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Abstract. In this paper we establish links between tur-
bulence dissipation and wave-particle interactions in the
solar corona and wind. Based on quasilinear theory, a
set of anisotropic, multi-component fluid equations is
derived, which describe the wave-particle interactions
of ions with Alfvén waves and ion-cyclotron waves or
magnetosonic waves propagating along the mean mag-
netic field. The associated equations for the wave spec-
trum and the heating and acceleration of the ions are
derived. In-fast solar wind streams heavy ions have
about equal thermal speeds as the protons and flow
faster than them. In order to explain the observed rela-
tions, T; /T, ~ mj/mp and U; — U, = V4, a numerical
fluid-type model is developed, which takes into account
the relevant wave-particle interactions. It is shown that
left- and right-handed polarized waves propagating away
from the Sun parallel to the interplanetary magnetic
field can resonantly heat and accelerate minor ions pref-
erentially with respect to the protons in close agreement
with the measured characteristics of ion velocity distri-
butions. Finally, some results from a simple analytical
model are discussed.

1 Introduction

In high-speed solar wind in interplanetary space the
heavy ions are observed to move faster and have higher
temperatures than the protons. For reviews of these so-
lar wind phenomena see, e.g., Marsch (1991) and von
Steiger et al. (1995). The minor ion species can be con-
sidered as test particles, which probe the Alfvén waves
and MHD turbulence in the wind and are heated and
accelerated by wave-particle interactions. Similarly, the
heavy minor ions in coronal holes (Kohl et al., 1997;
Cranmer et al., 1999) are important test particles which
can supply direct information about the acceleration
process and heating mechanism in the coronal hole and
interplanetary solar wind. The observed relative abun-

dances of heavy ions, such as O%t or Fe®t, or ions of
other minor species coming in various ionization states,
range from some 10~ to even smaller numbers (Bame et
al., 1970; 1975). Therefore, these ions are not expected
to have a significant influence on the evolution of the
turbulent wave spectra and the dynamical behaviour of
the solar wind itself. Yet, the abundant ‘He?* ions can
certainly not be considered as test particles. They con-
tribute a non-negligible amount to the total solar wind
mass content and thus influence the dynamics of the
wind.

Observations of heavy ions have revealed evidence for
interplanetary heating (T; > 10 K) and preferential
acceleration with respect to the protons (Ogilvie et al.,
1980; Schmidt et al., 1980; Bochsler et al., 1985; von
Steiger et al., 1995; Hefti et al., 1999). In the data there
is a clear statistical trend (with the exception of the slow
wind) for the temperature ratios T;/T, to be propor-
tional to the heavy ion specific masses m;/m,. There is
evidence for the heavy ions to have about equal thermal
speeds. Furthermore, the differential speed, (U; — Uy),
of many minor ions with respect to He?* are highly cor-
related (Schmidt et al., 1980; von Steiger et al., 1995).
Since in fast streams Helium ions travel at about the lo-
cal Alfvén speed ahead of the protons (see, e.g., Marsch
et al., 1982b,c, and the comprehensive review on Helium
ion observations by Neugebauer, 1981), there is clear ev-
idence that all heavy ions move faster than protons in
high-speed wind with U; — U, ~ V4.

Recent spectroscopic observations of the widths of
Extreme Ultraviolet (EUV) emission lines as obtained
from measurements made on the Solar and Heliospheric
Observatory (SOHO) indicate that coronal heavy ions,
coming in various ionization stages in the corona, are
rather hot (Seely et al., 1997; Kohl et al. 1997; Wil-
helm et al., 1998), particularly in the polar coronal holes
where the electrons are cold, and seem to show some
ordering of their kinetic temperatures according to the
local gyrofrequencies (Tu et al., 1998). Also, 0%t is
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found, by means of spectroscopy, to travel much faster
than the protons in coronal holes (Cranmer et al., 1999).
All these results indicate to wave-particle processes as
being responsible for the coronal heating.

For the solar wind case, Hollweg (1974, 1978), Holl-
weg and Turner (1978), McKenzie et al. (1978), Dusen-
bery and Hollweg (1981), McKenzie and Marsch (1982),
Marsch et al. (1982a), and Isenberg and Hollweg (1983)
have calculated and modelled the Alfvén-wave related
nonresonant and the ion-cyclotron-wave associated res-
onant heating and acceleration. These calculations re-
quire the knowledge of the wave spectrum and involve
complicated integrals over the velocity distributions and
spectral densities, which were usually assumed to be
given by bi-Maxwellians and power-laws, respectively.
Isenberg and Hollweg (1982) also analysed this problem
from the multi-ion-fluid point of view. Hu et al. (1997)
generalized recently the concept of wave-action conser-
vation to a multi-fluid situation.

