N
N

N

HAL

open science

Interaction dynamics of electrostatic solitary waves
V. L. Krasovsky, H. Matsumoto, Y. Omura

» To cite this version:

V. L. Krasovsky, H. Matsumoto, Y. Omura. Interaction dynamics of electrostatic solitary waves.
Nonlinear Processes in Geophysics, 1999, 6 (3/4), pp.205-209. hal-00301950

HAL Id: hal-00301950
https://hal.science/hal-00301950
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00301950
https://hal.archives-ouvertes.fr

Nonlinear Processes in Geophysics (1999) 6: 205-209

Nonlinear Processes
in Geophysics

© European Geophysical Society 1999

Interaction dynamics of electrostatic solitary waves

V. L. Krasovsky!, H. Matsumoto?, and Y. Omura?

1Space Research Institute. Russian Academy of Sciences, Profsoyuznaya 84/32, Moscow 117810, Russia
ZRadio Atmospheric Science Center, Kyoto University, Uji. Kyoto 611-0011, Japan

Received: 8 June 1999 — Accepted: 13 September 1999

Abstract. Interaction of nonlinear electrostatic pulses
associated with electron phase density holes moving in a
collisionless plasma is studied. An elementary event of
the interaction is analyzed on the basis of the energy bal-
ance in the system consisting of two electrostatic solitary
waves. It is established that an intrinsic property of the
system is a specific irreversibility caused by a nonadia-
batic modification of the internal structure of the holes
and their effective heating in the process of the interac-
tion. This dynamical irreversibility is closely connected
with phase mixing of the trapped electrons comprising
the holes and oscillating in the varying self-consistent
potential wells. As a consequence of the irreversibility,
the ”collisions” of the solitary waves should be treated
as "inelastic” ones. This explains the general tenden-
cy to the merging of the phase density holes frequently
observed in numerical simulation and to corresponding
coupling of the solitary waves.

1 Introduction

Waveform observations performed by Plasma Wave In-
strument aboard the Geotail spacecraft have provided
rather unexpected data on the high-frequency compo-
nent of broadband electrostatic noise in the distant mag-
netotail (Matsumoto et al., 1994). It appears that the
corresponding wave perturbations present bipolar elec-
tric field spikes which may be treated as unipolar pulses
of the electrostatic potential moving along the magne-
totail (Omura et al., 1994). These perturbations were
called electrostatic solitary waves (ESW) due to their
polarization and typical isolated wave signatures. The
observed waveforms are difficult to explain within the
framework of the linear plasma wave theory. This has
led Matsumoto et al. (1994) to presume that the re-
vealed wave perturbations could have been generated at
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the nonlinear stage of an electron beam-plasma instabil-
ity. An essential prerequisite to such a hypothesis is also
the strong correlation between broadband electrostatic
noise and intensity of high-energy particle flows in the
magnetotail (Gurnett et al., 1976; Grabbe and Eastman,
1984; Onsager et al., 1993; Kojima et al., 1994).

Many and varied numerical simulations on the behav-
ior of electron beam-plasma systems (see e.g. the review
by Berk and Roberts, 1970) show a comparatively fast
linear stage of the instability accompanied by exponen-
tial growth of unstable plasma oscillations and nonlinear
saturation process due to trapping of resonant particles.
As a result of the beam trapping, a periodic sequence
of electron bunches is formed. These bunches look like
vortices in phase space and usually take the form of elec-
tron phase space density holes (EHs). Further evolution
of the trapped electron bunches and corresponding non-
linear wave perturbations were observed in the numeri-
cal simulations of a long time dynamics of beam-plasma
systems by Omura et al. (1996). It turned out that
ESW associated with EHs are rather stable, so that the
systew evolves very slowly. Probably, the most bright
phenomenon at this slow stage is coalescence and merg-
ing of the holes. The repeated EH coupling results in a
generation of isolated nonlinear wave structures similar
to those observed in space. Thus the numerical exper-
iment exhibits a formation of the moving electrostat-
ic pulses, suggesting that the corresponding generation
mechanism can be treated as one of the most probable
candidate to explain the ESW waveforms recorded by
the Geotail spacecraft.

