sharp increase in DMS and this was also seen on the 17 and 30 August. DMS
concentrations varied from concentrations barely above the detection limit to as high
as 900 pptv, with a spike of over 1.5 ppbv on 28 July. DMS levels were highest in the
W, N and SW sectors, as shown in Table 1.

OH reacts with hydrocarbons, forming organic radicals, which rapidly react with O25

to form peroxy radicals (see Reactions 10 and 11). Lewis et al., (2005) calculated the
percentage contribution to OH removal by VOCs by combining all the VOC-OH reaction
rates, kVOC[VOC][OH]. Acetaldehyde accounted for up to 20%, CH4, and formaldehyde
both up to 30% and the other measured non-methane hydrocarbons (NMHCs) between
10 and 15% of OH loss.10

HO2 measurements taken by FAGE (Smith et al., 2005) provide a means of com-
paring HO2 with HO2+

∑
RO2. Figure 9a shows the measured and modelled (full+oxy,

heterogeneous with IO chemistry, see Table 4), hourly-averaged HO2/HO2+
∑

RO2 ra-
tios during the period 15–22 August. The addition of halogens to the system can
repartition both OH and HO2 and NO and NO2 (e.g. Monks, 2005) via

XO + HO2 → HOX + O2 (R17)

HOX + hν → X + OH (R18)

and

XO + NO → X + NO2 (R19)

The measured HO2/(HO2+
∑

RO2) ratios are lower when [NOx] is low as on 18 and
19 August and can reach values over 1 when NOx-laden air arrives at the site. The
HO2/(HO2+

∑
RO2) ratio generally decreases from the start of the day towards sunset.

The equivalent model ratio shows a similar diurnal profile from day to day, with the dis-
tinct diurnal profile displaying the highest HO2/HO2+

∑
RO2 ratios at midday. Generally,15

the modelled HO2/HO2+
∑

RO2 ratio is much higher than the measurement equivalent,
except when NOx is high.

The correlation plot of modelled versus measured HO2/(HO2+
∑

RO2) ratios is
shown in Fig. 9b, with the individual days marked in separate colours. The model
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generally over-predicts these ratios on all the days. The measured HO2/(HO2+
∑

RO2)
ratio on 16 August (when local SE winds brought high NOx levels to the site) showed
large variations throughout the day, both for the modelled and measured ratios as seen
in both Figs. 9a and b. However, Fig. 9a shows that the measurement ratios displayed
greater variability during the high NOx period on this day. The same is observed during5

the high NOx period on 21 August, where the model ratio appears not to be influenced
by NOx variations.

To investigate the effect of varying NOx on the HO2/(HO2+
∑

RO2) ratio, a plot of
HO2/(HO2+

∑
RO2) ratios against binned [NOx] is shown in Fig. 8c. The ratio of in-

organic to organic peroxy radicals increases as [NOx] increases. The highest [NOx]10

bin at 1 ppbv has been divided into smaller bins in order to study the structure at high
NOx. At [NOx]>0.8 ppbv, the HO2/(HO2+

∑
RO2) ratio appears to decrease with in-

creasing [NOx]. RO2 reacts rapidly with NO to form formaldehyde, and its subsequent
breakdown can lead to HO2 formation.

Figure 8d shows the measured and modelled HO2/(HO2+
∑

RO2) ratios plotted15

against [NOx]. Two model runs (with and without IO) are plotted to show the effect of
halogens. In general, the HO2/(HO2+

∑
RO2) ratio is higher in the model but the model

does not show a strong increase with increasing [NOx]. HO2/(HO2+
∑

RO2) ratios at
high [NOx] for both model and measured values are very similar, but at lower [NOx] the
model predicts higher HO2/(HO2+

∑
RO2) ratios. Interestingly, the addition of halogen20

chemistry improves the agreement between model and measurement, indicating a role
for the IO in repartitioning the OH and HO2 via Reactions (16) and (17). It is clear that
at low [NOx] the halogens seem to be more important. Sommariva et al. (2005) found
that the model mechanism worked better at high NOx, indicating that peroxy-peroxy
reactions at low NOx are still not fully understood. An earlier Mace Head campaign25

tailored box model, without OVOC and halogen chemistry, used on Mace Head data,
over-predicted HO2/(HO2+RO2) at low NOx and under-predicted at high NOx (Carslaw
et al., 1999, 2002).

As previously stated, oxidation of CO, CH4, HCHO and NMHCs represents a large
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loss term for OH. The reaction of OH with CO and HCHO leads to the formation of HO2.
OH reaction with CH4 forms CH3O2 and OH reaction with VOC forms predominantly
RO2. The fraction of OH removal reactions that form HO2 can be represented as:

φ(CO + HCHO) =

(
kco[CO] + kHCHO[HCHO]

kco[CO] + kHCHO[HCHO] + kCH4
+ kvoc[VOC]

)
[OH] (1)

where kCO, kHCHO, kCH4
and kVOC are the rate coefficients for the reaction of OH with5

CO, HCHO, CH4 and VOCs, respectively. The rate-coefficients were taken from the
National Institute of Standards and Technology (NIST) web site.

The φ(CO+HCHO) fraction was calculated for the days that had complete CO,
CH4 and VOC and HCHO concentrations, as in Lewis et al. (2005). Comparing
φ(CO+HCHO) ratios with HO2/(HO2+

∑
RO2) ratios should be indicative of whether10

HO2/(HO2+
∑

RO2) ratio variations were caused primarily by varying HCHO, CO, CH4
and VOC concentrations.

Figure 8e shows a plot of hourly HO2/(HO2+
∑

RO2) and φ(CO+HCHO) ra-
tios against binned [NOx]. The trend for increasing HO2/(HO2+

∑
RO2) with in-

creasing [NOx] is not replicated for φ(CO+HCHO), which does not appear ef-15

fected by NOx. HO2/(HO2+
∑

RO2) ratios are always lower than φ(CO+HCHO)
ratios (<0.5 for HO2/(HO2+RO2) and >0.5 for φ(CO+HCHO)). The ratio of
k[HCHO]/(k[HCHO]+k[CO]) was found to remain constant at around 0.5, showing that
HCHO and CO contribute equally to HO2 formation. φ(CO+HCHO) ratios have a range
of between 0.3 and 2.5 in NAMBLEX, much greater than the HO2/(HO2+

∑
RO2) ratio20

range. The φ(CO+HCHO) ratios were usually much higher than HO2/(HO2+
∑

RO2)
ratios, which suggests that modelling the VOC-OH reactivity underestimates the re-
sulting RO2 concentrations with respect to HO2. Also, calculating HO2 to be directly
correlated with CO and HCHO reactivity is not necessarily valid as HCHO is both pho-
tolysed and is oxidised by OH to form HO2. HCHO is also formed from the reaction of25

CH3O2 with NO (Reactions 2 and 3).
The HCHO:CO ratio can be used as a tracer to distinguish different air masses and
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differing times since the last major input from pollution. It is of interest because both
tracers are primary pollutants, but formaldehyde is also produced in the troposphere
by oxidation of CH4 in the presence of NOx. Subsequent photolysis of this formalde-
hyde then produces CO. In polluted high NOx environments, HCHO production is more
important than its photolysis and the HCHO:CO ratio increases. Figure 10 shows that5

both [HO2+
∑

RO2] and [O3] increase with increasing HCHO/CO. If higher HCHO:CO
ratios are a marker for polluted conditions, then this would be likely to lead to higher
ozone levels. Higher peroxy radical levels at increased HCHO suggests that HCHO
is more effective at producing peroxy radicals than CO. The φ(CO+HCHO) ratio pre-
sumes that HCHO and CO have equal HO2 productivity, so any discrepancy between10

φ(CO+HCHO) and HO2/HO2+
∑

RO2 may be due to the inaccuracy of predicting HO2
from φ(CO+HCHO).

3.5. Peroxides

The highest H2O2 concentrations of up to 0.5 pptv were between 1 and 3 August when
NOx and hydrocarbon concentrations were high. Indeed, in Table 1, high NOx and high15

VOC concentrations in the E sector have lead to the highest peroxide concentrations.
Morgan (2004) found a maximum [H2O2] of 1.1 ppbv with an average of 0.19 ppbv
during NAMBLEX, much lower than the maximum of 7.1 and mean of 1.58 ppbv at
Mace Head in June 1999 (Morgan and Jackson, 2002). In the clean marine boundary
layer, such as Cape Grim, Tasmania, peroxy radicals are more likely to self-react to20

form peroxides than they are to react with NO and subsequently produce ozone (Ayers
et al., 1997). Thus, high levels of peroxides would signify an ozone-destroying regime
and a lower turnover rate of the various species that are part of the ozone-forming
cycles.

Figure 8f shows [peroxide] versus [NOx] trends that are very similar in shape to per-25

oxy radical – NOx trends in Fig. 8a, illustrating the strong link between peroxy radicals
and H2O2 concentrations. H2O2 concentrations are highest at around 0.1 ppbv NOx
and decrease slightly at higher NOx but do not decrease to the same extent as peroxy
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radical levels at high NOx as shown in in Fig. 8a. CH3O2H is more influenced by NOx
than H2O2, as it is reduced to nearly zero values at high NOx.

3.6. Night-time chemistry

Table 3 shows night-time averages for the different air mass sectors and the concomi-
tant NO3 measurements from data on fifteen nights (Saiz-Lopez et al., 2005; see also5

Bitter et al., 20055). The E and NE air-mass sectors have the highest average O3, NO3
(with the E sector having [NO3] of 11.7 pptv, compared to less than 6 pptv in all the
other sectors) and total alkene concentrations as seen in Table 3. The highest night-
time peroxy radical concentrations are observed in the SE and E sectors (c.f. Allan et
al., 2000).10

Sommariva et al. (2005b)4 found that the model had a tendency to underestimate
night time peroxy radical levels except on 31 August and 1 September. Closer agree-
ment between the model and measurements was achieved when moving from a “clean”
model with only CO and CH4 to the full model with more complex hydrocarbons. Short-
term NOx spikes during the night are often matched with elevated peroxy radical con-15

centrations as high as 10 pptv, or even 25 pptv in the polluted E period on the 2 and
3 August. On 16 August, when [NOx] suddenly increased at about 20:00, a sig-
nificant rise in [HO2+

∑
RO2] followed closely, as shown in the case day in Fig. 7b.

[HO2+
∑

RO2] vs. [NOx] for nights with NO3 data are shown in Fig. 8a. As [NOx] in-
creases, [HO2+RO2] increases at [NOx]>0.1 ppbv. This peroxy radical increase with20

NOx is suggestive of NO3 radicals (in equilibrium with NO2) reacting with hydrocarbons
to form peroxy radicals.

Figure 11a is a plot of average [HO2+
∑

RO2] vs. [NO3] (Saiz-Lopez et al., 2005)

5Bitter, M., Ball, S. M., Povey, I. M., Jones, R. L., Saiz-Lopez, A., and Plane, J. M. C.:
Measurements of NO3, N2O5, OIO, I2, water vapour and aerosol optical depth by broadband
cavity ringdown spectroscopy during the NAMBLEX campaign, Atmos. Chem. Phys. Discuss.,
in preparation, 2005.
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for all the air-mass sectors. The [HO2+
∑

RO2] were separated into six [NO3] bins
and plotted on the same graph with error bars showing their standard deviation. The
E sector, even though [NO3] varies widely, always has higher [HO2+

∑
RO2] than the

other sectors, irrespective of [NO3]. Figure 11b shows the night-time profiles of [NO3]
and [HO2+

∑
RO2] for the entire marine (N, NW, SW and W combined) and continental5

(NE, E combined) air-mass sectors. The NO3 concentration was always higher in the
continental sector. The peroxy radical concentration was also always higher in the
continental sector. There does not appear to be a significant peroxy radical pattern
throughout the night.