In this paper we establish a set of comparatively sim-
ple equations, usable in anisotropic multi-fluid equa-
tions, in order to describe the cyclotron-resonant inter-
actions of ions with Alfvén and ion-cyclotron or with
fast magnetosonic waves in the solar wind and the Sun’s
corona. These waves are assumed to be fed by a turbu-
lent cascade from MHD-range fluctuations. Many years
ago, Marsch et al. (1982a) and Isenberg and Hollweg
(1983) have already modelled alpha-particle and heavy-
ion temperatures in the near-Sun solar wind at distances
beyond 10Rg, thereby employing the quasilinear heat-
ing rates. Recently Hu et al. (1997), Li et al. (1997)
and Czechowski et al. (1998) have done new anisotropic
multi-fluid calculations, using ad-hoc mass-proportional
heating functions for the heavy ions in the corona and
wind. Our paper will provide also some numerical mod-
elling results on heavy ions in the outer corona.

2 Spectral transfer and dissipation of Alfvénic
turbulence

The radial and spectral evolution of turbulence in the
solar wind has been theoretically described by spectral
transfer equations. The first derivation was made by
Tu et al. (1984). Subsequently, various other forms of
such equations were derived, which are discussed in the
review of Tu and Marsch (1995), from which we quote
the result:

%%(A(3V+2VA)P(f,r)) - V(.%P(f,r) (1)
= —26—8f.7:(f, 7')

Here the radial solar wind speed is V and the Alfvén
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speed is V4. The wave pressure is given by the integral

fo(r)
/ dfP(f,r) @
fo

pA:§

which extends over the power spectrum P(f,r) in fre-
quency domain limited by the constant lower-bound fre-
quency, fo, and spatially varying upper-bound high fre-
quency, fp(r), which is close to the local proton gy-
rofrequency and marks the beginning of the dissipation
domain. The corresponding wave vector may be defined
by kp = 2w fp/V. The wave-energy exchange equation,
which is essentially the wave action equation (Jacques,
1978), can also be cast in the form
1d

d
V%PA =Qa+ Z%(AFA) (3)

Here F4 = (3V + 2V4)p4 is the Alfvén wave energy
flux. The volumetric heating or (cooling, depending on
its sign) rate is obtained from integration of (1) over
frequency and reads
F(fp,r) P(fp
Qa=—71"—-V+Va)—=
Here F(f,r) is the cascading flux function, for which
various forms have been proposed and discussed (for a
review see, e.g., by Tu and Marsch, 1995). It is assumed
to be zero at the lower boundary, fo. For a Kolmogorov-
type cascade in the inertial domain of the turbulence the
flux function is given by

Flfr) = L
arp(r)(V(r) + Va(r))
with a constant, Ck, being of order unity. The to-
tal mass density in the plasma is denoted by p. A
constant flux, F = ¢, with the dissipation rate £ im-
plies a Kolmogorov power-law spectrum and the scaling
P(f,r) ~ */3f-5/3  Generally, the observed spectra
cannot be decribed by a single spectral exponent, «,
but reveal a flatter low-frequency regime with a = 1, a
steeper domain with o = 5/3, which is the turbulence
regime proper, and an even steeper dissipation regime
with a = 2 — 3 (see the review of Tu and Marsch, 1995).
Therefore, for such bent spectra there will be an energy
cascade to the kinetic scales. The associated dissipation
rate may be expressed as e(r) = F(fp(r),r). It is a
function of radial distance, r, from the Sun through the
flux function and the background fluid parameters of the
wind, especially via the dissipation frequency fp(r).
Marsch et al. (1996) have studied e(r = Vt) as a func-
tion of time, ¢, along the Helios spacecraft trajectories
and found it to be highly variable with time at a scale of
1 minute (still two orders of magnitude above the pro-
ton cyclotron period). The dissipation rate (t) behaves
highly erratic in time and shows intermittency and scal-
ing properties indicating a fractal cascade. Therefore,

(r),r) dfp(r)

e dr

(4)