The coupling of EHs presents a mechanism of wave
energy localization and growth of the ESW intensity.
Therefore the questions of the dynamics of interacting
EHs, as applied to the studies on ESW, take on fun-
damental significance. However, despite the repeated
observations of the EH coupling by means of numeri-
cal simulation (see e.g. Berk et al., 1970; Ghizzo et al.,
1988; Omura et al., 1996), physical reasons for the EH
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merging and character of ESW interaction are not en-
tirely clear and call for an additional analysis. Theory of
EH “collisions” is commonly restricted by estimates or
qualitative reasonings (Berk et al., 1970; Dupree, 1982).
A more extended and purposeful consideration of the
ESW interaction is described in this paper. Analyz-
ing the energy balance in a system of two interacting
EHs, we will show that the irreversibility of the ESW
interaction and inelastic nature of the EH collisions are
explained by an effective heating of EHs caused by a
violation of the adiabaticity of trapped electron motion
and phase mixing process.

2 ESW as a localized BGK perturbation

To describe the interaction between ESWs we need first
to choose an appropriate model of the wave perturbation
under study. Since weakly interacting EHs evolve slow-
ly in comparison with oscillations of trapped particles in
the electrostatic potential wells, a single ESW may be
treated as a localized stationary Bernstein-Greene-Kru-
skal (BGK) mode (Bernstein et al., 1957; Matsumoto
et al., 1994; Krasovsky et al., 1997) or, more rigorous-
ly, as a slowly varying wave structure of the BGK type
comoving with EH. Presenting a deficit of the trapped
electrons, EH has a positive effective charge, negative
mass and negative kinetic energy (Berk et al., 1970).
The charge of the hole is shielded by background plas-
ma electrons at some typical distance A dependent on
the hole velocity V5 . At small Vp the shielding length
A is close to usual Debye length, while at high Vg, as is
often the case in beam-plasma systems, A(Vp) may take
diversified values depending on the electron distribution
function in the vicinity V;. In either case the plasma re-
sponse to the perturbation of the electrostatic potential
¢ caused by EH can be described within the framework
of the linear quasistatic approximation, as we deal with
a weak wave perturbation slowly changing in the frame
of reference moving together with EH. For brevity, the
following units of measurement are in use below

tl=w,', [E=Xp, [V]=wprp=vam,
[l =no, [g]=mevd/e

for the time t, coordinate z and other spatial scales, ve-
locity V', densities n and electrostatic potential ¢, where

np is the steady-state plasma density, Ap is the Debye

length and w, is the electron plasma frequency. Then
the corresponding quasistatic perturbation of the back-
ground electron density may be found with the aid of
the simple expression ## = ¢/)\2, so that the Poisson
equation in the comoving frame takes the form

-2 o

52 M

Krasovsky, et al.: Interaction dynamics of electrostatic solitary waves

where ny is the density of the hole. Hereafter for the
sake of convenience we set ny, as well as other physi-
cal quantities relative to the hole, to be positive, tak-
ing into account the deficit of the trapped electrons in
the hole with the help of the "minus” sign before the
corresponding expressions for the distribution function,
density, energy and effective mass of the hole.

Let L be the size of EH, so that ny > 0 at |2| < L,
and ng = 0 elsewhere. Then outside of EH the solution
of (1) describes just the exponential fall of the potential
at infinity |z| — oo

¢(2) = (L) exp[(L — |2])/A] ,

In the interior of the hole |2} < L the solution depends
on its structure. A stationary BGK equilibrium exists
provided the.trapped particle distribution is a function
of their energy in the wave frame w = v2/2 — ¢(2),
ie. fu(v,2) = fu(w), satisfying the stationary Vlasov
equation

J2fn , 0800n -

44> L . )

Then the hole density is expressed by

er(2) = - (L) dwfg (w)
”()‘2/-¢<z> B+ 9]

