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Abstract. In the mathematical modelling of sediment
compaction and porous media flow, the rheological be-
haviour of sediments s typically modelled in terms of
a nonlinear relationship between effective pressure p,
and porosity ¢, that is p, = pe(¢). The compaction
law is essentially a poroelastic one. However, viscous
compaction due to pressure solution becomes important
at larger depths and causes this relationship to become
more akin to a viscous rheology. A generalised viscoelas-
tic compaction model of Maxwcll type is formulated,
and different styles of nonlinear behaviour are asymp-
totically anatysed and compared in this paper.

1 Introduction

When well-bores are being drilled for oil exploration,
driiling mud is used in the hole to maintain its integrity
and safety. The mud density must be sufficient to pre-
vent collapse of the hole, but not so high that hydrofrac-
turing of the surrounding rock accurs. Both these ef-
fects depend on the pore fluid pressure in the rock, and
drilling problems occur in regions where abnormal pore
pressure or overpressuring occurs, that is in the repions,
normally in the sedimentary basins such as the North
Sca. where pore pressure increases downward faster than
hydrostatic pressure. Such kind of overpressuring can
substantially affect oil-drilling rates and even cause seri-
ous blowouts during drilling. Therefore, an industrially
important objective is to predict overpressuring before
drilling and to identify its precursors during drilling.
Another related objective is to predict reservoir qual-
ity and hydrocarbon migration. An essential step to
achieve such objectives is the scientific understanding of
their mechanisms and the evolutionary history of post-
depositional sediments such as shales.

Shales and other fine-grained compressible rocks are
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considered to be the source rocks for much petroleum
found in sandstones and carbonates. At deposition, sed-
iments such as shales and sands typically have porosities
of order 0.5 ~ 0.75 {Lerche, 1990). When sediments are
drilled at a depth, say 5000 m, porosities are typically
0.05 ~ 0.2. Thus an cnormous amount of water has es-
caped from the sediments during their deposition and
later evolution. Because of the fluid escape, the grain-
to-grain contact pressure must increase to support the
overlying sediment weight. Dynamical fluid escape de-
pends lithologically on the permeability behavior of the
evolving sediments. As fluid escape proceeds, porosity
decreases, so permeability becomes smaller, leading to
an ever-increasing delay in extracting the residual fu-
ids. The addition of more overburden sediments is then
compensated for by an increase of excess pressure in the
retained fluids. Thus overpressure develops from such
a non-equilibrium compaction environment (Audet and
Fowler, 1992; Fowler and Yang, 1998). A rapidly accu-
mulating basin is unable to expel pore fluids sufliciently
rapidly due to the weight of overburden rock. The devel-
opment of overpressuring retards compaction, resulting
in a higher porosity, a higher permeability and a higher
thermal conductivity than are normal for a given depth,
which changes the structural and stratigraphic shaping
of sedimentary units and provides a potential for hy-
drocarbon migration. Therefore, the determination of
the mechanism of dynamical evolution of fuid escape
and the timing of oil and gas migration out of such fine-
grained rocks is a major problem. The fundamental un-
derstanding of mechanical and physico-chemical prop-
erties of these rocks in the carth’s crust has important
applications in petrology, sedimentology, soil mechanics,
oil and gas engineering and other geophysical research
areas.

Compaction is the process of volume reduction via
pore-water expulsion within sediments due to the in-
creasing weight of overburden load. The requirement
of its oceurrence is not only the application of an over-
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burden load but also the expulsion of pore water. The
extent of compaction is strongly influenced by burial
history and the lithology of sediments. The freshly de-
posited loosely packed sediments tend to evolve, like an
open system, towards a closely packed grain framework
during the initial stages of burial compaction and this
is accomplished by the processes of grain slippage, rota-
tion, bending and brittle fracturing. Such reorientation
processes are collectively referred to as mechanical com-
poction, which generally takes place in the first 1 - 2 km
of burial. After this initial porosity loss, further poros-
ity reduction is accomplished by the process of chemical
compaction such as pressure solution {Fowler and Yang,
1999),

