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Abstract. The present work examines the effects aris-
ing from the nonlinear Landau damping and the bounced
motion of protons (trapped in the mirror geometry of
the geomagnetic field) in the formation of nonlinear
Alfvénic structures. These structures are observed at
distances 1-5AU in the solar wind plasma (with 8 ~ 1).
The dynamics of formation of these structures can be
understood using kinetic nonlinear Schrodinger (KNLS)
model. The structures emerge due to balance of nonlin-
ear steepening (of large amplitude Alfvén waves) by the
linear Landau damping of ion-acoustic modes in a finite
B solar wind plasma. The ion-acoustic mode is driven
nonlinearly by the large amplitude Alfvén waves. At
the large amplitudes of Alfvén wave, the effects due to
nonlinear Landau damping become important. These
nonlinear effects are incorporated into the KNLS model
by modifying the heat flux dissipation coefficient par-
allel to the ambient magnetic field. The effects aris-
ing from the bounced motion (of mirroring protons) are
studied using a one-dimensional Vlasov equation. The
bounced motion of the protons can lead to growth of
the ion-acoustic mode, propagating in the mirror geom-
etry of the geomagnetic field. The significance of these
studies in the formation of dissipative quasistationary
structures observed in solar wind plasma is discussed.

1 Introduction

The spacecraft observations on the Alfvénic fluctuations
(level % ~ 1) observed in the solar wind plasma re-
veal that these fluctuations are magnetohydrodynamic
(MHD) waves with frequency in the range 3 x 10~* Hz
to 3 x 10~2 Hz (Belcher and Davis, 1971). Here, Alfvén
waves refer to shear Alfvén waves and fast magnetosonic
modes. The observed signals are believed to be a re-
sult of the nonlinear evolution of MHD waves that are
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excited in the solar wind plasma at distances 1-5AU
(1AU=1.5"x 108km). Nonlinear evolution can lead to
formation of dissipative wave forms, such as S-type and
arc- polarized Alfvénic structures with a small compres-
sional component (Tsurutani et al., 1994).

The Alfvénic fluctuations deposit a large amount of
momentum and energy into the Earth’s magnetosphere
and excite geomagnetic activity observed during mag-
netospheric substorms (Tsurutani et al., 1987). Better
understanding of the nature of the magnetic fluctua-
tions is crucial to understand the nature of modes of en-
ergy propagation within solar wind plasma. The forms
of energy modes determine the interaction of the solar
wind with the geomagnetic field. The mechanism of
formation of the nonlinear and gquasistationary Alfvénic
structures (that are sporadically interdispersed over the
Alfvénic fluctuations) can be studied using kinetic non-
linear Schrodinger (KNLS) model (Medvedev and Di-
amond, 1996; Medvedev et al., 1997a;b; Vasquez and
Hollweg, 1996). It is believed that these structures
emerge when the nonlinear steepening of the large am-
plitude Alfvén wave is balanced by linear Landau damp-
ing of the ion-acoustic waves.

The above nonlinear steepening of the Alfvén waves
takes place when the ponderomotive force (of the Alfvén
waves) squeezes plasma out of the regions of large am-
plitude Alfvén modes. This results in a decrease in the
plasma density and an increase in the local Alfvénic
velocity. The amplitude-dependent velocity can lead
to nonlinear steepening of the wave (Hasegawa, 1975;
Medvedev and Diamond, 1996; Medvedev et al., 1997a;b).
The KNLS equation describes the nonlinear dynamics of
an envelope of Alfvén waves excited in a finite 8 plasma
(Mj¢lhus and Wyller, 1988; Rogister, 1971; Spangler,
1989; 1990). The S-type and arc-polarized phase pro-
files (of the dissipative structures) are obtained when
the KNLS equation is solved with different initial condi-
tions, e.g. sense of polarizations and the angles of propa-
gation of Alfvén waves (Galinsky et al., 1997; Medvedev
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et al., 1997b; Tsurutani et al., 1994; Vasquez and Holl-
weg, 1996).