(P(f,m)*2f51% (5)
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the dissipation process might be discontinuous or inho-
mogeneous. How these purely phenomenological prop-
erties of solar wind MHD turbulence are related to the
kinetic properties of the ions in the wind remains an
open question. In the remainder of this paper we shall
study the dissipation process from the kinetic point of
view accounting for the multi-fluid nature of the wind,
which consists of the most abundant protons and a-
paricles and much-less abundant minor heavy ions.
The second term in equation (4) stems from inho-
mogeneity and arises because of the dependence of the
upper bound, fp(r), upon radial distance, r, from the
Sun. Therefore, an ever increasing fraction of the high-
frequency part of the Alfvén-wave spectrum is swept
off by being sent to dissipation. The sweeping process
has recently been incorporated in models of flows in
coronal funnel and hole by Tu and Marsch (1997) and
Marsch and Tu (1997) as the major source of coronal
heating. Recently, alternative and complementary sce-
narios for the dissipation of MHD turbulence involving
kinetic Alfvén waves have been suggested by Leamon et
al. (1998a,b). The following analysis can in principle be
readily expanded to include other wave modes as well.

3 Quasilinear theory of magnetic field fluctua-
tions and the dispersion relation

We reiterate here some basic equations of quasilinear
theory (QLT). Usually, the wave fields are decomposed
in plane waves with frequency wy and wave vector k,
assumed to be directed here parallel to the background
field, Bo = Boe;. The Fourier component of the mag-
netic field is 6Bg. The spectral energy density of the
magnetic field is given by By = & | 6By |* and evolves
according to

0
—a—t-Bk = 2'YkBk (6)

which follows from the Fourier decomposition
0B(z,t) = / dk&ﬁkeikme—ift) at'2u(t) (7

-0

where z is the coordinate along By, and & > 0 means
parallel and k < 0 anti-parallel propagation. The growth
rate, vk, or damping rate if it is negative, together with
the real frequency, wg, give the complex frequency, z =
Wk + Yk, whereby one has wr = —w_k, Y& = +Y—k,
and thus 2; = —z_g, and also 5I~3; = §B_y, since
the magnetic field in equation (7) must be real. The
magnetic fluctuation energy density can be normalized
to the background value such that By = '17?/&%’ with
By, = B_, by definition. It is often more adequate to use
the Doppler-shifted frequency, z;, = zx — kU;, as mea-
sured in the species j frame of reference moving with
its bulk speed Uj, drifting along Bg. ‘In this proper
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frame of species j, the velocities are obtained by replac-
ing the inertial frame coordinates as follows: V, — w,,
VioV-Ui=uw.

The full dispersion equation for parallel propagating
left (— sign) and right (+ sign) handed circularly-polar-
ized electromagnetic waves in a multi-component plasma
reads, e.g. after Dum et al. (1980), as follows:

(@) _1+Z( )251.*(2;,,1;) (8)

with the speed of light denoted by ¢. The following def-
initions hold: The ion charge is & the mass is m;, and

the plasma frequency is w2 = e "’ . The ion gyrofre-

quency, given by the deﬁmtlon carrylng the sign of the
charge, reads as follows ; = . The dielectric con-
stant involves the resonance 1ntegra.l over the pitch angle
gradient of the distribution function and reads

& = o / dwiw, / duw, w;ﬂ/z (9)
_#y 9 _ 9
X ((w” k’ 6w, aw”)f](wl’w”’t)

We introduced the quantity w;-t = fﬁ%’i, the real
part of which is the resonance speed. The distribution
function f; is understood to be normalized to the num-
ber density n;. Solving (8) for a given real k, gives
the complex frequency zp. Usually there are at least
as many modes or branches as there are species in the
plasma considered (Mann et al., 1997). Expansion of
(8) about the real axis allows one to derive the real and
imaginary parts of the frequency (for small growth/damp
ing rate) from the formulae

(kV4)? = Z P R EF (wh, k) (10)

—Z P8 (wk’k)
Z PJQ?&?,,, %é;'t(‘“k: k))

Here the fractional mass density of species j, which is
defined as p; = njm;/ Y ,nemy, has been used. The
Alfvén velocity based on the total mass density, Vi =

B2 /(4np), has been used to norma.lize properly the phase

speed, and terms of order (—) have been neglected as
being very small. The denominator of (11) is related
with the so-called wave energy related with the sloshing
motion of the particles in the wave field. The growth
rate, -y, as obtained from (11), is to be used in (6) for
the evolution of the wave spectrum.