Rate constants for the reaction of NO3 with the measured alkenes were used to cal-10

culate the rate of the NO3 loss and the O3 reactions with alkenes (c.f. Salisbury et
al., 2001). The flux of peroxy radicals formed from the alkene reactions from the NO3
and O3 channels were compared by correlating all night-time hours of the campaign
as shown in Fig. 12a. At low peroxy radical-forming fluxes, the ozone-alkene reac-
tions tended to dominate over the NO3-alkene reactions. When NO3 levels were high,15

the fluxes from NO3-alkene reactions were far higher than the ozone-alkene fluxes.
At NO3-alkene fluxes above 5×104 molecules cm−3 s−1, the ozone-alkene flux was al-
ways lower than the NO3-alkene flux. Figure 12b shows the percentage contribution
to peroxy radical formation from alkene night-time reactions. This varies strongly from
night to night, with high NO3 contributions on 18 and 25 August, receiving W and SW20

air-masses, respectively. For the nights for which full data is available the overall con-
tribution of ozone-alkene chemistry to peroxy radical production was 59% compared to
41% for NO3-alkene.

Peroxy radical levels were seen to decrease throughout the night in EASE 97 (Sal-
isbury et al., 2001), with more polluted conditions experiencing less of a decrease25

throughout the night. Analysis to determine the percentage contribution of the ozone-
alkene and NO3 reactions to form peroxy radicals was carried out for EASE 97 (Sal-
isbury et al., 2001). The contribution of both was found to vary between 30 and 70%,
for each wind sector, but on the whole as with this study the ozone-alkene reaction
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was the dominant production mechanism. Carslaw et al. (1997) found a positive cor-
relation between HO2+

∑
RO2 and NO3 at the Weybourne Atmospheric Observatory,

while Mihelcic et al. (1993) found a negative correlation between peroxy radicals and
NO3 (presumably owing to highly variable reactive hydrocarbon fluxes) at Schauins-
land. Any lack of correlation is not surprising, as NO3 is both a source (Wayne et al.,5

1991) and a sink (Biggs et al., 1994) of peroxy radicals.

3.7. Photochemical production of ozone

Net photochemical ozone formation, N(O3) (or ozone tendency) was calculated for
each hour of the campaign between 06:00 and 19:00, using Eq. (3) (for assumptions
inherent in this form of calculation see Salisbury et al., 2002). The production term10

represents NO2 formation and subsequent photolysis to form ozone (Reactions 1 to 4).
kp is the combined rate coefficient for the oxidation of NO to NO2 by all peroxy radicals
(Reactions 1 and 2). The loss term represents the reaction of ozone with OH and HO2

and ozone photolysis (where f represents the fraction of O(1D) that reacts with H2O to
form OH).15

N(O3) = P (O3)−L(O3) (2)

N(O3) = kp[NO][HO2 + ΣRO2]−{f .j (O1D) + k21[OH] + k6[HO2]}[O3] (3)

HO2 + O3 → OH + 2O2 (R6)

OH + O3 → HO2 + O2 (R20)

Figure 13a shows a time series of calculated ozone loss for all campaign daylight hours.20

The largest contribution to the calculated loss is that of ozone photolysis. The average
ozone loss chemistry was calculated to be 64% from ozone photolysis, 8% from the
OH+O3 reaction and 24% from the HO2+O3 reaction. The contributions from the three
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loss reactions vary from day to day, with total ozone loss varying between 0.1 and
0.7 ppbv h−1 at the solar maximum.

Figure 13b is a plot of net ozone production, N(O3) throughout the campaign with
[HO2+ΣRO2] and [NO] plotted on the right-hand axis. The ozone production term,
P(O3) is dependent on [NO] and [HO2+ΣRO2], the ratio of which varies greatly from5

day to day, showing an inverse relationship during the daylight hours. [NO] was more
variable than [HO2+ΣRO2] during NAMBLEX. Lower [NO] leads to a smaller P(O3)
term, which means that ozone loss becomes nearly as great as ozone production,
leading to a few hours and days where N(O3) was negative.

Figure 14 shows the hourly-averaged ozone loss and production rates for NAMBLEX.10

The loss term follows j (O1D), peaking at solar noon, and does not vary widely from day
to day. However, ozone production values show a high degree of variation between
days, with midday values varying from 0.1 to 2.5 ppbv h−1. The shift of the maximum
ozone loss term towards the afternoon results in the net ozone production being lower
in the afternoon than the morning. The rise in P(O3) in the late afternoon caused by15

high peroxy radical levels leads to an increase in net ozone production at 16:00. This
averaged diurnal cycle appears to show overall ozone production but the high P(O3)
during the polluted E air-mass sector period of 1–5 August shifts the balance to positive
N(O3), despite the many periods of net ozone destruction.

Figure 15 shows N(O3) for 8 August. This was a day where high [NOx] reduced20

peroxy radical levels and the elevated [NO] led to higher net ozone production than
on the days preceding and following it. A high NOx episode in the morning delayed
peroxy radical production until around 14:00 (Fig. 7c) and produced high P(O3). At
13:00 P(O3) was low because [NOx] dropped away, and the peroxy radical levels had
not yet recovered. The build-up of peroxy radical levels in the afternoon led to a boost25

in P(O3) and another boost between 17:00 and 18:00 when night-time peroxy radical-
forming reactions become important.

Figure 16 shows N(O3) plotted against [NOx]. N(O3) rises sharply with increasing
[NOx] until around 1 ppbv [NOx], when the increase in N(O3) levels off. The increase in
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N(O3), with increasing NOx, during the SOAPEX 2 campaign at Cape Grim, Tasmania
showed very similar characteristics until [NOx] of 0.5 ppbv. Investigations of the effect
of NOx on N(O3) at Mace Head during the spring campaign of EASE 97 showed a
much steeper increase in N(O3) at similar NOx levels to those seen during NAMBLEX.
Table 5 shows the ozone production values for Mace Head – EASE 97 (Salisbury et al.,5

2002), Cape Grim – SOAPEX 2 (Monks et al., 2005) and NAMBLEX, demonstrating
the much higher range during the spring EASE 97 campaign.

Mace Head has experienced a positive trend in background ozone of
0.49±0.19 ppb year−1 since 1987 (Simmonds et al., 2004), the largest trend being
during the winter season. The behaviour of this trend may be attributed to the sen-10

sitivity of the background ozone level to changing European emissions of NOx and
VOC (Derwent et al., 2003; Monks, 2003). Following the methodology of Stroud et
al. (2004) the sensitivity of P(O3) to NO was calculated as dlnP(O3)/dln(NO), as shown
in Fig. 17, for a series of marine boundary layer campaigns with differing continental
influences. Table 6 summarises the derived sensitivity values of the ozone production15

term to NO. Both the Mace Head data sets have ozone production with linear sensitivity
(i.e. dlnP(O3)/dln(NO)=1) to NO as compared to Cape Grim and Weybourne, that have
values of around 0.9. The Mace Head values imply that the ozone production rate is
strongly dependent on the [NO]. The equivalent derived values of dlnL(O3)/dln(NO) are
also given in Table 6 the bulk of these values range from ca. 0 to 0.3, unsurprisingly20

this suggests that L(O3) is generally independent of small changes in [NO]. In tandem,
these results imply that the N(O3) will be strongly sensitive in the marine boundary
layer to small changes in [NO].

4. Conclusions

During NAMBLEX, the Mace Head Atmospheric Research Station received a substan-25

tial mix of air-masses from both the Atlantic and from Britain and Ireland. 80% of the
air-masses were from the clean N, NW, W and SW sectors. The marine air-mass sec-
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tors had peroxy radical levels below 10 pptv, whereas the other sectors experienced
levels above 13 pptv. The higher peroxy radical concentrations in the air-mass sectors
with a continental influence were accompanied by over twice as high NOx levels and
much higher anthropogenic hydrocarbon mixing ratios.

Peroxy radical diurnal cycle maxima were typically shifted towards the afternoon,5

with daily maximum levels between 10 and 40 pptv. MCM modelling of peroxy radical
levels provided a good model-measurement comparison, with occasional slight over-
estimations by the box model.

Correlations of peroxy radicals with j (O1D) were often disturbed by NOx episodes
that temporarily lowered peroxy radical levels. No significant reliable linear or square10

root dependence with j (O1D) was observed to make a clear separation between clean
and polluted conditions. Photolysis of compounds other than ozone led to a broader
peroxy radical diurnal cycle than would be seen from production via ozone photolysis
alone, especially in continentally-influenced air-masses. Correlations with j (HCHO)
in the afternoon and a definite shift in the HCHO diurnal cycle towards the afternoon15

suggests the high potential for HCHO photolysis at this time. A sudden increase in
photolysis rates (i.e. a rise in j (O1D)) in the early evening was seen to cause a large
pulse in peroxy radicals.

Short-term large NOx mixing ratios, termed “NOx spikes”, reaching the site caused
a marked drop in peroxy radical levels. Plotting the overall effect of NOx on peroxy20

radical levels during the whole campaign demonstrated a decrease in peroxy radicals
with increasing NOx. A break in the linear decrease around 0.1 and 0.2 ppbv NOx was
accompanied by an increase in VOCs which led to a short period where peroxy radicals
actually increased with NOx. This VOC influence on peroxy radicals could be thought
of as the break between NOx- and VOC-limited ozone producing regimes.25

Comparisons with FAGE HO2 measurements have shown that HO2/(HO2+
∑

RO2)
ratios are dependent on [NOx] and ranged between 0.2 and 0.6. HO2/(HO2+

∑
RO2)

ratios increase remarkably linearly with increasing NOx. The MCM model did
not replicate this NOx-dependence with the model in general over-estimating
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HO2/(HO2+
∑

RO2) ratios. The addition of halogen oxide chemistry improved the level
of agreement. Calculating the expected HO2/(HO2+

∑
RO2) ratios from OH oxidation

reactions of VOC, HCHO and CO did not show any significant NOx-dependence.
Night-time peroxy radical concentrations rose to as high as 25 pptv in continental

air-masses with high NOx. Sudden NO3 spikes definitely caused an increase in peroxy5

radicals, but constant higher NO3 levels did not necessarily lead to higher peroxy rad-
ical concentrations. Peroxy radical and NO3 mixing ratios were higher in continental
compared to marine air-masses. The contribution of ozone-alkene and NO3-alkene
reactions to peroxy radical formation varies from night to night and there are varia-
tions as to which one predominates. At low NO3, ozone-alkene reactions are always10

predominant.
Net photochemical ozone production reached as high as 1.5 ppbv h−1 with the lowest

values being negative at −0.5 ppbv h−1. Highest net ozone production was observed
during high NOx periods, demonstrating a clear increase in ozone production at higher
NOx. The ozone production rate is strongly dependent on [NO] having a linear sensitiv-15

ity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) will be strongly sensitive
in the marine boundary layer to small changes in [NO] which has ramifications for
changing NOx loadings in the European continental boundary layer.
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Table 1. Campaign air-mass sector-averaged chemical and physical parameters (1σ standard
deviation given in brackets).