Despite the importance of compaction and diagene-
sis for geological problems, the literature of quantita-
tive modelling is not a huge one though the processes
have received much attention in the literaturce, and the
mechanism leading to pressure solution is still poorly
understood. The effect of gravitational compaction was
revicwed by Hedberg (1936) who suggested that an in-
terdisciplinary study involving soil mechanics, geochem-
istry, geophysics and geology is needed for a full under-
standing of the gravitational compaction process. More
comprehensive and recent reviews on the subject of com-
paction of argillaceous sediments were made by Rieke
and Chilingarian (1974) and Fowler and Yang (1998).

Compaction is widely speaking a density-driven flow
in a porous medium, which is a fascinating multidisci-
plinary topic that has attracted attention from scientists
with different expertise for a long time. Holzbercher
(1908) provides a very up-to-date comprehensive review
of the previous works and state-of-art numerical meth-
ods and softwares for modeling density-driven flow and
transport in porous media where the constant porosity
is used. However, we will mainly model how porosity
changes with time and depth rather than using a con-
stant density, thus an appropriate compaction relation
is vitally important.

Nonlinear compaction models have been formulated
in two ways in terms of compaction relations. The early
and most models used elastic or poroelastic rheology,
and the compaction relation is Athy’s tyvpe p. = p.(¢)
(Gibson, England & Hussey, 1967; Smith, 1971; Sharp,
1976; Wangen, 1992; Audet and Fowler, 1992; Fowler
and Yang, 1998). Thc more recent models begin to
use viscous rheology with a compaction relation p, =

-EV.0* {Angevine and Turcotte, 1983; Birchwaood and
Turcotte, 1994; Fowler and Yang, 1999). The poroe-
lastic models are valid for the mechanical compactions
while the viscous models are mainly describing the chem-
ical compaction such as pressure solutions. More re-
cently, efforts have been made to give a more realis-
tic visco-elastic model {Revil, 1999; Fowler and Yang,
1999). Fowler and Yang {1999) uses a viscous law p, =
—&V.uf to model compaction due to pressure solution,
while Revil {1999} uses a poro-visco-plastic model, with
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a relationship between porosity strain and effective stress,
to study pressure solution mechanism and its applica-
tions. However, there is no viscoelastic model which
has been formulated to analyse the compaction problem
on a basin scale, and most of the conventicnal stud-
ies are mainly numerical simulations. Obviously more
work is yet to be done. This paper aims at providing
a unified approach to the compaction relation by using
a visco-poroelastic relation of Maxwell type. The non-
linear partial differential equations are then analysed by
using asymptotic methods and the obtained analytical
solutions are compared with numerical simulations.

2 MATHEMATICAL MODEL

For the convenience of investigating the effect of sedi-
ment compaction, we will assume a single species only.
The sediments act as a compressible porous matrix, so
that mass conservation of pore fluid together with Darcy’s
law leads to the model equations of the general type.
Conservation of mass

7, o1

Su-or v (-am=0, )
d¢

n + V- (gu') =0, (2)

Darcy’s law
i ] k 3 :
$(u’ —u®) = w;(Vp + 293), (3)
Force balance
V.o =V —pgi=0, (4)

where u! and u’ are the velocities of fluid and solid ma-
trix, k& and p are the matrix permeahility and the liquid
viscosity, p; and p; are the densities of fluid and solid
matrix, o, is the effective stress, p. is the effective pres-
sure, j is the unit vector pointing vertically upwards, p!
is the pore pressure, and g is the gravitational accelera-
tion. In addition, a rheological compaction law is needed
to complete this model.