Alfvén waves are transverse in nature. They do not
Landau damp by resonant wave-particle interactions.
However, their energy is dissipated in a finite 8(~ 1)
solar wind plasma, when the ion-acoustic mode (driven
nonlinearly by the ponderomotive forces that are ex-
erted by the Alfvénic turbulence) damps by resonant
linear Landau damping (Hollweg, 1971; Mj¢lhus and
Wyller, 1988; Spangler, 1989; 1990). The KNLS is an
integral equation and describes wave dynamics, which
is not solely determined by the local spatial derivatives
of the perturbed field. It has a dissipative nonlinear-
ity which is temporally non-local in nature. The non-
locality arises due to the finite ion transit time through
the wave envelope. Thus the nature of dissipation is lin-
ear, but the ion-acoustic mode (which sinks energy from
the Alfvén waves) is driven nonlinearly by ponderomo-
tive forces of the Alfvén waves. It is for this reason
that the damping is sometimes referred to as nonlinear
damping.

A fully kinetic treatment to study propagation of non-
linear low frequency waves in a high @ plasma was un-
dertaken by Rogister (1971). For parallel propagation
his results coincide with equations obtained by Mj¢lhus
and Wyller (1988) and Spangler (1989;1990). Mj¢lhus
and Wyller used the guiding center approach to calcu-
late anisotropic pressure and included it in the two fluid
model. Spangler used Vlasov equation to compute the
second order perturbed distribution function which is
inserted in the fluid model. Both models involve a non-
local integral and the coefficients of the integral term
coincide with those of Rogister. In the KNLS equation
the fluid model describes the nonlinear steepening, while
the kinetic model describes the linear Landau damping.

As the amplitude of the wave is increased, the par-
ticles can get trapped and execute periodic motion in
the potential trough of the wave. The energy exchange
between the wave and the oscillating particles results in
nonlinear oscillation of the damping constant. Thus the
trapped particles can sustain the wave amplitude which
would otherwise decay exponentially due to linear Lan-
dau damping effects (Isichenko, 1997; Manfredi, 1997;
Wharton et al., 1968). The oscillating particles can in-
teract by phase mixing effects and modify the particle
distribution function. As a result, the approximation of
linear Landau damping breaks down and effects due to
nonlinear damping should be considered.

In the past, the role of nonlinear Landau damping
has been studied by incorporating the trapped particle
fraction directly into the KNLS model (Medvedev et al.,
1998). This approach is consistent with the approxima-
tions underlying the KNLS equation at asymptotically
large times. However, an alternative approach (with
better physical justification) is to study the effects of
nonlinear Landau damping by including the nonlinear
damping rate directly into the KNLS model and not

by including the trapped particle fraction. The present
work is a step towards developing this approach.

The particles trapped in the potential trough of the
wave will reduce the number of carriers available for heat
conduction and thus modify the heat flux coefficient par-
allel to the ambient magnetic field (Lee and Diamond,
1986). This supports the view that the nonlinear damp-
ing effects should be incorporated into the KNLS model
through the parallel heat flux coefficient and not by in-
cluding the trapped particle fraction (Lee and Diamond,
1986; Hammett and Perkins, 1990). The heat flux co-
efficient appears in the KNLS formalism through the
coefficients m; and m,. These coefficients describe the
nonlinear steepening and the damping effects, respec-
tively. The modified coefficients (including nonlinear
damping effects) will redefine the balance of nonlinear
steepening and damping effects which is crucial to the
formation of quasistationary structures.

The limitations of our approach are: (1) it does not
derive KNLS equation to include full nonlinear wave-
particle interactions; (2) it is based on the expressions
for nonlinear damping rate, which are good only to a
leading order in the parameter 1’_'—‘ Here, 7 is period
of the oscillating particle in the potential trough of the
wave and 71 is the inverse of linear Landau damping rate
(v ). Our approach modifies the KNLS equation by
incorporating the nonlinear damping rate into the par-
allel heat flux coefficient occuring in the coefficients m;
and m; (of the KNLS equation). This approach is sim-
ple and describes the evolution of the nonlinear struc-
tures at all times, in contrast to earlier studies which de-
scribe the evolution at asymptotically large times only
(Medvedev et al., 1998). Therefore, these studies hold
the potential to provide new insights into the mecha-
nism of formation of nonlinear structures observed in
solar wind plasma.