Ve = (11)

4 Heating and acceleration rates as velocity mo-
ments

The diffusion equation of QLT describes the evolution of
the velocity distribution function f;(V) in the inertial
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frame of reference, in which the particles and waves are
propagating. The diffusion equation can be found for
example in the papers of Davidson (1972) or Marsch et
al. (1982a). We take velocity moments of % f; as given
by the cited diffusion equation. The zeroth moment
expresses the conservation of density, n;. The first mo-
ment gives the bulk acceleration, and the heating rates
are defined by the second moments:

0y [T g © o prad  UWifi
atU,_/_wd w;/kb dkB; \s{ 3 (12)

k(w” - ’w;h(k
Jn—/ dw)

avﬂ = d3w dkBi (14)
ot

3{ 9?(—;} —w) — U;)W;f; }
k(w) — wi (k)

where the pitch-angle gradient of f; (W; has the dimen-
sion of a speed) has been abbreviated as

Wifj = (-

To calculate the rates, one must know the VDF and
the spectrum. From a strict theoretical point of view,
assuming a given f; and B,:f is not a good approach
and not self-consistent, since the spectra and VDFs are
expected to evolve within a linear growth time, given
by —. Yet, this assumption has been made in most
of the applications to the solar corona and wind. By
summing up equations (12,13,14) we obtain the total
rate of change of the thermal and kinetic energy for
the particles of species j. This relation can be further
summed up over all particle species and, by using the
dispersion relation (8), further modified to obtain the
total energy conservation law within QLT for a multi-
component plasma (see Davidson, 1972). By taking the
limit (Va/c)2 — 0, the conservation law for the total
energy density, E, may be written in the form:

Z PJ (5Bi)

The summation extends over positive ks only, from the
dissipation vector kp to larger values, and may include
waves with left- and right-hand polarizations. This is
indicated by the £ summation exponent or index. The
mean thermal speed parallel and perpendicular to the
field are deﬁned by the second moments, V2 i =< w” >;

. Qz2w”W fi
dkBi {—(w” i(k)) }(13)

I
wi 8

L+ ) £y (15)

(Vi +2VA +U3) +Z = E(16)

and V7 =< %~ >;, where the brackets stand for the
full veloc1ty space integration and the index j refers to
the respective VDF. Note that &Y = 0, because the
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waves carried by the plasma cannot set the whole plasma
in motion, but only generate relative ion motion. Here
V = 32, p;U;. Remember that p; = p; /p is the frac-
tional mass density of species j. Therefore, the accel-
eration in (12) is the differential ion acceleration with
respect to the ion center of mass frame defined by V.

The rates are mathematically entirely equivalent to
the ones based on the dielectric functions as given in
Marsch et al. (1982a). However, note the different em-
phasis here, where the full character of the velocity mo-
ments is retained, and the waves appear through the
wave spectrum and the particles via their VDF, f;(w),
which are to be evaluated in principle by the equations
of QLT. All three rates depend on the imaginary part,
which is a Lorentzian of width 4, and can be considered
as the wave-absorption coeflicient. It reads:

! Y&
N = 17
{k(wll _w;'h)} (wr £ Q5 — kw) — kU;)? +7,z;( )

The case of resonant wave-particle interactions corre-
sponds to weak growth or small damping, i.e. to the
limit 4 — 0. Equation (17) can then be rewritten as a
delta function. A resonant relaxation time can be gen-
erally defined as

1 ™
P Q2
(wy) 72

At this point the phase velocity is required explicitly.
We will use for all ions the phase velocity, Vpp, of Alfvén
waves propagating along the magnetic field in a multi-
ion plasma. This velocity can also be obtained directly
from the multi-fluid equations (Isenberg and Hollweg,
1982, 1983). For a recent derivation within the context
of Alfvén-wave minor-ion interactions see the paper of
McKenzie (1994). We start below from our general dis-
persion relation (8). The expansion for large resonant
speeds of the normalized dielectric constant, in the limit
Y& — 0 in which 2z, — wj, holds, yields the result

dkBia(wkin — kw) — kU;) (18)

1/2

Vo =V { V3 - Zp]( A -VA+AUZ) b (19)