2.1 Poroelasticity and Viscous Compaction

The compaction law is a relationship between effective
pressure p, and strain rate é or porosity ¢. The common
approach in soil mechanics and sediment compaction is
te model this generally nonlinear behaviour as poroe-
lastic, that is to say, a relationship of Athy’s law type
Pe = Pe(), which is derived from fitting the real data
of sediments. Athy’s poroelasticity law is also a simpli-
fied form of Critical State Theory (Schofield and Wroth,
1986). A common relation representing the poroelastic-
ity is

DD;;ez——KV-uS, £=£+u*.v, (5)
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and equation (12} can be rewritten as

1 D(l"’i’)__ -
1o D - VW (6)

cotnbining with the previous equation, we have

Pe = p€(¢) (7)

which is the Athy's law for poroelasticity. A typical
form of this constitutive relation (Smith, 1971; Audet
and Fowler, 1992; Fowler and Yang, 1998) is

pe =1In{go/o) — (0 — &) (8)

However, this poroelastic compaction law is only valid
for the sediment compaction in the upper and shal-
low region, where compaction occurs due to the pure
mechanical movements such as grain sliding and pack-
ing rearrangement. In the deeper region, mechanical
compaction is gradually replaced by the chemical com-

paction due to stress-enhanced flow along the grain bound-

ary from the grain contact areas to the free pore, where
pressure is essentially pore pressure. A typical process
of such chemical compaction in sediment is pressure so-
fution whose rheological behavior is usually viscous, so
that it is sometimes called viscous pressure solution or
viscous creep.

The mathematical formulation of compaction laws for
pressure solution is to derive the creep rate in terms of
concentrations, grain size and geometry {usually spheri-
cal or cylindrical packings), effective stress, grain bound-
ary diffusion. This allows us to include the detailed
reaction-transport process in a simplified relation be-
tween strain rate and effective stress although further
simplifications are usually agsumed such as steady-state

dissolution and local reprecipitation along the grain bound-

ary. Rutter’s creep law (1976) is widely used

'1;, g w i)

ub
. 9
odi 0 (9)

e =

where ¢ is the effective normal stress across the grain
contacts, Ay is a constant, ¢g is the equilibrium concen-
tration {of quartz) in pore fluid, p, d are the density and
(averaged) grain diameter (of quartz). D, is the diffu-
sivity of the solute in water along grain boundaries with
a thickness w. Note that p. = —¢ and € = V - u®.
With this, (9) becomes the following compaction law

pe = —EV.u". (10)

This was first used by Birchwood and Turcotte (1994)
to study pressure solution in sedimentary basins by pre-
senting a unified approach to geopressuring, low perme-
ability zone formation and secondary porosity genera-
tion.

2.2 1-D Viscoelastic Compaction

Following the discussions of elastic compaction {(Fowler
and Yang 1998) and viscous compaction (Fowler and
Yang, 1999), we can generalise the above relations to a
viscoclastic compaction law of Maxwell type

1 Dp. 1

— =Pe- (11}

V= -y T EPe

Equivalently, we would anticipate a viscoelastic rheol-
ogy for the medium, involving material derivatives of
tensors, and some care is needed to ensure that the re-
sulting model is frame indifferent. That is to say, the
rheological relation of stress-strain should be invariant
under the coordinate transformation. This is not always
guaranteed due to the complexity of the rheological rela-
tions (Bird, Armstrong & Hassager 1977). Fortunately,
for one-dimensional flow, which is always irrotational,
the equation is invariant, and all the different equations
in corotationat and codeformational frames degenerate
into the same form (Yang, 1997). In the one-dimensional
case we will discuss below, we can take this for granted.
Thus the 1-D model equations become

w + %[(1 — ¢)u’] =0, (12)
% N B(g:‘) 0, (13)
ol ~ut) = MG o= 1 - pygl, (1)

where (¢ = 1 4+ 4n/3¢ is a constant describing sediment
propertics, and » is medium viscosity. By assuming the
densities p, and p; are constants, we can see that only
the density difference p; — g is important to the flow
evolution. Thus, the compactional flow is essentially
density-driven flow in a porous medium {Holzbercher,
1998).