The current studies on the interaction of ion-acoustic
mode with protons assume that the ambient magnetic
field (parallel to the direction of propagation of the mode)
is a straight line. It has been shown that the ion-acoustic
mode can grow (instead of Landau damp) in the pres-
ence of a beam of mirroring protons in the geomagnetic
field. These effects play an important role when the
bounce frequency (wpr) of a mirroring particle is com-
parable to the frequency of the ion-acoustic mode at
distances of ~ 1 AU (Hasegawa, 1975; Nishihara et al.,
1969). These studies have ramification for improving
current understanding of the role of wave-particle inter-
actions in the formation of quasistationary structures
observed in solar wind plasma.

The present work will provide analytical formalism to
modify the KNLS equation to study the effects arising
from the nonlinear Landau damping (at 1-5 AU) as well
as those from the mirror geometry (of the geomagnetic
field) in the formation of dissipative structures at 1 AU.
Detailed numerical studies examining the role of these
effects on the formation of Alfvénic structures will be re-
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ported separately. In section 2 of this paper, the KNLS
equation will be discussed briefly. The KNLS model will
be modified to incorporate effects arising from nonlinear
Landau damping. In section 3, the role of mirror geom-
etry on the linear Landau damping of the ion-acoustic
mode will be investigated. The summary remarks and
conclusions will be given in section 4 of the paper.

2 Theoretical framework

The mechanism of formation of the dissipative wave
forms observed in the solar wind plasma can be under-
stood using the KNLS equation:
9 Va0 V2 8%

E—F 2 32 (UN )+l—2‘-n—a— 0. (1)

The equation describes the nonlinear evolution of an en-
velope of Alfvén waves excited in the solar wind plasma.
Here, b = L;—'J is the wave magnetic field, V4 and Q;
are the Alfvén speed and proton 1on-cyclotron frequency,
respectively. The quantity ¢, = (& 57 )t represents slow
envelope evolution time. Upnyg is a nonlinear velocity

perturbation operator and is given as:
Unp = (m1 =+ mzH)'blz. (2)
1 f* P
H{F(z)] = ——/ F(z 3
FE) = [ o B ). 3)

Here, H is a non-local Hilbert operator which describes
the effects arising from the finite transit time of ions in

the envelope modulation of Alfvén waves. The coefli-

cients m; and my are given as follows:
1-4)+xj,1-&

=B 08 "
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2

Here, 8~ = (%), B = 5:?—, and v= 3

The coefficient m; characterizes the wave steepening
due to nonlinear effects and m, specifies the linear Lan-
dau damping due to the resonant particles. These coef-
ficients depend strongly on the plasma 3 value and the
electron-ion temperature ratio. The constant x,; is a
heat flux coefficient. The coefficient models dissipation

in the fluid along the direction of the ambient magnetic
field.

X/ = ffr)”z( *)ex (T"z;'_Te) (7)

The KNLS is a nonlocal, integro-differential equation
with no exact analytical solution. Unlike the case of hy-
drodynamic turbulence (where dissipation sinks energy

from small scales) the above Uy, operator results in a
scale independent (damping acting on all scales) dissipa-
tion. As a result, the balance of nonlinear steepening by
Landau damping does not lead to formation of shocks,
but dissipative structures of S-type and arc-polarized
wave forms. The scale-independent damping can result
in a turbulent power spectrum with no inertial range.

The nonlinear evolution of Alfvénic fluctuations can
lead to the formation of rotational discontinuities (RDs).
In a RD, the phase jumps rapidly, while its amplitude
is roughly constant. The S-type and arc-polarized RDs
result from the nonlinear evolution of quasi-parallel lin-
early polarized Alfvén waves. The circularly polarized
waves do not generate RDs.

2.1 Kinetic effects due to nonlinear particle trapping

The large amplitude Alfvén waves (with linear polariza-
tion) can drive density perturbations due to a gradient
in the magnetic pressure (that results in ponderomotive
forces). For plasma with 8 ~ 1, a resonance with ion-
acoustic mode exists and these perturbations can be-
come very large (Hollweg, 1971). As a result, the linear
Landau damping of the ion-acoustic mode results in the
damping of the Alfvén waves. As the amplitude of the
Alfvén wave increases, the particles can get trapped in
the wave potential (large amplitude) of the ion-acoustic
mode. This modifies the ambient particle distribution
function. As a result, the approximation of linear Lan-
dau damping breaks down. In the present paper, the
coefficient x;; (Eq. 7) will be modified to include ef-
fects arising from the nonlinear Landau damping. In
the next subsection, we will briefly discuss the particle
trapping effects due to a large amplitude ion-acoustic
mode which is excited nonlinearly by Alfvén wave.