For a given fy(w), the wave profile inside of EH may
be found by substitution of (4) in (1) and solving the
Poisson equation with the sewing together of the poten-
tial ¢ and its derivatives 8¢/8z at the EH boundaries
z = +L. Unfortunately, the choice of the trapped elec-
tron distribution is not unique, and one is thus forced
to use one or another of artificial models for practical
calculations. Since EH features a lack of the trapped
electrons near the bottom of the potential trough (ie.
in the vicinity of the electrostatic potential maximum),
the distribution fy(w), as an additive contribution to
the total distribution function, should be taken to be
monotonically increasing. The distributions of this kind
lead to a bell-like potential profile, and the basic pa-
rameters of the BGK pulse are related by the following
expressions

(4)

¢ ~ Pmaz ~ m/\, Av ~ m1/2L1/2 s

fH ~ ml/2L_3/2 ) (5)

where Av is the EH width in velocity space and by def-
inition the EH mass equals to

m=// dzdv fg . (6)

Finally, in the rest frame this " hump” of the electrostatic
potential is moving together with EH and corresponds
to a single ESW.
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3 Analysis of ESW interaction process

Consider an elementary event of interaction of two iden-
tical EHs moving with equal or very close velocities. Let
the holes be originally spaced far apart, so that their
interaction is weak owing to the shielding by plasma.
Nevertheless they attract each other at any finite dis-
tance between them due to mutual disturbance of the
self-consistent electrostatic potentials, as may be read-
ily shown with the aid of the Vlasov-Poisson system of
equations (see also a qualitative explanation given by
Berk et al., 1970). Hence, the holes are gradually ac-
celerated towards each other. However at the initial
stage of the interaction, their positions, velocities and
phase space structures are changing slowly in compar-
ison with the oscillations of the trapped electrons in
the self-consistent potential wells, as is also observed
in the numerical experiments. This suggests the adia-
batic approximation for a description of the motion of
the trapped electrons comprising the holes and, there-
by, an analytical consideration of the weak EH interac-
tion. The corresponding technique has been developed
recently for small EHs L <« A on the basis of a consis-
tent perturbation theory relative to the small parameter
€ = L/\ <« 1, where the problem can be solved quite
rigorously (Krasovsky et al., 1999). However, even in a
more general case € < 1 the physical fundamentals of the
EH interaction can be understood by means of a sim-
ple analysis of the energy conservation law. For brevity,
below we will restrict ourselves by the discussion of the
energy balance in the system of two interacting holes
with an emphasis on the qualitative aspects of their dy-
namics.

The EH dynamics may be conveniently considered in
the frame of reference comoving with their common cen-
ter of mass. Owing to the symmetry of the problem
on the interaction of the identical holes, the spatial de-
pendencies of all physical quantities represent even or
odd functions relative to the center of mass of the sys-
tem 2 = 0. In particular, the electrostatic potential
#(—2,t) = ¢(2,t) is an even function of the coordinate
with zero derivative 9¢/0z = 0 at z = 0. Therefore, it
will suffice to study the behavior of the system in one of
the half-spaces, for example, in the right of them z > 0.

To derive the energy balance equation for the Vlasov
fluid with the interacting EHs, the linear quasistatic ap-
proximation for the background electrons may be em-
ployed similarly to the previous section. Then the en-
ergy conservation law takes the form with the accepted
accuracy