NW N SW W S NE E

HO2+RO2/pptv 7.6 (6) 7.9 (4) 7.1 (6) 10.2 (8) 13.7 (10) 13.4 (10) 13.5 (7)
NOx/pptv 151 (39) 73 (68) 111 (136) 63 (33) 230 (418) 275 (212) 352 (72)
NO/pptv 19 (47) 10 (14) 13 (12) 10 (7) 24 (55) 31 (21) 34 (26)
CH4/ppbv 1813 (20) 1816 (32) 1785 (30) 1800 (13) 1821 (30) 1863 (50) 1925 (29)
CO/ppbv 90 (12) 81 (3) 77 (14) 83 (6) 82 (5) 112 (18) 149 (10)
H2O2/pptv 0.19 (0.19) 0.21 (0.14) 0.09 (0.07) 0.20 (0.10) 0.14 (0.05) 0.18 (0.11) 0.37 (0.10)
HCHO/ppbv 1.38 (0.18) 1.20 (0.08) 1.22 (0.17) 1.28 (0.26) 1.34 (0.12) 1.62 (0.22) 2.09 (0.17)
DMS/pptv 120 (98) 233 (66) 388 (264) 244 (227) 100 (107) 131 (88) 23 (24)
Isoprene/pptv 13 (24) 4 (1) 2 (1) 5 (6) 30 (61) 72 (119) 15 (26)
Benzene/pptv 29 (14) 24 (17) 20 (4) 27 (17) 18 (7) 62 (22) 114 (11)
Methanol/pptv 1068 (365) 852 (233) 1536 (384) 1086 (370) 1204 (291) 1747 (630) 1559 (596)
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Table 2. Daylight-only (06:00 to 19:00) air-mass sector-averaged chemical and physical pa-
rameters (1σ standard deviation given in brackets).

NW N SW W S NE E

HO2+RO2/pptv 10.6 (6) 9.6 (5) 8.5 (7) 15.1 (9) 16.4 (11) 21.0 (9) 17.4 (9)
NOx/pptv 133 (256) 88 (77) 80 (39) 65 (30) 190 (497) 216 (112) 342 (93)
NO/pptv 31 (61) 16 (17) 15 (11) 13 (7) 34 (66) 43 (20) 57 (21)
CH4/ppbv 1814 (22) 1818 (36) 1783 (30) 1799 (13) 1817 (29) 1852 (44) 1904 (29)
CO/ppbv 90 (12) 80 (3) 76 (15) 83 (5) 82 (5) 111 (18) 143 (8)
O3/ppbv 33 (4) 28 (4) 25 (7) 26 (12) 20 (14) 33 (4) 39 (3)
j (O1D)×10−6/s−1 7.8 (7) 6.9 (6) 5.9 (6) 7.2 (5) 8.5 (6) 8.1 (6) 7.3 (8)
N(O3)/ppbv h−1 0.023 (0.2) 0.028 (0.1) −0.019 (0.08) 0.025 (0.2) 0.087 (0.3) 0.51 (0.5) 0.47 (0.3)
H2O2/pptv 0.20 (0.2) 0.17 (0.1) 0.08 (0.1) 0.22 (0.1) 0.14 (0.04) 0.17 (0.1) 0.41 (0.08)
HCHO/ppbv 1.5 (0.2) 1.2 (0.1) 1.2 (0.1) 1.4 (0.3) 1.4 (0.2) 1.7 (0.2) 2.1 (0.2)
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Table 3. Night-time-only (19:00–06:00) air-mass sector-averaged chemical and physical pa-
rameters (1σ standard deviation given in brackets).

NW N SW W S NE E

HO2+RO2/pptv 4.2 (2) 5.6 (1) 4.4 (3) 4.1 (2) 6.4 (5) 7.7 (2) 10.5 (3)
NOx/pptv 174 (521) 59 (57) 152 (200) 61 (36) 301 (214) 344 (274) 359 (54)
NO/pptv 4.8 (3) 4.7 (4) 9.6 (13) 6.1 (6) 4.9 (3) 17.0 (12) 15.2 (8)
CH4/ppbv 1813 (17) 1814 (28) 1787 (31) 1802 (14) 1827 (33) 1877 (53) 1941 (16)
CO/ppbv 90 (13) 81 (2) 78 (12) 84 (6) 81 (3) 113 (19) 154 (11)
O3/ppbv 32 (4) 30 (2) 26 (8) 22 (12) 28 (6) 31 (3) 40 (2)
NO3/pptv 4.7 (2) 5.9 (3) nd 4.5 (2) 2.7 (1) 5.7 (5) 11.7 (6)
HCHO/ppbv 1.28 (0.16) 1.16 (0.05) 1.25 (0.23) 1.14 (0.17) 1.33 (0.07) 1.54 (0.23) nd
Alkenes/pptv 60 (48) 33 (11) 71 (57) 64 (30) 71 (47) 187 (141) 188 (82)

nd: no data
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Table 4. Sensitivity of the Model/Measurement (HO2 + ΣRO2) agreement for varying chemical
complexity.

Model Runa Model/Measurement

CO+CH4 chemistry (Het with IO chemistry) 3.3±1.8
– constrained to measurements of CO and CH4
Full Chemistry (Het with IO chemistry) 2.6±1.3
– constrained to measurements of CO, CH4,
23 hydrocarbons and chloroform
Full+Oxy 2.5±1.3
– constrained to measurements of CO, CH4,
23 hydrocarbons, chloroform and 3 oxygenates
Full+Oxy (Het with IO chemistry) 2.341±1.2
– constrained to measurements of CO, CH4,
23 hydrocarbons, chloroform and 3 oxygenates
Full+Oxy+Per (Het with IO chemistry) 2.343±1.2
– constrained to measurements of CO, CH4,
23 hydrocarbons, chloroform, 3 oxygenates and 2 peroxides

a Full details of model runs in Sommariva et al. (2005); Het with IO chemistry – model addition-
ally constrained to measured IO and j (HOI) using a transition regime expression to calculate
the heterogeneous uptake of the gas-phase species.
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Table 5. Daily N(O3) maxima and minima and campaign average in EASE 97, SOAPEX 2 and
NAMBLEX (all in ppbv h−1).

Campaign and Season Season Mean

Mace Head (EASE 96a) Summer 0.3
Mace Head (EASE 97a) Spring 1.0
Cape Grim (SOAPEX 2b) Summer −0.01
N. Pacific (PHOBEAc) Spring −0.1
E. Pacific (ORION99d) Summer 0.2–3.4
Mace Head (NAMBLEXe) Summer 0.11

a see Salisbury et al. (2002), b see Monks et al. (2005), c Kotchenruther et al. (2001), d Kanaya
et al. (2002), e this work.
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Table 6. Sensitivity of derived P(O3) and L(O3) to NO from a series of marine boundary layer
campaigns.

dln(P(O3))/dln(NO) dln(L(O3))/dln(NO)

Cape Grim(SOAPEX 2a) 0.90 0.06
Mace Head (EASE 97b) 1.10 0.27
Weybourne (winterc) 0.92 0.02
Weybourne (summerc) 0.95 0.28
Mace Head (NAMBLEXd) 1.0 0.62

a data from Monks et al. (2005); b data from Salisbury et al. (2002); c data from Fleming et
al. (2005); d this work.
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3 Results

3.1 Meteorological conditions

Local wind speed and direction measurements were recorded
on an hourly basis during NAMBLEX. During the EASE
campaigns Salisburyet al.,(2002) and Rickardet al. (2002)
divided all the data into five sectors, according to local wind
direction.

More detailed boundary layer structure measurements in
combination with back trajectory analysis during the NAM-
BLEX campaign is described by Nortonet al.,(2005). How-
ever, caution must be used when assigning air-mass sectors
only according to localin-situ wind direction as measure-
ments during the NAMBLEX data did not necessarily corre-
spond with the origin of the air-mass back-trajectory analy-
sis. For example, there were a number of land-sea breeze
events (particularly at night). From the 1st to 5th August,
these breeze events brought local easterly winds to the site
during westerly trajectories.

The British Atmospheric Data Centre’s (BADC) trajectory
service (www.badc.nerc.ac.uk) was used to plot five-day air-
mass back-trajectories at six-hourly intervals. According to
the origin of the air-masses of these trajectories, a new di-
vision into seven areas of origin was developed as shown in
Tables 1, 2 and 3. The most common air-mass sector was
the north-westerly (NW), followed by westerly (W) and then
south-westerly (SW) as shown in Figure 1a (see also Heard
et al. (2005)). Examples of three typical NW, W and north-
easterly (NE) air-mass sector back-trajectories are shown in
Figure 1b. The effects of local sea and coastal breezes were
removed from the analysis by only selecting data where the
local wind speed was greater than 3 m s−1 (Salisburyet al.
(2002)).

Table 1 shows the average HO2 + ΣRO2, NOx, CO, CH4,
O3, CH3OOH, H2O2, HCHO, DMS, isoprene, benzene and
methanol mixing ratios andj(O1D) for the corresponding
air-mass sectors. The data in Table 2 corresponds to the day-
light (06:00-19:00) averages. Table 3 shows the night-time
concentrations of the same species, as well as [NO3] and to-
tal alkenes.

3.2 Chemical climatology

Heardet al., (2005) provides a comprehensive overview of
all the other species and supporting measurements made dur-
ing NAMBLEX and their respective time series.

3.2.1 Peroxy radical levels and diurnal cycles

The data in Table 1 and the peroxy radical time series in
Figure 2 show that peroxy radical concentrations are high-
est when the air is of continental origin (S, E and NE air-
mass sectors). Also the concentrations of NOx, isoprene and
formaldehyde were significantly higher in these sectors than
in the marine W sector.

Fig. 1. a) Air-mass sector divisions for winds less than and greater
than 3 m s−1 and inset pie-chart of percentage divisions between
sectors (winds> 3 m s−1); b) Typical back-trajectories for the NW,
W and NE air-mass sectors

Fig. 2. [HO2 + ΣRO2], j(O1D) and [NOx] campaign time series

The lowest peroxy radical concentrations during the cam-
paign were near the detection limit of the instrument (see ex-
perimental section) at around 1 pptv but were rarely less than
4 pptv, even at night. The maximum peroxy radical concen-
tration reached 60 pptv for the occasional short-lived spike
and 40 pptv for midday maximum values (see Figure 2).
Generally, the day-time peroxy radical concentrations were

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 1. (a) Air-mass sector divisions for winds less than and greater than 3 m s−1 and inset pie-
chart of percentage divisions between sectors (winds >3 m s−1); (b) Typical back-trajectories
for the NW, W and NE air-mass sectors.
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3 Results

3.1 Meteorological conditions

Local wind speed and direction measurements were recorded
on an hourly basis during NAMBLEX. During the EASE
campaigns Salisburyet al.,(2002) and Rickardet al. (2002)
divided all the data into five sectors, according to local wind
direction.

More detailed boundary layer structure measurements in
combination with back trajectory analysis during the NAM-
BLEX campaign is described by Nortonet al.,(2005). How-
ever, caution must be used when assigning air-mass sectors
only according to localin-situ wind direction as measure-
ments during the NAMBLEX data did not necessarily corre-
spond with the origin of the air-mass back-trajectory analy-
sis. For example, there were a number of land-sea breeze
events (particularly at night). From the 1st to 5th August,
these breeze events brought local easterly winds to the site
during westerly trajectories.