2.2 Nonlinear Landau damping of the electrostatic wave

We consider a sinusoidal representation for the
ion-acoustic mode ¢(z,t) that is excited nonlinearly by
the Alfvénic fluctuations in the solar wind.

&(z,t) = docos(kz — wt). (8)
Here, ¢¢ is a constant. Using Galilean transformation:

w
Z=z——1 9
2 k ? ( )

where (z,t) specify co-ordinates in the laboratory frame
and (Z,t) denote co-ordinates in the frame co-moving
with the wave. In the moving frame the wave potential
is given by

d(Z,t) = ¢ocos(kZ). (10)

The velocity of the particle in the wave frame is given
by

-z (11)
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The total energy of the particle in the wave frame is
given by:

1 .
W= g™ 2 + egpocos(kZ). (12)

The particle moves along the trajectory defined by
W=constant. The particles with negative value of W are
trapped while those with positive W are untrapped by
the wave potential. The trapped particles bounce back
and forth in the potential trough and execute oscillatory
motion. For kZ much less than one, the simple harmonic
motion of the trapped species (in the moving frame) is
described by

mZ = —edok’Z. (13)

The frequency of oscillation w; of the trapped particle
is given as:

e¢0k2

2
W) =
b m

(14)
Clearly, the bounce frequency of an oscillating particle
trapped near the bottom of the potential trough (of the
wave) increases with an increase in the wave amplitude.
At small wave amplitudes, wp is much less than ;. In
this case the linear Landau damping treatment holds
good. On the other hand, at large wave amplitudes, wy
is much larger than +;, the particle will have completed
many cycles of their bounce motion before the wave be-
gins to decay. The phase mixing interactions between
the trapped particles can modify the particle distribu-
tion function. As a result the approximation of linear
Landau damping breaks down. In the next subsection,
we will modify the KNLS equation to include the effects
arising from the nonlinear Landau damping of the ion-
acoustic mode (Alfvén waves).

2.3 Modification of the KNLS equation to include non-
linear Landau damping effects

In this subsection, we will modify the coefficient x;, to
incorporate the effects arising from nonlinear Landau
damping. The nonlinear damping effects play an im-
portant role, when the parameter :_: is much less than
one (Lee and Diamond, 1986; Medvedev and Diamond,
1996; Medvedev et al., 1997a). In the presence of non-

linear damping the coefficient x;, is redefined as:
Ynil

X/ =X/ (15)
m

Here, 47 and v,; are damping rates due to the linear and
nonlinear Landau damping effects, respectively. The
damping rate -y,; consists of two terms:

Yol = Yuntr + Ytr- (16)

Here, «Yynir is the damping rate due to the untrapped
species and 7,, is that due to the trapped particles, re-
spectively. O’Neil (1965) has calculated the nonlinear

damping rates using the wave amplitudes that are per-
turbed by the modified particle distribution function
(resulting from nonlinear damping). These damping
rates are given as follows (O’Neil, 1965; Sagdeev and
Galeev, 1969):

2 oim( Ent
2nx?sin( IRz

FF(1+ ) (1+4

o 04
Yuntr — 71222807/‘1"' —2n)' (17)

=y on=% 64 (2n + 1)w2nsin[%)ﬂ]
Yeir = N&p—o T K F2(1 + q2n+1)(1 3 q—Zn—l) '(18

Here, ¢ = ea:p(%); F' = F[(1 — &*)Y/?,7/2], and
F(k) = le d¢(1 — x?sin?¢)~1/2. This is a complete
elliptic integral of the first kind. The quantity { = sz
and T is period of oscillation of a proton in the trough
of the wave. The variable « is given by

K2 = |2€¢0|
W+ legol (19)

The ratio « depends on the wave potential and the total
energy W of the trapped particles.