/ " 4z ((08/02)% + (/N)?) — mV2—

// dzdv fy (v—V)? =inv. "N

where the first integral is the potential energy of the sys-
tem W, representing the sum of the electrostatic ener-
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gy (the first term in square brackets) and perturbation
of the background electron kinetic energy (the second
term). The second contribution is the mechanical ener-
gy of the hole Wy, = mV2 > 0 caused by its motion as
a whole with the velocity V, of its own center of mass
Z.. Finally, the last term is determined by the structure
of the hole and corresponds to the internal hole energy
W, associated with its finite sizes in phase space. For
widely separated holes Z; > A, a comparison estimate
of the contributions to (7) can be done with the help of
the relations (5)
Wy ~Wo=m?Xx , Wi~m?L . (8)
The kinetic energy is considerably less than the poten-
tial energy Wi <« W, at the initial stage of the interac-
tion due to the small relative velocity of the holes. To
a first approximation, the internal energy is negligible
in accordance with (8), provided the EH size is small as
compared to the shielding scale ¢ = L/A < 1. Then the
dynamics of the system represents just usual oscillations
of the two holes relative to their common center of mass
owing to their mutual attraction and acceleration. Ac-
celerating towards each other, the holes acquire kinetic
energy Wy. The gain of the energy reaches the maxi-
mum Wi ~ Wy when the holes meet with one another
at the point of the common center of mass. The relative
velocity becomes of the order of V, ~m1/2AY/2 je. far
above the size of the hole in velocity space Av, as is
seen from (5). As a consequence, the small holes can-
not merge at their first intercrossing. However, a more
careful analysis allowing for the higher order terms in €
shows that the hole internal energy W; grows on the av-
erage with every their passage through one another, so
that an effective ”friction” arises in the system, and the
oscillations of the holes relative to the center of mass of
the system become damping. The oscillating holes are
gradually coming closer and closer together, and such a
behavior serves as a precursor of the subsequent merg-
ing. It should also be emphasized that the potential
energy of the system W, increases with the growth of
Wy due to the negativeness of the hole energy [see (7)].
In other words, the convergence of the holes is accom-
panied by the increase of the electrostatic energy of the
order of AW, ~ W, and their merging must lead to
some increment in W, as well.

Now let us consider the nature of the internal ener-
gy variations in the interaction process. The internal
dynamics of a phase space "drop” of Vlasov fluid may
be conveniently traced in the accompanying frame of
reference comoving with its own center of mass Z.(t):
£ = z—Z,t), u = v — V(). In this frame, the
trapped electrons of the hole are oscillating in the ef-
fective potential well ¢(§,t) representing the sum of
the electrostatic potential and potential of the inertia
force. To determine the time variation of W;, we need to
find the trapped particle distribution function fy (£,u,1)
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through the Vlasov equation. Provided the time de-
pendence of the effective potential is weak, the kinetic
equation can be solved in the adiabatic approximation,
where the distribution function is expressed in terms of
the adiabatic invariant of the trapped particle motion

fH=fH(J) y J=f d{u({,w,t) ) (9)
where
u=+/2(w+p)

This expression simplifies the search for the self-consis-
tent solution of the Vlasov-Poisson system of equations
and, thereby, allows one to describe analytically the ini-
tial adiabatic stage of the EH acceleration. Omitting the
corresponding mathematical treatment, here we note
the characteristic features of the adiabatic stage. Ex-
cept for small corrections to (9), a reversible (adiabatic)
variation of the hole internal energy W; occurs at the
initial stage of the interaction. Keeping watch on the
time evolution of the hole structure in the phase space,
one could see that the level curves of the distribution
function hold their oval form and coincide approximate-
ly with the phase space trajectories of the trapped elec-
trons much as they do in the case of BGK equilibria.
The difference from exact stationary BGK equilibrium
is that the trapped particle distribution function of EH
depends, even though weakly, on time fy ~ fy(w,t),
and the correction to this distribution f(w,&,t) depen-
dent on £ is nonzero, even if small.