The British Atmospheric Data Centre’s (BADC) trajectory
service (www.badc.nerc.ac.uk) was used to plot five-day air-
mass back-trajectories at six-hourly intervals. According to
the origin of the air-masses of these trajectories, a new di-
vision into seven areas of origin was developed as shown in
Tables 1, 2 and 3. The most common air-mass sector was
the north-westerly (NW), followed by westerly (W) and then
south-westerly (SW) as shown in Figure 1a (see also Heard
et al. (2005)). Examples of three typical NW, W and north-
easterly (NE) air-mass sector back-trajectories are shown in
Figure 1b. The effects of local sea and coastal breezes were
removed from the analysis by only selecting data where the
local wind speed was greater than 3 m s−1 (Salisburyet al.
(2002)).

Table 1 shows the average HO2 + ΣRO2, NOx, CO, CH4,
O3, CH3OOH, H2O2, HCHO, DMS, isoprene, benzene and
methanol mixing ratios andj(O1D) for the corresponding
air-mass sectors. The data in Table 2 corresponds to the day-
light (06:00-19:00) averages. Table 3 shows the night-time
concentrations of the same species, as well as [NO3] and to-
tal alkenes.

3.2 Chemical climatology

Heardet al., (2005) provides a comprehensive overview of
all the other species and supporting measurements made dur-
ing NAMBLEX and their respective time series.

3.2.1 Peroxy radical levels and diurnal cycles

The data in Table 1 and the peroxy radical time series in
Figure 2 show that peroxy radical concentrations are high-
est when the air is of continental origin (S, E and NE air-
mass sectors). Also the concentrations of NOx, isoprene and
formaldehyde were significantly higher in these sectors than
in the marine W sector.

Fig. 1. a) Air-mass sector divisions for winds less than and greater
than 3 m s−1 and inset pie-chart of percentage divisions between
sectors (winds> 3 m s−1); b) Typical back-trajectories for the NW,
W and NE air-mass sectors

Fig. 2. [HO2 + ΣRO2], j(O1D) and [NOx] campaign time series

The lowest peroxy radical concentrations during the cam-
paign were near the detection limit of the instrument (see ex-
perimental section) at around 1 pptv but were rarely less than
4 pptv, even at night. The maximum peroxy radical concen-
tration reached 60 pptv for the occasional short-lived spike
and 40 pptv for midday maximum values (see Figure 2).
Generally, the day-time peroxy radical concentrations were

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 2. [HO2+ΣRO2], j (O1D) and [NOx] campaign time series.
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Table 3. Night-time-only (19:00-06:00) air-mass sector-averaged chemical and physical parameters (1σ standard deviation given in brackets)

NW N SW W S NE E

HO2+RO2 /pptv 4.2 (2) 5.6 (1) 4.4 (3) 4.1 (2) 6.4 (5) 7.7 (2) 10.5 (3)

NOx /pptv 174 (521) 59 (57) 152 (200) 61 (36) 301 (214) 344 (274) 359 (54)

NO /pptv 4.8 (3) 4.7 (4) 9.6 (13) 6.1 (6) 4.9 (3) 17.0 (12) 15.2 (8)

CH4 /ppbv 1813 (17) 1814 (28) 1787 (31) 1802 (14) 1827 (33) 1877 (53) 1941 (16)

CO /ppbv 90 (13) 81 (2) 78 (12) 84 (6) 81 (3) 113 (19) 154 (11)

O3 /ppbv 32 (4) 30 (2) 26 (8) 22 (12) 28 (6) 31 (3) 40 (2)

NO3 /pptv 4.7 (2) 5.9 (3) nd 4.5 (2) 2.7 (1) 5.7 (5) 11.7 (6)

HCHO /ppbv 1.28 (0.16) 1.16 (0.05) 1.25 (0.23) 1.14 (0.17) 1.33 (0.07) 1.54 (0.23) nd

Alkenes /pptv 60 (48) 33 (11) 71 (57) 64 (30) 71 (47) 187 (141) 188 (82)

nd No Data

Fig. 3. Hourly-averaged [HO2+ΣRO2], [NOx] andj(O1D) diurnal
cycles for campaign data and W and NE air-mass sector averages

istry, in terms of measured IO seems to give some small im-
provement in the agreement. It is worth noting that there is
some evidence for spatial in homogeneity in the [IO] and the

”local” [IO] could be a factor or 10 higher than that measured
by long-path DOAS methods (see Sommarivaet al.,(2005a)
and Smithet al. (2005)). The effect of halogens on the parti-
tioning of NO and NO2 and OH and HO2 is dealt with later.
Figure 4b shows a correlation plot of modelled PERCA per-
oxy radical (full + oxy, heterogeneous with IO chemistry,
see Table 4) concentrations against measured values for all
fifteen minute-averaged data and also the hourly-averages
with their corresponding standard deviation. From Figure
4b, there is a good correlation with the slope = 1.02 (R2 =
0.73). At low [HO2+

∑
RO2], the model-measurement com-

parison lies below the 1:1 line. At higher [HO2 +
∑

RO2],
there is a wider spread of data and the model, particularly
for the hourly averages around solar noon over-predicts the
measured peroxy radical levels.

j(O1D),
√

j(O1D) vs. [HO2 + ΣRO2] correlations and
diurnal cycles for the 23rd and 24th August are shown in
Figure 5. The back trajectories shown in Figure 5 suggest
a SW air-mass origin on the 23rd August coming off the
French coast, bringing higher concentrations of CO, CH4,
acetone, methanol and NOx. The following day, the air-mass
changes to a cleaner NW origin, where the NO/NOx ratio
and [NMHC] are significantly lower. The narrower shape of
the diurnal cycle on the 24th August could be due to a re-
duction in species that could be photolysed to form peroxy
radicals.

On the NW day (24th August), peroxy radicals track
j(O1D), whereas on the SW day (23rd August), the peroxy
radicals have a broader shape thanj(O1D). The correlation
with bothj(O1D) and

√
j(O1D) (r2 = 0.87 and 0.89 respec-

tively) is good on the NW day but poor (r2 = 0.30 and 0.43)
on the SW day. Since the correlation withj(O1D) on the
SW day is poor, this is suggestive of an increased secondary
source of HOx from the photolysis of other compounds. This
is particularly apparent in the early morning and the evening.

Photolysis of species other than O3 (e.g. HCHO, HONO,
H2O2, CH3O2H) could lead to a broadening of the peroxy

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 3. Hourly-averaged [HO2+ΣRO2], [NOx] and j (O1D) diurnal cycles for campaign data and
W and NE air-mass sector averages.
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Table 4. Sensitivity of the Model/Measurement HO2 + ΣRO2 agreement for varying chemical complexity.

Model Runa Model/Measurement

CO + CH4 chemistry (Het with IO chemistry)
- constrained to measurements of CO and CH4

3.3± 1.8

Full Chemistry (Het with IO chemistry)
- constrained to measurements of CO, CH4, 23 hydrocarbons and chloroform

2.6± 1.3

Full + Oxy
- constrained to measurements of CO, CH4, 23 hydrocarbons, chloroform
and 3 oxygenates

2.5± 1.3

Full + Oxy (Het with IO chemistry)
- constrained to measurements of CO, CH4, 23 hydrocarbons, chloroform
and 3 oxygenates

2.341 ± 1.2

Full + Oxy + Per (Het with IO chemistry)
- constrained to measurements of CO, CH4, 23 hydrocarbons, chloroform, 3
oxygenates and 2 peroxides

2.343 ± 1.2

aFull details of model runs in Sommarivaet al, 2005; Het with IO chemistry – model additionally constrained to measured IO andj(HOI)
using a transition regime expression to calculate the heterogeneous uptake of the gas-phase species.

Fig. 4. a) Measured and modelled PERCA [HO2 +
P

RO2] and
FAGE [HO2]; b) MCM modelledvs. measured [HO2 +

P
RO2]

(15 minute data) and hourly-averaged data

radical diurnal cycle noted in the afternoon or early morn-
ing, whenj(O1D) (primary production) is reduced. [HO2 +∑

RO2] vs. j(HCHO) correlations are divided into five dif-
ferent periods of the day in Figure 5. On the 23rd August, the

largest increase in peroxy radicals asj(HCHO) increases was
seen at 06:00-08:00 and 15:00-17:00. Despite the large in-
crease in peroxy radicals with increasingj(HCHO) between
06:00 and 08:00, thej(HCHO) values were very low and
would not have led to significant peroxy radical formation
from this channel alone. Between 17:00-19:00 the product
j(HCHO).[HCHO] was significantly large as to produce per-
oxy radicals at this time whenj(O1D) was greatly reduced.
The 24th August showed very poor trends. The same form of
analysis withj(HONO) showed no observable trends (N.B.
[HONO] estimated).

Figure 6a shows the campaign averaged [HCHO] and
[HO2 +

∑
RO2] diurnal cycles and the amount of HCHO

photolysed each hour (j(HCHO).[HCHO]). Formaldehyde
has a shifted diurnal cycle with values persisting into the
evening. Daily maximum [HCHO] were around 1.6 ppbv
(Still et al, 2005), much higher than the 0.2-0.8 ppbv found
during a comparable campaign at Mace Head (Cardenaset
al., (2000)). The relative performance of the different HCHO
measurement methods are discussed in Stillet al. (2005).

Figure 6b shows correlation plots of [HO2 +
∑

RO2]
and [HCHO] against the amount of formaldehyde photol-
ysed per hour (j(HCHO.[HCHO]). Both peroxy radicals and
formaldeyde show a good correlation with formaldehyde
photolysis. Formaldehyde is both a source of peroxy radi-
cals (through photolysis and OH oxidation) and is produced
from the peroxy radical reactions with NO. Figure 6b corre-
lates peroxy radical and formaldehyde concentrations to the
HO2 production rate from formaldehyde photolysis. In the
radical channel (14), one HCHO molecule yields two HO2

molecules upon photolysis

HCHO + hν → H2 + CO (R13)

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–20, 2005

Fig. 4. (a) Measured and modelled PERCA [HO2+
∑

RO2] and FAGE [HO2]; (b) MCM modelled
vs. measured [HO2+

∑
RO2] (15-min data) and hourly-averaged data.
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Fig. 5. 23rd and 24th August HO2 +
P

RO2andj(O1D) diurnal cycles and five-day back-trajectories.j(O1D) and
√

j(O1D) vs. [HO2 +P
RO2] linear regressions and [HO2 +

P
RO2]vs. j(HCHO) trends at different periods of the day are shown beneath the back-trajectories

→ H + HCO (R14)

H + O2 + M → HO2 + M
CHO + O2 → HO2 + CO (R15)

Overall : HCHO + O2 + hν → 2HO2 + CO (R16)

The good correlation is suggestive of persistent peroxy
radical levels in the late afternoon having a major contribu-
tion from formaldehyde photolysis.

An interesting phenomenon was observed on a number of
days (namely the 9th, 15th, 17th and 31st August and 1st

September); when the solar intensity and photolysis rates
showed a sudden increase in the early evening and a dispro-
portionately large peroxy radical increase was observed. On
the 21st August (see case day 21st August in Figure 7a) a
peak in thej(O1D) was accompanied by a sudden peroxy
radical increase at around 17.00. The same increase in [OH]
was observed by (Smithet al., 2005) on this day, and was
reflected in the modelled [OH] (Sommarivaet al., (2005a)).
The HO2 measurements did not show a similar increase. One
possible explanation for the phenomena is that if there are

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 5. 23 and 24 August HO2+
∑

RO2 and j (O1D) diurnal cycles and five-day back-trajectories.
j (O1D) and

√
j (O1D) vs. [HO2+

∑
RO2] linear regressions and [HO2+

∑
RO2] vs. j (HCHO)

trends at different periods of the day are shown beneath the back-trajectories.
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Fig. 6. a) Hourly-averaged diurnal cycle of [HCHO], [HO2+RO2]
and j(HCHO)×[HCHO]hour−1 b) Trend of ten minute-averaged
[HO2+RO2]and [HCHO]vs.j(HCHO)×[HCHO].

clouds at a given height as the sun nears the horizon light
passes beneath the cloud at high zenith angles, rather than
been attenuated by them, giving a short-lived boost to photo-
chemical peroxy radical production (see for example, Monks
et al, 2004).