The modified x;, (Eq. 15) is inserted in Eqs. (4-6)
that define the coefficients m; and m;. The resulting
modified KNLS equation can be used to study the non-
linear evolution of Alfvénic structures in the presence
of nonlinear Landau damping effects. The expressions
(17-18) assume that ¢o is independent of time. These
expressions are valid to a leading order in the expan-
sion parameter :_1 Corrections to these expressions have
been computed by Bailey and Denavit (1970) who take
into account the influence of time variation in ¢¢ on the
particle orbit.

We note that the nonlinear damping rate (yni) oscil-
lates with time and the time-dependent behaviour re-
sembles that of a damped oscillation, asymptotically
approaching v;=0. The time-dependent damping coeffi-
cient results in a time varying heat flux coefficient x/,.
We define an average coefficient by

.
<x/ >= M. (20)
We emphasize again that our approach is simple and
enables us to follow the evolution of nonlinear structures
at all times, while the earlier approach by Medvedev et
al. (1998) applies only in the limit of asymptotically
large times.

We note that the relations (15-20) are valid for a si-
nusoidal wave form given in Eq. (8). The generalization
to more than one wave has been discussed in the liter-
ature (Sagdeev and Galeev, 1969). In the presence of a
spectrum of waves we define the phase mixing time t;,:

27
tpm = m (21)
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Here, A represents the characteristic spread in the wave
spectrum. We list the solar wind parameters at 1 AU as
follows (Hundhausen, 1995): T, =12eV; T; =10eV; p;
=100km; C; =60 kms™!; V5 =40kms~!; By =Tv; wei =
1s~1. Here, v=10"3Gauss.

We calculate T with wave electric field of 10 mV/m
or higher as observed at 1 AU (Hasegawa, 1975). Us-
ing the above parameters, we compare the phase mixing
time t,,, with the particle trapping time 7. At wave-
particle resonance, the effects due to trapped particles
will dominate over the phase mixing time. At smaller
amplitudes, the effects due to phase mixing can domi-
nate,.

The KNLS equation with modified coefficients m; and
mg can be studied numerically to examine the role of
nonlinear Landau damping in the formation of dissipa-
tive structures. The detailed numerical studies will be
reported in a separate publication.

3 Role of mirror geometry in the linear Landau
damping of ion-acoustic mode

The studies on linear Landau damping of the ion-acoustic
mode (excited nonlinearly by the Alfvénic fluctuations)
are based on the assumption that the magnetic field
(parallel to the direction of propagation of ion-acoustic
mode) is a straight line. This assumption breaks down
in the mirror geometry of the geomagnetic field, when
the frequency of the wave is comparable to the bounce
frequency of protons. For mirroring protons with veloc-
ity »o and mirroring distance z; , the bounce frequency
Wpm IS given as wpy, ~ J— In the magnetosphere near
1 AU, the wavelength of ‘the mode is assumed to be of
the order of the scale length of the mirror. Based on the
mirror size of —33, the wave period of the ion-acoustic
mode is estimated (using the parameters listed in sec.
2.3). The wave period is found to be comparable to the
bounce period (~ 100s ) of a few keV protons (Nishihara
et al., 1969; Prakash, 1989). As a result, at 1 AU the ef-
fects due to the mirror geometry should be examined in
the nonlinear evolution of the Alfvénic structure.in the
solar wind plasma. This section of the paper pertains
to these studies.

Under the paraxial approximation of the geomagnetic
field is given as (Hasegawa, 1975; Nishihara et al., 1969):

Bo(z) = Bo(1 + b2?%). (22)

The unperturbed trajectory of a proton (in the absence
of the ion-acoustic mode) in this field is given as:
., 3Bo(z)

z = —R—a;—,——-. (23)

The equation can be integrated immediately to yield:

1

z = zosin(wbmt' + ). (24)

v = zowbmcoa(wbtl + ). (25)

Here, the bounce frequency is given by:

1/2
Wym = (2“:"30) . (26)
mv?
27
230(2) ( )
The energy of the particle is given as:
m
w= 7(1}?/ +%). (28)

The protons executing bounce motion can interact with
the electric field of the ion-acoustic mode and modify
its Landau damping rate. Because of the inhomogeneity
along the 2z direction the electric field of the ion-acoustic
mode is assumed of the following form:

E(z,t) = e"”‘E;f__ooEne‘"k‘e,. (29)
Here E, is given as:
1 L .
—E/ E(2)evt—nkz gy, (30)
-L

where k = 7. L may be taken to be the distance z

at which most of the beam particles are reflected. The
perturbed distribution function of protons in the pres-
ence of the ion-acoustic mode is given by linearized one-
dimensional Vlasov equation (Hasegawa, 1975):

8f 8f 3f 1 8fo

— =_fp2% (3
T to 2+ 2(v x Bo): ~Ep (1)
The perturbed distribution function f; can be obtained
by integrating the right hand side along the unperturbed
trajectory.
: 8 t ' ' !

fulv, z)e=iet = —ea—{;) /_ A B e (@)
The unperturbed distribution function for proton beam
is assumed to be:

fo(w, 1) = 6(w — wo)8(p — po)(wo — moBo) /2. (33)

The perturbed distribution function (Eq. 32) is ob-
tained after integrating over the unperturbed particle
trajectories as given by Eqgs. (24;25). The perturbed
distribution function is inserted into the Poisson’s equa-
tion (Nishihara et al., 1969):

v.-E=2, (34)
€0

The resulting equation is simplified to obtain dielectric
function (Nishihara et al., 1969):

12 wboa

€= 2, 1 (w w20) . (35)
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Here wjyg is the proton bounce frequency at z=0 and «
is given by

2
1 v//0

Here, a depends on the ratio of parallel to perpendic-
ular energy of the bouncing proton at g=0. The total
dielectric function of the perturbed bounced motion of
the protons in the ambient plasma is given as:

€E=¢€+e€. (37)

Here €, 1s given by

2 2 2
w w?. T wi W
— pe pt : 1/2_"pt
€ = — — . 38
b k22, * k292, + 1'(2) k2vZ, kvr; (38)

Using Eqgs. (35-38) we obtain the dispersion relation
of the ion-acoustic mode (w ~ wpo) in the presence of
mirroring protons in the ambient plasma (by using €=0)
as follows:

aw? Iy w2 T
- 1- 2906) o (My/2 0 (T )\ (a9
v “"’°< 207, ) e kT ) 9
where S is given by
1
S=—— . (40)
W3e w i
kzv’l"c + k2V’1?‘i

Here, wyo is the ion plasma frequency at z=0.

The interaction of the ion-acoustic mode with the
bounced motion of protons can lead to instability of the
mode. We emphasize that the ion-acoustic mode in the
mirror geometry is not Landau damped, but grows. The
growth instead of Landau damping of the ion-acoustic
mode (in the mirror geometry) can modify the dissi-
pation characteristics of Alfvén waves observed in solar
wind plasma. These effects can play a significant role
in modifying the nonlinear evolution of the dissipative
structures observed in solar wind plasma at distance of
1 AU. It is important to note that the conclusions of this

section are valid only to a leading order in the parameter
W
Wpm'”

4 Conclusions

Nonlinear damping processes play a key role in the for-
mation of nonlinear structures excited in the solar wind
plasma. Better understanding of these processes is cru-
cial to determine the nature of modes of energy propa-
gation within solar wind plasma. The forms of these en-
ergy modes determine the interaction of the solar wind
with the terrestrial magnetosphere. Hence, these stud-
ies are important to improve current understanding of
mechanism of the onset of magnetospheric substorms.

Based on the analytic formulation (Egs. 15-20) pre-
sented here, numerical studies will be carried out to ex-
amine the nature of discontinuous wave forms observed
in solar wind plasma. These studies will advance current
knowledge of the mechanism of formation of Alfvénic
structures in solar wind plasma. The work also pro-
vides an impetus for future analytical work to rederive
KNLS equation with full nonlinear wave-particle inter-
actions. The future work in this direction will address
these issues.

The studies on the role of mirror geometry on the
linear Landan damping of the ion-acoustic modes are
important. The growth instead of damping of the ion-
acoustic mode in the mirror geometry can have signif-
icant impact on the mechanism of formation of S-type
and arc-polarized Alfvénic structures. The important
results of the paper (Egs. (15-20); Eqgs. (39-40)) can
be used to study the role of nonlinear Landau damp-
ing and the bounced motion of protons in the formation
of S-type and arc-polarized wave forms. It is our hope
that a better understanding of these effects will improve
our capability to interpret the spacecraft observations at
distances 1-5 AU. This is the main thrust of this paper.
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