This is the phase velocity of an Alfvén wave in a differ-
entially drifting multi-ion plasma in the inertial frame.
The ion differential speed is AU; = U; — V, with which
each species moves relative to the center of mass frame.
The factor in the brackets is the generalized firehose cor-
rection. We consider only propagation away from the
Sun, implying that Vpp > 0. The k-integration in (18)
can now be performed and yields
1

73 (wy)
The step function takes care that only positive wave vec-
tors larger than kp are considered. Here the resonance
wave vector is denoted by kf =

s .
=|Q; | 2 | kji | B,:::_i e(k}t —kp) (20)

‘w"+Uj —Von
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With all these definitions we can finally write the
wave-particle transport terms as

9 % 1
—U; = / Bw———V;f; (21)
ot~ +Z- e

2w
at ]|| / w I w” vaJ ( )

s, (Vph — w” Ui),, .
JJ— - Z/ d’w ('w||) vaJ (23)

w? 8
L - Vor —
2 8w“ + ph w"

Vifi = (— - Uj) filwi,wy) (24)
where the integration is carried out over the full veloc-
ity space. Given a wave spectrum, the relaxation time
after (18) or (20) can be calculated and assumed to be
represented by its Taylor expansion. Then the above
integrals can be performed, which after a partial inte-
gration, only involves the calculation of the moments of
the VDF and does not require the functional form of

fi(w) explicitly.

5 Relaxation time for a power-law spectrum

In interplanetary space magnetic field fluctuations often
obey simple power laws (for a review see, e.g., Tu and
Marsch, 1995) with a spectral index, «, which ranges
observationally between 1 and 2. Let us assume, there-
fore, that the spectrum of LHP and RHP waves (see also
Goldstein et al., 1994) obeys

B = Bg, (:{))ﬂ (25)

Here kg is a free reference wave vector, for which the
proton inertial length, ko = Q,/V4, is a good choice.
In the resonant limit and for non-dispersive waves, we
obtain from (20) the time scale

& (2-a) Va (1—-a)
Qp w)| + Uj — Vpn

XW@(:l:iji:j(kD) F w||)®(iw“ + (Vph -

U;)) (26)

We recall that BA,::: ko ~ (0B%/By)?, is equal to the av-
erage relative fluctuation amplitude in the dissipation
domain. We used wy = Vppk in equations (26). The
resonant speed is denoted as

+ Wy —kU; £

Wg; = k (27)

Note that this speed is negative or positive for the LHP
or RHP waves propagating away from the Sun. Here O
is the step function defined as ©(z) = 1 for z > 0 and
O(z) = 0 for z < 0. We may define the typical inverse
relaxation time for a thermal particle as the anomalous
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wave-particle collision frequency, #V."), and take this
] 7

in front of the k-integrals of equations (21,22, 23). Then
the remaining velocity space integration is easily car-
ried out, yielding the simple relaxation rate model for
the rate functions as described in Marsch (1998). More
precise heating and acceleration rates can then be ob-
tained by carrying the Taylor expansion to higher or-
ders. Note, however, that the ©(z) functions limit the
velocity space integration to a smaller domain than that
extending from +00 to —oo, and therefore the moments
are not complete. If the plasma beta, 8; = (“%")2 is
much smaller than unity, which is the case in the so-
lar corona, then the missing parts of the moments are
negligably small.

6 Resonant acceleration and heating rates for
a drifting bi-Maxwellian

Since we consider only field-aligned wave propagation
here, relating to ion-cyclotron and parallel fast-mode
waves, we need to consider those degrees of freedom
of single-particle motion which couple strongly to those
waves. Observationally, as found in interplanetary space
(Marsch et al, 1982a,b,c) the corresponding features in
the ion velocity distribution functions are a core tem-
perature anisotropy and a secondary proton or heavy
ion component, i.e. an ion beam streaming along Bg
at a speed of 1-1.5 times the local Alfvén speed. These
features are modelled by a VDF which is composed of
one (or several) relatively drifting bi-Maxwellian, which
is given by

-3/2 Vi = U.)2 2
(27") . exp (_( Il .7) _ (VJ_) ) (28)
VjIIVjJ_ 2kBTj" 2kBTj_L

fi(V) =

With this VDF the heating and acceleration rates
can easily be calculated from equations (18,12,13,14).
We restrict ourselves to waves (either right-handed, plus
sign, or left-handed, minus sign) which propagate away
from the solar surface into interplanetary space. The
corresponding normalized spectra are denoted by the
symbol B,:f The rates are:

3tU Z dksi (&) kRE (k) (29)