3.3 Peroxy radicals and NOx

NOx concentrations of greater than 0.5 ppbv and up to as
high as 2 ppbv were reached on the 1st-4th August and the
8th, 16th and 21st August (see Figure 2). Between the 1st-
4th August, air arrived from the E air-mass sector and the
trajectories on the 8th, 16th and 21st August were classified
as W, despite some local polluted SE winds. [NOx]/[NOy]
were higher than average on the 13th, 14th and 16th August
(days where local pollution re-circulated at the site). All the
case days (8th August, 16th August and 21st August) in Fig-
ures 7a, 7b and 7c had very high [NOx] and a peroxy radical
diurnal profile that is shifted towards the evening. This may
be due to a suppression of peroxy radical formation when
NOx was high, and a sudden period of formation later in the
day when NOx levels dropped.

The campaign average [NOx] diurnal cycle is shown in
Figure 3. The values are highest between 09.00 and 12.00.
High NOx levels in the morning suppressvia the reparti-
tioning of HO2 to OH. Peroxy radical concentrations and
this NOxsuppression may, indeed, contribute to the apparent
shift in the peroxy radical diurnal cycle. On the 16th August

Fig. 7. Case study days: a) 21st August, b) 16th August, c) 8 Au-
gust [HO2 +

P
RO2],j(O1D) (and [NOx] or j(HONO)) diurnal cy-

cles.

in Figure 7b a sudden NOx spike in the morning perturbed
the peroxy radical concentrations, moving the apparent max-
imum towards the afternoon.

Peroxy radical concentrationsvs.binned [NOx] (on a log-
arithmic scale) for all 10-minute data are shown in Figure 8a.
The peroxy radicals were divided into three regimes accord-
ing to j(O1D) values;j(O1D) > 7.5 x10−6 s−1 represents
daylight values, 3 x10−7 s−1 < (j(O1D)) < 7.5 x10−6 s−1

represents dusk and dawn values or very cloudy conditions
and< 3 x10−7 s−1 represents night-time conditions, which
are discussed later (Fleminget al, 2005).

The data withj(O1D) > 7.5 x10−6 s−1 (daylight hours)
are used for investigating the effect of NOx on peroxy radi-
cals during the day. Peroxy radical concentrations decrease
with increasing [NOx] until values of about 0.1 ppbv [NOx].
This shift is a result of changes in the HO2:OH ratios towards

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–20, 2005

Fig. 6. (a) Hourly-averaged diurnal cycle of [HCHO], [HO2+RO2] and j (HCHO)×[HCHO]h−1

(b) Trend of ten minute-averaged [HO2+RO2] and [HCHO] vs. j (HCHO)×[HCHO].
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Fig. 6. a) Hourly-averaged diurnal cycle of [HCHO], [HO2+RO2]
and j(HCHO)×[HCHO]hour−1 b) Trend of ten minute-averaged
[HO2+RO2]and [HCHO]vs.j(HCHO)×[HCHO].

clouds at a given height as the sun nears the horizon light
passes beneath the cloud at high zenith angles, rather than
been attenuated by them, giving a short-lived boost to photo-
chemical peroxy radical production (see for example, Monks
et al, 2004).

3.3 Peroxy radicals and NOx

NOx concentrations of greater than 0.5 ppbv and up to as
high as 2 ppbv were reached on the 1st-4th August and the
8th, 16th and 21st August (see Figure 2). Between the 1st-
4th August, air arrived from the E air-mass sector and the
trajectories on the 8th, 16th and 21st August were classified
as W, despite some local polluted SE winds. [NOx]/[NOy]
were higher than average on the 13th, 14th and 16th August
(days where local pollution re-circulated at the site). All the
case days (8th August, 16th August and 21st August) in Fig-
ures 7a, 7b and 7c had very high [NOx] and a peroxy radical
diurnal profile that is shifted towards the evening. This may
be due to a suppression of peroxy radical formation when
NOx was high, and a sudden period of formation later in the
day when NOx levels dropped.

The campaign average [NOx] diurnal cycle is shown in
Figure 3. The values are highest between 09.00 and 12.00.
High NOx levels in the morning suppressvia the reparti-
tioning of HO2 to OH. Peroxy radical concentrations and
this NOxsuppression may, indeed, contribute to the apparent
shift in the peroxy radical diurnal cycle. On the 16th August

Fig. 7. Case study days: a) 21st August, b) 16th August, c) 8 Au-
gust [HO2 +

P
RO2],j(O1D) (and [NOx] or j(HONO)) diurnal cy-

cles.

in Figure 7b a sudden NOx spike in the morning perturbed
the peroxy radical concentrations, moving the apparent max-
imum towards the afternoon.

Peroxy radical concentrationsvs.binned [NOx] (on a log-
arithmic scale) for all 10-minute data are shown in Figure 8a.
The peroxy radicals were divided into three regimes accord-
ing to j(O1D) values;j(O1D) > 7.5 x10−6 s−1 represents
daylight values, 3 x10−7 s−1 < (j(O1D)) < 7.5 x10−6 s−1

represents dusk and dawn values or very cloudy conditions
and< 3 x10−7 s−1 represents night-time conditions, which
are discussed later (Fleminget al, 2005).

The data withj(O1D) > 7.5 x10−6 s−1 (daylight hours)
are used for investigating the effect of NOx on peroxy radi-
cals during the day. Peroxy radical concentrations decrease
with increasing [NOx] until values of about 0.1 ppbv [NOx].
This shift is a result of changes in the HO2:OH ratios towards

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–20, 2005

Fig. 7. Case study days: (a) 21 August, (b) 16 August, (c) 8 August [HO2+
∑

RO2],j (O1D) (and
[NOx] or j (HONO)) diurnal cycles.
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Fig. 8. a) 10 minute-averaged [HO2+
P

RO2] vs. [NOx] at three light intensity regimes; b) Hourly-averaged daylight (06:00-19:00) [VOCs],
[CO] and [HO2+

P
RO2] vs. [NOx]. The right-hand axis is an amalgamation of a scaled axis for all of CO, CH4, HCHO, isoprene and

alkanes for comparison purposes; c) HO2/(HO2+
P

RO2) vs. [NOx]: 15 minute-averaged data with values at [NOx] > 500 pptv in smaller
bins; d) Measured and modelled HO2/(HO2+

P
RO2) ratiosvs. [NOx] for hourly-averages (Model days: 1st, 2nd, 9th, 10th, 15th-22nd, 31st

August and 1st September – model runs both full-oxy with and without halogens (see Table 4)); e) Hourly-averaged HO2/(HO2+
P

RO2)
andφ(CO+HCHO)vs. [NOx] ; f) Hourly-averaged [peroxide]vs. [NOx]

OH (reactions of HO2 and RO2 with NO to form NO2). Be-
tween values of 0.1 and 0.2 ppbv [NOx], there is a sudden
increase in [HO2 +

∑
RO2], which suggests a switch be-

tween NOx- and VOC- limited conditions with respect to
ozone production. The corresponding increase in VOCs at
[NOx] above 0.1 ppbv would lead to a rise in OH oxidation
of VOCs, producing more peroxy radicals. Above 0.2 ppbv
[NOx], increasing [NOx] appears to lower [HO2 +

∑
RO2].

Hourly averaged daylight (06:00-19:00) alkane, isoprene,
HCHO, CO and CH4 concentrations, as well as peroxy radi-
cal levels, are plotted against binned NOx in Figure 8b. The
right hand axis is scaled for each hydrocarbon. The sharp
increase in all VOCs at [NOx] > 0.1 ppbv would have a
strong link to the rise in peroxy radicals at this time. These

high VOC levels change the reactive mixture with respect to
peroxy radical speciation. Sudden NOx increases could re-
flect changing air-mass composition. Concentrations of the
biogenic hydrocarbon, isoprene peak at a lower [NOx] than
the corresponding anthropogenic hydrocarbons. At higher
[NOx], it is not clear which hydrocarbons govern the organic
peroxy radical concentrations. Until 0.1 ppbv [NOx], the per-
oxy radical trend with increasing [NOx] is very similar to the
HCHO trend. At [NOx] between 0.5 and 1 ppbv the depen-
dence of peroxy radicals on VOCs is very clear, as a drop in
all VOCs is reflected in the peroxy radical data.

The rural marine boundary location of Mace Head was
seen to be representative of background chemistry but pol-
luted air masses regularly reach the site, bringing higher NOx

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 8. (a) 10 min-averaged [HO2+
∑

RO2] vs. [NOx] at three light intensity regimes; (b) Hourly-
averaged daylight (06:00–19:00) [VOCs], [CO] and [HO2+

∑
RO2] vs. [NOx]. The right-hand

axis is an amalgamation of a scaled axis for all of CO, CH4, HCHO, isoprene and alkanes for
comparison purposes; (c) HO2/(HO2+

∑
RO2) vs. [NOx]: 15 min-averaged data with values at

[NOx]>500 pptv in smaller bins; (d) Measured and modelled HO2/(HO2+
∑

RO2) ratios vs. [NOx]
for hourly-averages (Model days: 1, 2, 9, 10, 15–22, 31 August and 1 September – model runs
both full-oxy with and without halogens (see Table 4)); (e) Hourly-averaged HO2/(HO2+

∑
RO2)

and φ(CO+HCHO) vs. [NOx]; (f) Hourly-averaged [peroxide] vs. [NOx].

12362

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/12313/acpd-5-12313_p.pdf
http://www.atmos-chem-phys.org/acpd/5/12313/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 12313–12371, 2005

Peroxy radical
chemistry at Mace

Head, Ireland

Z. L. Fleming et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Fleminget al.: Peroxy Radical Chemistry at Mace Head, Ireland 11

levels than experienced in the marine W air-masses as shown
in Rickardet al. (2002). The switch to a significant VOC
contribution to [HO2+

∑
RO2] occurs at a lower [NOx] level

than at more polluted continental urban locations, such as at
the BERLIOZ campaign where the maximum [HO2] was at
1 ppbv [NOx] (Hollandet al.,(2003)).

3.4 Hydrocarbons and HO2 / (HO2 +
∑

RO2)ratios

The highest mixing ratio of anthropogenic source com-
pounds such as ethene, toluene and benzene was observed
between the 1st and 5th August. This illustrates the more
polluted VOC-laden air masses, originating from the NE sec-
tor, passing over Scandinavia, northern Britain and Ireland,
as shown in Figure 1b.

High isoprene concentrations between the 2nd and 4th Au-
gust were followed immediately by a sharp increase in DMS
and this was also seen on the 17th and 30th August. DMS
concentrations varied from concentrations barely above the
detection limit to as high as 900 pptv, with a spike of over
1.5 ppbv on the 28th July. DMS levels were highest in the
W, N and SW sectors, as shown in Table 1.

OH reacts with hydrocarbons, forming organic radicals,
which rapidly react with O2 to form peroxy radicals (see re-
actions (10) and (11)). Lewiset al.,(2005) calculated the per-
centage contribution to OH removal by VOCs by combining
all the VOC-OH reaction rates,kV OC [VOC][OH]. Acetalde-
hyde accounted for up to 20 %, CH4,and formaldehyde both
up to 30 % and the other measured non-methane hydrocar-
bons (NMHCs) between 10 and 15 % of OH loss.