As the holes are accelerating and coming closer to-
gether, the effective potential is varying more and more
rapidly, and the adiabaticity of the trapped electron os-
cillations in the effective potential well is violated more
and more perceptibly. The deviation from adiabaticity
peaks during the “collision” of the holes in the vicini-
ty of their common center of mass z = 0, i.e. at their
spatial overlapping, when |Z.| < L. The corresponding
disturbance of the hole distribution fy manifests itself
in essential deviation of the distribution function level
curves from the phase space trajectories of the trapped
electrons. Such a distribution cannot be steady-state,
and the trapped particle oscillations are reflected in ro-
tation of the phase space volume mapping the hole.
Furthermore, the frequency of the oscillations depends
on the electron energy level w, so that individual ele-
ments of the hole phase volume are rotating with dif-
ferent angular velocities. As a consequence, the oscil-
latory motion of the trapped electrons is smoothing off
the distribution function along their phase trajectories
(see e.g. O’Neil, 1965). This is well-known phase mix-
ing of trapped particles, in the process of which the dis-
tribution function level curves tip over and curl to an
elongating spiral in the phase space. Simultaneously,
the originally oval shape of the hole evolves into a phase
space vortex. Therefore, the competition of disturbance
of the EH distribution function and the phase mixing
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process leads to practically irreversible modifications of
the hole structure and growth of the hole internal ener-
gy W; or, in other words, to an effective heating of the
hole. This peculiar irreversibility is close in nature to
the dynamical chaos arising in Hamilton systems (see
e.g. Zaslavsky and Sagdeev, 1988), as the input Vlasov-
Poisson equations do not contain any really dissipative
terms.

Turning back to the energy balance equation (7), we
note that at ¢ <« 1 the system of two interacting holes
resembles a simple vibrating system with weak damping,
while at € < 1 it is analogous to a system with strong
damping. Mathematically, the problem on the interac-
tion of pointlike holes € — 0 is quite simple, though it
is of little interest from physical point, of view. At finite
but small € <« 1, the problem can be solved on the basis
of a perturbation theory (Krasovsky et al., 1999). Fi-
nally, in the absence of small parameters an analytical
consideration is extremely complicated. Nevertheless,
the above mentioned physical mechanisms underlying
the EH interaction and coupling refer equally to small
€ as well as to large € ~ 1. In the latter case the losses
of the vibratory energy due to the irreversible growth of
the hole internal energy become so high that the holes
can coalesce and merge immediately in the course of
their first "collision”. The merging can be treated as
a collectivization of the trapped electrons accompanied
by their phase mixing. In order for this to happen, an
electron must have time to execute one or several oscilla-
tions in the potential well during the spatial overlapping
of the holes. By this is meant that the relative velocity
of the holes must not exceed the oscillatory velocity of
the trapped electrons, i.e. the typical size of the holes
in the velocity space. The merging represents an essen-
tially irreversible (nonadiabatic) process.

4 Discussion and conclusions

We have considered interaction of two isolated ESWs
within the framework of the quasistatic description of
plasma response to the slowly varying phase density
EHs. In this section, we briefly review the mechanism
of the ESW interaction, as applied to interpretation of
the results of numerical studies on ESW generation.

In numerical simulations, as mentioned above, a pe-
riodic sequence of EHs arises at the saturation stage of
a stream-driven instability. In that case the EH inter-
action may take a character of a slower secondary in-
stability. Physical mechanism and consequences of the
instability may be easily understood on the basis of the
foregoing semiqualitative analysis. Since the holes at-
tract each other, and the attractive force depends on
the distance between them, a small displacement of the
holes from their equilibrium positions would suffice to
move the system off balance. As a result, oscillations
of the holes relative to their equilibrium positions must
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arise. These oscillations must be damping owing to the
irreversible losses of the vibratory energy of the system.
Oscillating, the holes tend to unite by pairs into binary
vibrating systems. The further time evolution of a pair
of holes may considered analogously to the above analy-
sis of the two hole system, as the influence of neighbour-
ing pairs should be suppressed markedly by the back-
ground plasma shielding. Hence the physical mechanism
of the instability and prerequisites for the subsequent
ESW coupling become clear. Upon the ESW merging
by pairs, this process can be multiply reproduced.

In summary we conclude that the violation of the
adiabaticity of the trapped particle motion and phase
mixing process lead to an effective heating of EHs and
corresponding energy losses in the system of interacting
ESW. This entails an irreversible in character and typ-
ical for dissipative systems behavior of the macroscopic
quantities describing the system. Such a dynamical ir-
reversibility is an intrinsic property of the physical sys-
tem under study and explains the general tendeuncy to
the EH coupling. The ”collisions” of the phase density
holes are always ”inelastic”, and the merging of the elec-
trostatic solitary waves is natural and regular outcome
of their interaction.