3 Non-dimensionalization

If a length-scale d is a typical length defined by
‘EmSG }1/2

d= {(ps - g

) {16)
5o that the dimensionless pressure p = Gp. /{(ps—p1)gd =
O{1). Meanwhile, we scale z with d, u® with rhg, time t
with d/frhg, permeability & with kq. By writing k(¢) =
kgk*, z = dz*, ..., and dropping the asterisks, we thus
have

——+ =1 -] =0, (17)
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g deu')

gt + dz 0, (18)
i 8 ap

o ) = @)= 22— (1- )} 19)

0w ___o Dp D _0 .0

5. - -eeDi P Dicmt¥asm U

where

A= M (21)

s
In the above derivation, we have used the requirement of
degenerating to the poroelastic case (8) when neglecting
viscous rheology.

Adding (17) and (18) together and integrating from
the bottom, we have

w' = —oplut — u®), {22)

where © = ¢(u' — u®) is the Darcy flow velocity. By
using the equation (6}, we now have

do _ 0 o8 ,

VAT S

W = N[5~ (L= 4] (24
L D9 ¢ Dp_ (25)
(i-¢) Dt~ (1-¢? Dt

The constitutive relation for permeability k(¢) is non-
linear, and its typical form is

K@) = (2™, m=8. (26)
¢a
The boundary conditions at z = 0 are
637 . ;
% —{1—-4¢) =0 (or equivalently, u* =10}, (27)
&=y, p=0, (28}
b=t + X ()] at oz =h(t),  (29)
¢ 0z ’

which is a moving houndary problem.

It is useful to estimate these parameters by using val-
ues taken from ohservations. By using the typical values
of pr ~ 10Pkgm ™%, p, ~ 2.5x10%kgm ™2, ky ~ 10715
107 m? 4 o~ 103 Nsm? £ ~ 1 x 1021 N s m~2,
tie ~ 300m Ma™! = 1x10~ " m g1, g~ 10ms™?, G ~
1, d ~ 1000m; then A = 0.01 ~ 1000. We can see that
the only parameter A, which governs the evolution of
the fluid low and poresity in sedimentary basins, is the
ratio between the permeability and the sedimentation
rate.
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4 Asymptotic Analysis

Since the nondimensional parameter A =~ 0.01 ~ 1000
varies greatly and essentially controls the compaction
process, we can expect that the two distinguished limits
(A« | and A >» 1) will have very different features in
porosity and flow evolutions. In fact, A = 1 defines a
transition between slow compaction (A << 1} and fast
compaction (A >> 1). Thus we can follow the simi-
lar asymptotic analysis (Fowler and Yang, 1998; Fowler
and Yang, 1999) to obtain some analytical asymptotic
solutions.

4.1 Slow Compaction (A < 1)

In the case of A € 1, 2 ~ 1, ¢ ~ 1, p ~ 1 implics that
u® « 1 and %? 2 (), then ¢ = ¢y and D¢/ Dt = %‘f. We
thus have

g 0p

Loy — A1 — ) (

S~ ML - do) . (30)

a

u ~A-8—Z—(1—¢0)] (31)
1 8¢ ¢ Op

—_— - — —p, 32

T-do o~ T-dyor " %2

which can be rewritten approximately as

op 0% (1—¢y)? s {1 —ga)A

Bt =N gaz " A N = T (33)

with appropriate boundary conditions

%zl—gbg, on z =10, (34)

p—0, z— oo, (35)

This is in fact equivalent to the case of conduction in a
semi-infinite space with a constant flux at z = 0. The
solution of this case can be approximately expressed as

(1 — ¢o)z

p s (1—go) VANt terfe(Q)++/ A ¢y exp|— ———= Mo 1,(36)
where
(= —2 {37)
5 T m!
and

i 2
i = —p— S _
ierfe(¢) = ﬁe Certe((). {38)
This gives an approximate solution of ¢ as

A _(i=sgs

¢ = Pg — PoV4NE lerfe(() - Po/ X o qbo 2ep {39)

(1- o) 1750) '

We can see that compaction essentially oceurs in a bound-
ary layer near the bottom with a thickness of the order of
VA", The comparison of this approximate solution (39)



Yang: Nonlinear viscoelastic compaction in sedimentary basins

T

0.25+

0.2

N 015+

01

Q051

0.2 0.25 0.3 0.35 04 0.45 0.5
Paorosity

Fig. 1. Comparison of numerical solutions (solid curves) with
asymptotic solution (39) for N = 0.01 at ¢t = 3,5. Where & =
z/h(t) is the scaled height.