HO2 measurements taken by FAGE (Smithet al., (2005))
provide a means of comparing HO2 with HO2+

∑
RO2. Fig-

ure 9a shows the measured and modelled (full + oxy, hetero-
geneous with IO chemistry, see Table 4), hourly-averaged
HO2/HO2 +

∑
RO2 ratios during the period 15th-22nd Au-

gust. The addition of halogens to the system can repartition
both OH and HO2 and NO and NO2 (e.g. Monks, 2005)via

XO + HO2 → HOX + O2 (R17)

HOX + hν → X + OH (R18)

and

XO + NO → X + NO2 (R19)

The measured HO2/(HO2 +
∑

RO2) ratios are lower when
[NOx] is low as on the 18th and 19thAugust and can reach
values over 1 when NOx-laden air arrives at the site. The
HO2/(HO2 +

∑
RO2) ratio generally decreases from the start

of the day towards sunset. The equivalent model ratio shows
a similar diurnal profile from day to day, with the distinct di-
urnal profile displaying the highest HO2/HO2+

∑
RO2 ratios

at midday. Generally, the modelled HO2/HO2 +
∑

RO2ratio

Fig. 9. a) Hourly-averaged measured and modelled [HO2+RO2]
diurnal cycles for the 15th-22nd August b) Measured and modelled
HO2/HO2+RO2 ratios for 15th-21st August

is much higher than the measurement equivalent, except
when NOx is high.

The correlation plot of modelled versus measured
HO2/(HO2 +

∑
RO2) ratios is shown in Figure 9b, with the

individual days marked in separate colours. The model gen-
erally over-predicts these ratios on all the days. The mea-
sured HO2/(HO2 +

∑
RO2) ratio on the 16th August (when

local SE winds brought high NOx levels to the site) showed
large variations throughout the day, both for the modelled
and measured ratios as seen in both Figures 9a and 9b. How-
ever, Figure 9a shows that the measurement ratios displayed
greater variability during the high NOx period on this day.
The same is observed during the high NOx period on 21st

August, where the model ratio appears not to be influenced
by NOx variations.

To investigate the effect of varying NOx on the
HO2/(HO2 +

∑
RO2) ratio, a plot of HO2/(HO2 +

∑
RO2)

ratios against binned [NOx] is shown in Figure 8c. The ratio
of inorganic to organic peroxy radicals increases as [NOx]
increases. The highest [NOx] bin at 1 ppbv has been divided
into smaller bins in order to study the structure at high NOx.
At [NOx] > 0.8 ppbv, the HO2/(HO2+

∑
RO2) ratio appears

to decrease with increasing [NOx]. RO2 reacts rapidly with
NO to form formaldehyde, and its subsequent breakdown can
lead to HO2 formation.

Figure 8d shows the measured and modelled HO2/(HO2 +

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–20, 2005

Fig. 9. (a) Hourly-averaged measured and modelled [HO2+RO2] diurnal cycles for the 15–22
August (b) Measured and modelled HO2/HO2+RO2 ratios for 15–21 August.
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∑
RO2) ratios plotted against [NOx]. Two model runs (with

and without IO) are plotted to show the effect of halogens.
In general, the HO2/(HO2 +

∑
RO2) ratio is higher in the

model but the model does not show a strong increase with
increasing [NOx]. HO2/(HO2+

∑
RO2) ratios at high [NOx]

for both model and measured values are very similar, but at
lower [NOx] the model predicts higher HO2/(HO2 +

∑
RO2)

ratios. Interestingly, the addition of halogen chemistry im-
proves the agreement between model and measurement, indi-
cating a role for the IO in repartitioning the OH and HO2 via
reactions (16) and (17). It is clear that at low [NOx] the halo-
gens seem to be more important. Sommarivaet al., (2005)
found that the model mechanism worked better at high NOx,
indicating that peroxy - peroxy reactions at low NOx are
still not fully understood. An earlier Mace Head campaign
tailored box model, without OVOC and halogen chemistry,
used on Mace Head data, over-predicted HO2/(HO2+RO2)
at low NOx and under-predicted at high NOx(Carslawet al.,
(1999, 2002)).

As previously stated, oxidation of CO, CH4, HCHO and
NMHCs represents a large loss term for OH. The reaction
of OH with CO and HCHO leads to the formation of HO2.
OH reaction with CH4 forms CH3O2 and OH reaction with
VOC forms predominantly RO2. The fraction of OH removal
reactions that form HO2 can be represented as:

φ(CO+ HCHO) =(
kco[CO] + kHCHO[HCHO]

kco[CO] + kHCHO[HCHO] + kCH4 + kvoc[VOC]

)
[OH]

(1)

where kCO, kHCHO, kCH4 and kV OC are the rate coeffi-
cients for the reaction of OH with CO, HCHO, CH4 and
VOCs respectively. The rate-coefficients were taken from
the National Institute of Standards and Technology (NIST)
web site.

The φ(CO+HCHO) fraction was calculated for the days
that had complete CO, CH4 and VOC and HCHO concentra-
tions, as in Lewiset al., (2005). Comparingφ(CO+HCHO)
ratios with HO2/(HO2 +

∑
RO2) ratios should be indicative

of whether HO2/(HO2+
∑

RO2) ratio variations were caused
primarily by varying HCHO, CO, CH4 and VOC concentra-
tions.

Figure 8e shows a plot of hourly HO2/(HO2 +
∑

RO2)
and φ(CO+HCHO) ratios against binned [NOx]. The
trend for increasing HO2/(HO2 +

∑
RO2) with increas-

ing [NOx] is not replicated forφ(CO+HCHO), which does
not appear effected by NOx. HO2/(HO2 +

∑
RO2) ra-

tios are always lower thanφ(CO+HCHO) ratios (< 0.5
for HO2/(HO2+RO2) and > 0.5 for φ(CO+HCHO)). The
ratio of k[HCHO]/(k[HCHO]+k[CO]) was found to re-
main constant at around 0.5, showing that HCHO and CO
contribute equally to HO2 formation. φ(CO+HCHO) ra-
tios have a range of between 0.3 and 2.5 in NAMBLEX,
much greater than the HO2/(HO2 +

∑
RO2) ratio range.

Fig. 10. Hourly-averaged [HO2+RO2] and [O3] vs. [HCHO]/[CO]
fitted with a third order polynomial

The φ(CO+HCHO) ratios were usually much higher than
HO2/(HO2 +

∑
RO2) ratios, which suggests that modelling

the VOC-OH reactivity underestimates the resulting RO2

concentrations with respect to HO2. Also, calculating HO2
to be directly correlated with CO and HCHO reactivity is not
necessarily valid as HCHO is both photolysed and is oxidised
by OH to form HO2. HCHO is also formed from the reaction
of CH3O2 with NO (reactions (2) and (3)).

The HCHO:CO ratio can be used as a tracer to distin-
guish different air masses and differing times since the last
major input from pollution. It is of interest because both
tracers are primary pollutants, but formaldehyde is also pro-
duced in the troposphere by oxidation of CH4 in the pres-
ence of NOx. Subsequent photolysis of this formalde-
hyde then produces CO. In polluted high NOx environ-
ments, HCHO production is more important than its pho-
tolysis and the HCHO:CO ratio increases. Figure 10 shows
that both [HO2 +

∑
RO2] and [O3] increase with increas-

ing HCHO/CO. If higher HCHO:CO ratios are a marker
for polluted conditions, then this would be likely to lead
to higher ozone levels. Higher peroxy radical levels at in-
creased HCHO suggests that HCHO is more effective at
producing peroxy radicals than CO. Theφ(CO+HCHO) ra-
tio presumes that HCHO and CO have equal HO2 pro-
ductivity, so any discrepancy betweenφ(CO+HCHO) and
HO2/HO2 +

∑
RO2 may be due to the inaccuracy of pre-

dicting HO2 from φ(CO+HCHO).

3.5 Peroxides

The highest H2O2 concentrations of up to 0.5 pptv were be-
tween the 1st and 3th August when NOx and hydrocarbon
concentrations were high. Indeed, in Table 1, high NOx

and high VOC concentrations in the E sector have lead to
the highest peroxide concentrations. Morgan (2004) found
a maximum [H2O2] of 1.1 ppbv with an average of 0.19
ppbv during NAMBLEX, much lower than the maximum
of 7.1 and mean of 1.58 ppbv at Mace Head in June 1999

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 10. Hourly-averaged [HO2+RO2] and [O3] vs. [HCHO]/[CO] fitted with a third order poly-
nomial.
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(Morgan and Jackson (2002)). In the clean marine bound-
ary layer, such as Cape Grim, Tasmania, peroxy radicals are
more likely to self-react to form peroxides than they are to
react with NO and subsequently produce ozone (Ayerset
al., (1997)). Thus, high levels of peroxides would signify
an ozone-destroying regime and a lower turnover rate of the
various species that are part of the ozone-forming cycles.

Figure 8f shows [peroxide] versus [NOx] trends that are
very similar in shape to peroxy radical - NOx trends in Figure
8a, illustrating the strong link between peroxy radicals and
H2O2 concentrations. H2O2 concentrations are highest at
around 0.1 ppbv NOx and decrease slightly at higher NOx

but do not decrease to the same extent as peroxy radical levels
at high NOx as shown in in Figure 8a. CH3O2H is more
influenced by NOx than H2O2, as it is reduced to nearly zero
values at high NOx.

3.6 Night-time chemistry

Table 3 shows night-time averages for the different air mass
sectors and the concomitant NO3 measurements from data
on fifteen nights (Saiz-Lopezet al, 2005; see also Bitteret
al, 2005). The E and NE air-mass sectors have the highest
average O3, NO3 (with the E sector having [NO3] of 11.7
pptv, compared to less than 6 pptv in all the other sectors) and
total alkene concentrations as seen in Table 3. The highest
night-time peroxy radical concentrations are observed in the
SE and E sectors (c.f Allan et al., 2000).

Sommarivaet al., (2005b) found that the model had a ten-
dency to underestimate night time peroxy radical levels ex-
cept on the 31st August and 1st September. Closer agree-
ment between the model and measurements was achieved
when moving from a ‘clean’ model with only CO and CH4 to
the full model with more complex hydrocarbons. Short-term
NOx spikes during the night are often matched with elevated
peroxy radical concentrations as high as 10 pptv, or even 25
pptv in the polluted E period on the 2nd and 3rd August.
On 16th August, when [NOx] suddenly increased at about
20.00, a significant rise in [HO2 +

∑
RO2] followed closely,

as shown in the case day in Figure 7b. [HO2 +
∑

RO2] vs.
[NOx] for nights with NO3 data are shown in Figure 8a. As
[NOx] increases, [HO2+RO2] increases at [NOx] > 0.1 ppbv.
This peroxy radical increase with NOxis suggestive of NO3
radicals (in equilibrium with NO2) reacting with hydrocar-
bons to form peroxy radicals.