Acknowledgements. This work was initiated during the stay of
one of the authors (V. L. K.) at Radio Atmospheric Scieuce Cen-
ter, Kyoto University. He would like to thank Kyoto University

for hospitality and the Ministry of Education, Science, Sports and
Culture of Japan for financial support.

References

Berk, H. L. and Roberts, K. V., Water Bag Model, in Methods in
Computational Physics, edited by B. Adler, S. Fernbach and
M. Rotenberg, Academic Press, New York and London, Vol. 9,
p- 87, 1970.

Berk, H. L., Nielsen C. N. and Roberts K. V., Phase space hydro-
dynamics of equivalent nonlinear systems: experimental and
computational observations, Phys. Fluids, 13, 980-995, 1970.

209

Bernstein, I. B., Greene, J. M. and Kruskal, M. D., Exact nonlin-
ear plasma oscillations, Phys. Rev., 108, 546-550, 1957.

Dupree, T. H., Theory of phase-space density holes, Phys. Fluids,
25, 277-289, 1982.

Ghizzo, A., Iznar, B., Bertrand, P., Fijalkov, F., Feix, M. R.
and Shoucri, M., Stability of Bernstein-Greene-Kruskal plas-
ma equilibria. Numerical experiments over a long time, Phys.
Fluids, 31, 72-82, 1988.

Grabbe, C. L. and Eastman, T. E., Generation of broadband elec-
trostatic noise by ion beam instabilities in the magnetotail, J.
Geophys. Res., 89, 3865-3872, 1984.

Gurnett, D. L., Frank, L. A. and Lepping, R., Plasma waves in
the distant magnetotail, J. Geophys. Res., 81, G059-6071, 1976.

Kojima, H., Matsumoto, H., Miyatake, T., Nagano, L., Fujita, A.,
Frank, L. A., Mukai, T., Paterson, W. R., Saito, Y., Machida,
S. and Anderson, R. R., Relation between electrostatic solitary
waves and hot plasina flow in the plasma sheet boundary layer:
GEOTAIL ohservations, Geophys. Res. Lett.,, 21, 2919-2922,
1994.

Krasovsky, V. L., Matsumoto, H. and Omura, Y., Bernstein-
Greene-Kruskal analysis of electrostatic solitary waves observed
with Geotail, J. Geophys. Res., 102, 22,131-22,139, 1997.

Krasovsky, V.-L., Matsumote, H. and Omura, Y., Iuteraction of
small phase density holes, Physica Scripta, in press, 1999.

Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada,
M., Nagano, [. and Tsutsui, M., Electrostatic Solitary Waves
(ESW) in the magnetotail: BEN wave forms observed by GEO-
TAIL, Geophys. Res. Lett., 21, 2915-2918, 1994.

Omura, Y., Kojina, H. and Matsumoto, H., Computer simula-
tions of electrostatic solitary waves in the magnetotail: A non-
linear model of broadband electrostatic noise, Geophys. Res.
Lett., 21, 2923-2926, 1994.

Omura, Y., Matsumoto, H., Miyake, T. and Kojima, H., Elec-
tron beam instabilities as generation mechanism of electrostat-
ic solitary waves in the magnetotail, J. Geophys. Res., 101,
2685-2697, 1996.

O’Neil, T. M., Collisionless damping of nonlinear plasma oscilla-
tions, Phys. Fluids, 8, 2255-2262, 1965.

Oupsager, T. G., Thomsen, M. F., Elphic, R. C., Gosling, J. T,
Anderson, R. R. and Kettmann, G., Electron generation of elec-
trostatic waves in the plasma sheet boundary layer, J. Geophys.
Res., 98, 15,509-15,518, 1993.

Zaslavsky, G. M. and Sagdeev, R. Z., Introduction to Nonlinear
Physics, Nauka, Moscow, 1988.