(dashed curves) with numerical solutions (solid curves)
is shown in Figure 1 for the values of A = 0.01. § = 3.
The approximate solution is accurate when (¢/ee)" <
1 so that ¢ ~ 1/mv/'A ~ 5 due to the fact that ¢z =
m=1t- ()(\/Xﬂ. The agreement is clearly shown in the
fignre.

4.2 Tast Compaction (A > 1)

Fast compaction, either viscous or poroelastic, is more
complicated and interesting in contrast to the simple
structure of boundary layer for slow compaction. Since
A 3 1 and the highly nonlinear permeability function
ko= (@/og)™, m = 8. the governing equations are also
highly nonlinear. However, we can use these features

and pursue asviuptotic analvsis to seek appropriate asymp-

totic solutions.

4.3  Poroelastic Compaction

For the case A 3 1, we can rewrite (25) as
de

d¢p b ap

ar TG g - el = - =
7§%ﬂ%+miW[$u—w% (40)
By using the perturbations

b= o 4 %dy(l) boe p=piha :l\-pm + ... {(41)
the leading order equation hecores

dptt J"’En, i i)liui e

e ITIETS

whose integration gives

P =1In(go/6'?) — (g0 — ¢), (43)

which is the Athy-type relation and is exactly the same
form used by Smith {1971} and Fowler and Yang (1998).
The leading order equation from (24) is thus

(1= 6) 85

9 sy =
g - (1-e®) =0, (44)
or
(0)
agz _ ol Z g (45)

The appropriate boundary conditions ¢® = ¢g gives
# = goe=, (46)

which decreases with depth h — z exponentlally. This
soluticn is the same as the equilibrium solution in the
poroelastic case, and thus the top region of viscoelastic
compaction is essentially poroelastic and viscous effect
is only of secondary importance in this region. How-
ever, as ¢ decrcases, the term A(¢/¢g)™ may become
very small due to the higher exponent m = 8. Natu-
rally, A{¢/do)™ = | defines a critical value of ¢ in the
transition region

O = dge” (47)

In fact, the above solutions are only valid when ¢!% >
¢* and h — 2 <II = {In A}/m.

4.4 Transition Region

As ¢ ~ %, we define

gl n—lnm

p=o e T s=h-Il4 (48)
m
W i (
US:——‘ p:p‘—‘_. l\49)
ni L

where p* = In(¢n /™) — (o —@*). By changing variables
to (t.1) via &y = & — mhd,, §. = nd,. and assuming
m 3 1, we have the leading order equations

hot v, + (1= o1, = 0. (50)
W =P, - (1 -0 (51)
N o h R R -
hoten, = (T-_———L;)—*—)!,} + {1 —=omp. (52)
Thus
fag-v‘

W =1 - g a3)

T L (2

1 — o™i ‘

vy — L - (_—gp bl — et (3-4)

ho*
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(1-¢" )W
) ——
Yoo b ) (55)

whose solution can be written as a quadrature. As
n—+ —00, Py = 0, we can see in equation (52) that the
dominant term is the viscous term (1 ~ ¢*)p* so that
compaction will gradually transfer from viscoelastic one
to purely viscous one. This has important geophysical
implication for compaction in sedimentary basins, since
the purely viscous mechanism may be responsible for
overpressuring and mineralized seals in oil-reservoir and
hydrocarbon basins. Furthermore, In order to deter-
mine h, we require {53) and (55} to match the solution
below the transition layer.