Figure 11a is a plot of average [HO2 +
∑

RO2] vs. [NO3]
(Saiz-Lopezet al, 2005) for all the air-mass sectors. The
[HO2 +

∑
RO2] were separated into six [NO3] bins and plot-

ted on the same graph with error bars showing their standard
deviation. The E sector, even though [NO3] varies widely, al-
ways has higher [HO2 +

∑
RO2] than the other sectors, irre-

spective of [NO3]. Figure 11b shows the night-time profiles
of [NO3] and [HO2 +

∑
RO2] for the entire marine (N, NW,

SW and W combined) and continental (NE, E combined) air-
mass sectors. The NO3 concentration was always higher in

Fig. 11. a) Hourly-averaged [HO2+RO2] vs. [NO3] for air-mass
sectors. Large blue markers represent all hourly-averaged concen-
trations divided into six NO3 bins and corresponding standard de-
viations b) [NO3] and [HO2+RO2] at night (19.00 to 6.00)

the continental sector. The peroxy radical concentration was
also always higher in the continental sector. There does not
appear to be a significant peroxy radical pattern throughout
the night.

Rate constants for the reaction of NO3 with the measured
alkenes were used to calculate the rate of the NO3 loss and
the O3 reactions with alkenes(c.f. Salisburyet al, 2001).
The flux of peroxy radicals formed from the alkene reactions
from the NO3 and O3 channels were compared by correlating
all night-time hours of the campaign as shown in Figure 12a.
At low peroxy radical-forming fluxes, the ozone-alkene re-
actions tended to dominate over the NO3-alkene reactions.
When NO3 levels were high, the fluxes from NO3-alkene
reactions were far higher than the ozone-alkene fluxes. At
NO3-alkene fluxes above 5 x 104 molecules cm−3 s−1, the
ozone-alkene flux was always lower than the NO3-alkene
flux. Figure 12b shows the percentage contribution to per-
oxy radical formation from alkene night-time reactions. This
varies strongly from night to night, with high NO3 contri-
butions on the 18th and 25thAugust, receiving W and SW
air-masses respectively. For the nights for which full data is

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–20, 2005

Fig. 11. (a) Hourly-averaged [HO2+RO2] vs. [NO3] for air-mass sectors. Large blue mark-
ers represent all hourly-averaged concentrations divided into six NO3 bins and corresponding
standard deviations (b) [NO3] and [HO2+RO2] at night (19:00 to 06:00).
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Fig. 12. a) Flux of peroxy radicals formed from alkene-NO3 and
alkene-O3 channels: Hourly-averaged night-time (19.00 to 6.00)
fluxes. The red-line is the 1:1 ratio; b) Percentage contribution of
O3 and NO3 to peroxy radical formation from alkene night-time
reactions

available the overall contribution of ozone-alkene chemistry
to peroxy radical production was 59% compared to 41% for
NO3-alkene.

Peroxy radical levels were seen to decrease throughout the
night in EASE 97 (Salisburyet al., (2001)), with more pol-
luted conditions experiencing less of a decrease throughout
the night. Analysis to determine the percentage contribu-
tion of the ozone – alkene and NO3 reactions to form per-
oxy radicals was carried out for EASE 97 (Salisburyet al.,
(2001)). The contribution of both was found to vary be-
tween 30 and 70 %, for each wind sector, but on the whole
as with this study the ozone-alkene reaction was the domi-
nant production mechanism. Carslawet al., (1997) found a
positive correlation between HO2 +

∑
RO2 and NO3 at the

Weybourne Atmospheric Observatory, while Mihelcicet al.,
(1993) found a negative correlation between peroxy radicals
and NO3 (presumably owing to highly variable reactive hy-
drocarbon fluxes) at Schauinsland. Any lack of correlation is
not surprising, as NO3 is both a source (Wayneet al.,(1991))
and a sink (Biggset al.,(1994)) of peroxy radicals.

Fig. 13. a) Total ozone loss and ozone lossvia photolysis b) Net
ozone production and corresponding [NO] and [HO2+RO2] used to
calculate P(O3)

3.7 Photochemical production of ozone

Net photochemical ozone formation, N(O3) (or ozone ten-
dency) was calculated for each hour of the campaign between
06.00 and 19.00, using equation (3) (For assumptions inher-
ent in this form of calculation see Salisburyet al., (2002)).
The production term represents NO2 formation and subse-
quent photolysis to form ozone (reactions (1) to (4)).kp is
the combined rate coefficient for the oxidation of NO to NO2

by all peroxy radicals (reactions (1) and (2)). The loss term
represents the reaction of ozone with OH and HO2 and ozone
photolysis (wheref represents the fraction of O(1D) that re-
acts with H2O to form OH).

N(O3) = P (O3)−L(O3) (2)

N(O3) = kp[NO][HO2 + ΣRO2]
−{f.j(O1D) + k21[OH] + k6[HO2]}[O3] (3)

HO2 + O3 → OH + 2O2

OH + O3 → HO2 + O2 (R20)

Figure 13a shows a time series of calculated ozone loss
for all campaign daylight hours. The largest contribution to
the calculated loss is that of ozone photolysis. The average
ozone loss chemistry was calculated to be 64 % from ozone
photolysis, 8 % from the OH+O3 reaction and 24 % from
the HO2+O3 reaction. The contributions from the three loss
reactions vary from day to day, with total ozone loss varying
between 0.1 and 0.7 ppbv h−1 at the solar maximum.

Figure 13b is a plot of net ozone production, N(O3)
throughout the campaign with [HO2+ΣRO2] and [NO] plot-
ted on the right-hand axis. The ozone production term, P(O3)

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 12. (a) Flux of peroxy radicals formed from alkene-NO3 and alkene-O3 channels: Hourly-
averaged night-time (19:00 to 06:00) fluxes. The red-line is the 1:1 ratio; (b) Percentage contri-
bution of O3 and NO3 to peroxy radical formation from alkene night-time reactions.
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available the overall contribution of ozone-alkene chemistry
to peroxy radical production was 59% compared to 41% for
NO3-alkene.

Peroxy radical levels were seen to decrease throughout the
night in EASE 97 (Salisburyet al., (2001)), with more pol-
luted conditions experiencing less of a decrease throughout
the night. Analysis to determine the percentage contribu-
tion of the ozone – alkene and NO3 reactions to form per-
oxy radicals was carried out for EASE 97 (Salisburyet al.,
(2001)). The contribution of both was found to vary be-
tween 30 and 70 %, for each wind sector, but on the whole
as with this study the ozone-alkene reaction was the domi-
nant production mechanism. Carslawet al., (1997) found a
positive correlation between HO2 +
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RO2 and NO3 at the

Weybourne Atmospheric Observatory, while Mihelcicet al.,
(1993) found a negative correlation between peroxy radicals
and NO3 (presumably owing to highly variable reactive hy-
drocarbon fluxes) at Schauinsland. Any lack of correlation is
not surprising, as NO3 is both a source (Wayneet al.,(1991))
and a sink (Biggset al.,(1994)) of peroxy radicals.

Fig. 13. a) Total ozone loss and ozone lossvia photolysis b) Net
ozone production and corresponding [NO] and [HO2+RO2] used to
calculate P(O3)

3.7 Photochemical production of ozone

Net photochemical ozone formation, N(O3) (or ozone ten-
dency) was calculated for each hour of the campaign between
06.00 and 19.00, using equation (3) (For assumptions inher-
ent in this form of calculation see Salisburyet al., (2002)).
The production term represents NO2 formation and subse-
quent photolysis to form ozone (reactions (1) to (4)).kp is
the combined rate coefficient for the oxidation of NO to NO2

by all peroxy radicals (reactions (1) and (2)). The loss term
represents the reaction of ozone with OH and HO2 and ozone
photolysis (wheref represents the fraction of O(1D) that re-
acts with H2O to form OH).

N(O3) = P (O3)−L(O3) (2)

N(O3) = kp[NO][HO2 + ΣRO2]
−{f.j(O1D) + k21[OH] + k6[HO2]}[O3] (3)

HO2 + O3 → OH + 2O2

OH + O3 → HO2 + O2 (R20)

Figure 13a shows a time series of calculated ozone loss
for all campaign daylight hours. The largest contribution to
the calculated loss is that of ozone photolysis. The average
ozone loss chemistry was calculated to be 64 % from ozone
photolysis, 8 % from the OH+O3 reaction and 24 % from
the HO2+O3 reaction. The contributions from the three loss
reactions vary from day to day, with total ozone loss varying
between 0.1 and 0.7 ppbv h−1 at the solar maximum.

Figure 13b is a plot of net ozone production, N(O3)
throughout the campaign with [HO2+ΣRO2] and [NO] plot-
ted on the right-hand axis. The ozone production term, P(O3)

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 13. (a) Total ozone loss and ozone loss via photolysis (b) Net ozone production and
corresponding [NO] and [HO2+RO2] used to calculate P(O3).
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Table 5. Daily N(O3) maxima and minima and campaign average
in EASE 97, SOAPEX 2 and NAMBLEX (all in ppbv h−1).

Campaign and Season Season Mean

Mace Head (EASE 96a) Summer 0.3

Mace Head (EASE 97a) Spring 1.0

Cape Grim (SOAPEX 2b) Summer -0.01

N. Pacific (PHOBEAc) Spring -0.1

E. Pacific (ORION99d) Summer 0.2-3.4

Mace Head (NAMBLEXe) Summer 0.11
asee Salisbury et al (2002), bsee Monks et al,
(2005),cKotchenruther et al (2001),dKanaya et al. (2002)
,ethis work.

is dependent on [NO] and [HO2 +ΣRO2], the ratio of which
varies greatly from day to day, showing an inverse relation-
ship during the daylight hours. [NO] was more variable than
[HO2 + ΣRO2] during NAMBLEX. Lower [NO] leads to a
smaller P(O3) term, which means that ozone loss becomes
nearly as great as ozone production, leading to a few hours
and days where N(O3) was negative.

Figure 14 shows the hourly-averaged ozone loss and pro-
duction rates for NAMBLEX. The loss term followsj(O1D),
peaking at solar noon, and does not vary widely from day to
day. However, ozone production values show a high degree
of variation between days, with midday values varying from
0.1 to 2.5 ppbv h−1. The shift of the maximum ozone loss
term towards the afternoon results in the net ozone produc-
tion being lower in the afternoon than the morning. The rise
in P(O3) in the late afternoon caused by high peroxy radical
levels leads to an increase in net ozone production at 16.00.
This averaged diurnal cycle appears to show overall ozone
production but the high P(O3) during the polluted E air-mass
sector period of the 1st-5th August shifts the balance to pos-
itive N(O3), despite the many periods of net ozone destruc-
tion.

Figure 15 shows N(O3) for the 8th August. This was a
day where high [NOx] reduced peroxy radical levels and the
elevated [NO] led to higher net ozone production than on
the days preceding and following it. A high NOx episode in
the morning delayed peroxy radical production until around
14:00 (Figure 7c) and produced high P(O3). At 13:00 P(O3)
was low because [NOx] dropped away, and the peroxy rad-
ical levels had not yet recovered. The build-up of peroxy
radical levels in the afternoon led to a boost in P(O3) and an-
other boost between 17.00 and 18.00 when night-time peroxy
radical- forming reactions become important.

Figure 16 shows N(O3) plotted against [NOx]. N(O3)
rises sharply with increasing [NOx] until around 1 ppbv
[NOx], when the increase in N(O3) levels off. The increase
in N(O3), with increasing NOx, during the SOAPEX 2 cam-
paign at Cape Grim, Tasmania showed very similar charac-

Fig. 14. Campaign hourly-averaged loss, production and net ozone
production

Fig. 15. Case day 8th August: Ozone production, loss and net pro-
duction

teristics until [NOx] of 0.5 ppbv. Investigations of the effect
of NOx on N(O3) at Mace Head during the spring campaign
of EASE 97 showed a much steeper increase in N(O3) at
similar NOx levels to those seen during NAMBLEX. Table 5
shows the ozone production values for Mace Head - EASE
97 (Salisburyet al, 2002), Cape Grim - SOAPEX 2 (Monks
et al, 2005) and NAMBLEX, demonstrating the much higher
range during the spring EASE 97 campaign.

Mace Head has experienced a positive trend in background
ozone of 0.49±0.19 ppb year−1 since 1987 (Simmondset
al. (2004)), the largest trend being during the winter sea-
son. The behaviour of this trend may be attributed to the
sensitivity of the background ozone level to changing Euro-
pean emissions of NOx and VOC (Derwentet al., (2003),
Monks (2003)). Following the methodology of Stroudet
al., (2004) the sensitivity of P(O3) to NO was calculated
as dlnP(O3)/dln(NO), as shown in Figure 17, for a series of
marine boundary layer campaigns with differing continen-
tal influences. Table 6 summarises the derived sensitivity
values of the ozone production term to NO. Both the Mace

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–20, 2005

Fig. 14. Campaign hourly-averaged loss, production and net ozone production.
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Table 5. Daily N(O3) maxima and minima and campaign average
in EASE 97, SOAPEX 2 and NAMBLEX (all in ppbv h−1).

Campaign and Season Season Mean

Mace Head (EASE 96a) Summer 0.3

Mace Head (EASE 97a) Spring 1.0

Cape Grim (SOAPEX 2b) Summer -0.01

N. Pacific (PHOBEAc) Spring -0.1

E. Pacific (ORION99d) Summer 0.2-3.4

Mace Head (NAMBLEXe) Summer 0.11
asee Salisbury et al (2002), bsee Monks et al,
(2005),cKotchenruther et al (2001),dKanaya et al. (2002)
,ethis work.

is dependent on [NO] and [HO2 +ΣRO2], the ratio of which
varies greatly from day to day, showing an inverse relation-
ship during the daylight hours. [NO] was more variable than
[HO2 + ΣRO2] during NAMBLEX. Lower [NO] leads to a
smaller P(O3) term, which means that ozone loss becomes
nearly as great as ozone production, leading to a few hours
and days where N(O3) was negative.

Figure 14 shows the hourly-averaged ozone loss and pro-
duction rates for NAMBLEX. The loss term followsj(O1D),
peaking at solar noon, and does not vary widely from day to
day. However, ozone production values show a high degree
of variation between days, with midday values varying from
0.1 to 2.5 ppbv h−1. The shift of the maximum ozone loss
term towards the afternoon results in the net ozone produc-
tion being lower in the afternoon than the morning. The rise
in P(O3) in the late afternoon caused by high peroxy radical
levels leads to an increase in net ozone production at 16.00.
This averaged diurnal cycle appears to show overall ozone
production but the high P(O3) during the polluted E air-mass
sector period of the 1st-5th August shifts the balance to pos-
itive N(O3), despite the many periods of net ozone destruc-
tion.

Figure 15 shows N(O3) for the 8th August. This was a
day where high [NOx] reduced peroxy radical levels and the
elevated [NO] led to higher net ozone production than on
the days preceding and following it. A high NOx episode in
the morning delayed peroxy radical production until around
14:00 (Figure 7c) and produced high P(O3). At 13:00 P(O3)
was low because [NOx] dropped away, and the peroxy rad-
ical levels had not yet recovered. The build-up of peroxy
radical levels in the afternoon led to a boost in P(O3) and an-
other boost between 17.00 and 18.00 when night-time peroxy
radical- forming reactions become important.

Figure 16 shows N(O3) plotted against [NOx]. N(O3)
rises sharply with increasing [NOx] until around 1 ppbv
[NOx], when the increase in N(O3) levels off. The increase
in N(O3), with increasing NOx, during the SOAPEX 2 cam-
paign at Cape Grim, Tasmania showed very similar charac-

Fig. 14. Campaign hourly-averaged loss, production and net ozone
production

Fig. 15. Case day 8th August: Ozone production, loss and net pro-
duction

teristics until [NOx] of 0.5 ppbv. Investigations of the effect
of NOx on N(O3) at Mace Head during the spring campaign
of EASE 97 showed a much steeper increase in N(O3) at
similar NOx levels to those seen during NAMBLEX. Table 5
shows the ozone production values for Mace Head - EASE
97 (Salisburyet al, 2002), Cape Grim - SOAPEX 2 (Monks
et al, 2005) and NAMBLEX, demonstrating the much higher
range during the spring EASE 97 campaign.

Mace Head has experienced a positive trend in background
ozone of 0.49±0.19 ppb year−1 since 1987 (Simmondset
al. (2004)), the largest trend being during the winter sea-
son. The behaviour of this trend may be attributed to the
sensitivity of the background ozone level to changing Euro-
pean emissions of NOx and VOC (Derwentet al., (2003),
Monks (2003)). Following the methodology of Stroudet
al., (2004) the sensitivity of P(O3) to NO was calculated
as dlnP(O3)/dln(NO), as shown in Figure 17, for a series of
marine boundary layer campaigns with differing continen-
tal influences. Table 6 summarises the derived sensitivity
values of the ozone production term to NO. Both the Mace
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Fig. 15. Case day 8 August: Ozone production, loss and net production.
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Table 6. Sensitivity of derived P(O3) and L(O3) to NO from a series of marine boundary layer campaigns

dln(P(O3))/dln(NO) dln(L(O3))/dln(NO)

Cape Grim(SOAPEX 2a) 0.90 0.06

Mace Head (EASE 97b) 1.10 0.27

Weybourne (winterc) 0.92 0.02

Weybourne (summerc) 0.95 0.28

Mace Head (NAMBLEXd) 1.0 0.62

adata from Monkset al, (2005);bdata from Salisburyet al (2002);c data from Fleminget al. (2005);dthis work.

Fig. 16. Net ozone production for daylight hours binned according
to [NOx]

Head data sets have ozone production with linear sensitiv-
ity (i.e. dlnP(O3)/dln(NO) = 1) to NO as compared to Cape
Grim and Weybourne, that have values of around 0.9. The
Mace Head values imply that the ozone production rate is
strongly dependent on the [NO]. The equivalent derived val-
ues of dlnL(O3)/dln(NO) are also given in Table 6 the bulk of
these values range from ca. 0 to 0.3, unsurprisingly this sug-
gests that L(O3) is generally independent of small changes
in [NO]. In tandem, these results imply that the N(O3) will
be strongly sensitive in the marine boundary layer to small
changes in [NO].

4 Conclusions

During NAMBLEX, the Mace Head Atmospheric Research
Station received a substantial mix of air-masses from both
the Atlantic and from Britain and Ireland. 80 % of the air-
masses were from the clean N, NW, W and SW sectors. The
marine air-mass sectors had peroxy radical levels below 10
pptv, whereas the other sectors experienced levels above 13
pptv. The higher peroxy radical concentrations in the air-

Fig. 17. ln(P(O3)) vs ln(NO) for Weybourne summer (red) and
winter (blue), Mace Head; NAMBLEX (yellow), EASE 97 (green)
and Cape Grim; SOAPEX 2 (purple). See 6 for campaign details.

mass sectors with a continental influence were accompanied
by over twice as high NOx levels and much higher anthro-
pogenic hydrocarbon mixing ratios.

Peroxy radical diurnal cycle maxima were typically
shifted towards the afternoon, with daily maximum levels
between 10 and 40 pptv. MCM modelling of peroxy radi-
cal levels provided a good model-measurement comparison,
with occasional slight over-estimations by the box model.

Correlations of peroxy radicals withj(O1D) were often
disturbed by NOx episodes that temporarily lowered peroxy
radical levels. No significant reliable linear or square root
dependence withj(O1D) was observed to make a clear sep-
aration between clean and polluted conditions. Photolysis of
compounds other than ozone led to a broader peroxy radical
diurnal cycle than would be seen from productionvia ozone
photolysis alone, especially in continentally-influenced air-
masses. Correlations withj(HCHO) in the afternoon and a
definite shift in the HCHO diurnal cycle towards the after-
noon suggests the high potential for HCHO photolysis at this
time. A sudden increase in photolysis rates (i.e. a rise in
j(O1D)) in the early evening was seen to cause a large pulse

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 16. Net ozone production for daylight hours binned according to [NOx].
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Table 6. Sensitivity of derived P(O3) and L(O3) to NO from a series of marine boundary layer campaigns

dln(P(O3))/dln(NO) dln(L(O3))/dln(NO)

Cape Grim(SOAPEX 2a) 0.90 0.06

Mace Head (EASE 97b) 1.10 0.27

Weybourne (winterc) 0.92 0.02

Weybourne (summerc) 0.95 0.28

Mace Head (NAMBLEXd) 1.0 0.62

adata from Monkset al, (2005);bdata from Salisburyet al (2002);c data from Fleminget al. (2005);dthis work.

Fig. 16. Net ozone production for daylight hours binned according
to [NOx]

Head data sets have ozone production with linear sensitiv-
ity (i.e. dlnP(O3)/dln(NO) = 1) to NO as compared to Cape
Grim and Weybourne, that have values of around 0.9. The
Mace Head values imply that the ozone production rate is
strongly dependent on the [NO]. The equivalent derived val-
ues of dlnL(O3)/dln(NO) are also given in Table 6 the bulk of
these values range from ca. 0 to 0.3, unsurprisingly this sug-
gests that L(O3) is generally independent of small changes
in [NO]. In tandem, these results imply that the N(O3) will
be strongly sensitive in the marine boundary layer to small
changes in [NO].

4 Conclusions

During NAMBLEX, the Mace Head Atmospheric Research
Station received a substantial mix of air-masses from both
the Atlantic and from Britain and Ireland. 80 % of the air-
masses were from the clean N, NW, W and SW sectors. The
marine air-mass sectors had peroxy radical levels below 10
pptv, whereas the other sectors experienced levels above 13
pptv. The higher peroxy radical concentrations in the air-

Fig. 17. ln(P(O3)) vs ln(NO) for Weybourne summer (red) and
winter (blue), Mace Head; NAMBLEX (yellow), EASE 97 (green)
and Cape Grim; SOAPEX 2 (purple). See 6 for campaign details.

mass sectors with a continental influence were accompanied
by over twice as high NOx levels and much higher anthro-
pogenic hydrocarbon mixing ratios.

Peroxy radical diurnal cycle maxima were typically
shifted towards the afternoon, with daily maximum levels
between 10 and 40 pptv. MCM modelling of peroxy radi-
cal levels provided a good model-measurement comparison,
with occasional slight over-estimations by the box model.

Correlations of peroxy radicals withj(O1D) were often
disturbed by NOx episodes that temporarily lowered peroxy
radical levels. No significant reliable linear or square root
dependence withj(O1D) was observed to make a clear sep-
aration between clean and polluted conditions. Photolysis of
compounds other than ozone led to a broader peroxy radical
diurnal cycle than would be seen from productionvia ozone
photolysis alone, especially in continentally-influenced air-
masses. Correlations withj(HCHO) in the afternoon and a
definite shift in the HCHO diurnal cycle towards the after-
noon suggests the high potential for HCHO photolysis at this
time. A sudden increase in photolysis rates (i.e. a rise in
j(O1D)) in the early evening was seen to cause a large pulse

Atmos. Chem. Phys., 0000, 0001–20, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 17. ln(P(O3)) vs. ln(NO) for Weybourne summer (red) and winter (blue), Mace Head;
NAMBLEX (yellow), EASE 97 (green) and Cape Grim; SOAPEX 2 (purple). See Table 6 for
campaign details.
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