4.5 Viscous Compaction

In the region below the transition layer, porosity ¢ < ¢*
is usually very small, while the effective pressure p is
increasing and p ~ p* = O(1). Rewriting (25) as

s ] Op
T =gl v l-p
Oz (1-—g)2 ot Bz
From (49) and (

(56)

2), we know that p chdnges slowly,

which implies 22 s —2 < 1or ¢(af z) < p, we
then have apprommdtel_y
Ju®
- 57
P e (37)

which implies that compaction is now essentially purely
viscous. Thus we get

3 _ 8
8—f = 5,10 -0, (58)

2.8
s _ A(ﬁé)m F°u

(5o — (1= 8] (59)

42y]

which are the equations solved by Fowler and Yang
{1999) when = = 1 for purcly viscous compaction. Fol-
lowing the same solution procedure given by Fowler and
Yang (1999), we can expect to get the same solutions.
Thus, we only write down here the solution for A

(1 — ¢o) P P,

(i—¢) " mi-¢)
where v = Tél—(_ﬁ);. This essentially completes the
solution procedure. Figure 2 shows the comparison of
numerical results with the above obtained asymptotic
solutions {46) and {35) in the poroelastic and transition
region.

2p*

i?. = ?ﬁs[ —mlnm, (60)

5 Discussion

The present model of viscoelastic flow and nonlinear
compaction in sedimentary basins uses a rheological re-
lation which incorporates both poroelastic and viscous
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Fig. 2. Numerical resulls (solid curves) with A = 100, ¢t = 10.
The asymptotic selutions (46) and (55) are also plotted as a com-
parison (dashed). Profile in the top region is nearly exponential
follows by a transition to pure viscous compaction where porosity
is nearly uniform.

effects in 1-D compacting frame, Bascd on the frame in-
variance of irrotational feature of the 1-D flow, a gener-
alised viscoelastic compaction relation of Maxwell type
has been formulated. The nondimensional model equa-
tions are mainly controlled by one parameter A, which
is the ratio of hydraulic conductivity to the sedimen-
tation rate. Following the similar asymptotic analysis
given by Fowler and Yang (1998), we have been able to
obtain the approximate solutions for either slow com-
paction (A < 1) or fast compaction (A 3 1). The more
realistic and yet more interesting case is when A > 1,
and the solution implies a nearly exponential profile of
porosity versus depth, which implies that compaction in
the top region is essentially poroelastic and its profile is
virtually at equilibrium.

The numerical simulations and asymptotic analysis
have shown that porosity-depth profile is near exponen-
tial followed by a a transition from poroelastic to vis-
coelastic region. This is because of the large exponent
m in the permeability law & = (¢/¢9)™, so that even
it A 2 1, the product Ak may become small at suffi-
ciently large depths. In this case, the porosity profile
consists of an upper part near the surface where Mk » 1
and the equilibrium is attained, and a lower part where
Ak < 1, and the porosity is higher than equilibrium
which appears to correspond accurately to numerical
computations. Below this transition region, porosity is
usually uniformly small and compaction is essentially
pure viscous. From the definition of excess pore pressure
Pex = [, [p+ (1 — ¢)]dz, we know that the sudden switch
from poroelastic to viscous compaction means a quick
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decease of porosity ¢, which leads to a sudden increase
of pee. Therefore, the transition is often associated with
a jump to a high pore pressure and low permeability re-
gion where a mineralized seal may be formed. This con-
clusion is consistent with the earlier work (Birchwood
and Turcotte, 1994). As viscous compaction proceeds,
porosity and permeability may become so small that
Huid gets trapped below this region, and compaction
virtually stops.

Further work shall focus on more realistic and correct
formulation of rheology. In a recent work on pressure so-
tution and its application to some field problems such as
land subsidence associated with fluid withdrawal from
undercompacted aquifers, Revil (1999) suggests a Voigt-
type poro-visco-plastic rheological behavior to charac-
terize pressure solution and to applications to some field
problems including equilibrium and disequilibrium com-
pactions and subsidence. Naturally, more work is needed
to incorporate a Voigt-type rheology applied to com-
paction in addition to a present Maxwell-type law.
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