,”_ / dkBi( )(2kw§j)7z;.t(k) (30)

2
“ast () GumE®) @y
kp

Here we introduced the resonance function

oo 2
TN _wi 0 )
Ry (k)=m /0 dwlwl( 3wy F k)fjlng(ii?)
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This function is essentially equal to the imaginary part
of the dielectric constant (se e.g. Marsch, 1982a), eval-
uated for small 44 at the cyclotron resonance. ’R,i(k)
is proportional to the number of resonant pa.rtlcles and
depends on the pitch-angle gradient of f;(w) at the res-
onance. For the model VDF of a drifting bi-Maxwellian
(32) can be evaluated analytically and reads

R0 =5 e300 (6 B r ) @)

w1t.h the normalized real part of the resonant speed

7"’- Once the spectrum is known the heating

and acceleration rates can be evaluated in dependence
of the wave spectrum. Often a simple power law form
is assumed, such as in the early solar wind studies by
Isenberg and Hollweg (1983) or recently by Cranmer
et al. (1999) for coronal hole heating. Marsch et al.
(1982a) used the quasilinear equation (6) to calculate
the spectrum self-consistently. This will also be done in
the subsequent section on minor ions in the solar wind.

7 Resonant wave heating and acceleration of
heavy ions

7.1 An anisotropic fluid model including wave-particle
interactions

The main idea of the model is that preferential accel-
eration and heating of solar wind minor ions can be
achieved via resonant interaction with ion-cyclotron
waves (Hollweg and Turner, 1978; Hollweg, 1981; Dusen-
bery and Hollweg, 1981; and McKenzie and Marsch,
1982) and also with magnetosonic waves (Barnes and
Hung, 1973; Marsch et al., 1982a). Dusenbery and
Hollweg (1981) did a comprehensive parameter study
on the heating and acceleration of heavy ions by left-
handed polarized waves for model wave power spectra
prescribed according to observations (Behannon, 1976;
Denskat and Neubauer, 1982). They assumed drifting
bi-Maxwellians for the particle VDFs and found encour-
aging agreement of their calculations with the observed
ion characteristics T;/T, > m;/m, and U; > U,. Their
ideas were further advanced by Marsch et al. (1982a)
in a self-consistent fluid-type model, in which the radial
evolution of wave spectra was calculated by taking local
wave growth or damping into account within the frame-
work of quasilinear theory as described in section 3 and
section 6.

We only quote here the stationary equations of mo-
tion for the minor ions for simple spherical geometry,
where the distance from the Sun is denoted by r: The
continuity equation reads

d
d—r(rzijj) =0 (34)
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In the momentum equation gravity and the electric field,
stemming from the electron pressure gradient, are small
(since we assume T, <« Tj, and our integration starts
beyond 20 Ry) and therefore neglected. Then we have
for spherical symmetry the set:

2V d

_ J” _ a4 2 0
(- 0; -

@ Vil = 5gVi (35)

The two energy equations, here in terms of the perpen-
dicular and parallel thermal speeds squared, are

d 2v? b,

Ui Vi + =) =5 VA (36)
d , d 8

Uiz Vil + 251 3.V = 5. Vi (37)

The right-hand sides are the wave-particle interactions
terms derived in section 6. These terms are nonlinear
functions of the three moments, U; VJ”,V,- 1 and func-
tionals of the wave spectrum, whlch in turn evolves ac-
cording to (6), and the growth rate is determined by
(11), in which the model distribution function (28) must
be used, to close the whole set of equations consistently.
Apparently, even when assuming a rigid bi-Maxwellian
model VDF, the resulting set of equation is highly non-
linear. It evolves essentially on two spatial scales, the
wave length (A4 = V4/9Q,) and the solar radius, R,
as the typical fluid scale in the outer corona and wind.
Other technical details of the model can be found in the
paper of Marsch et al. (1982a).

The model equations comprise the standard double-
adiabatic fluid equations (35, 36, 37) but also include en-
ergy (temperature) and momentum (differential speed)
transfer rates, which are obtained as integrals over the
quasi-linear diffusion operator with form-invariant bi-
Maxwellian model distributions as given by equations
(29,30,31). These equations have been integrated nu-
merically. The solar wind speed is defined by V(r) =
2_;nym;Uj. The center of mass speed V(r) cannot be
changed by the waves, because their total momentum is
negligable.

The inclusion of cyclotron resonance with right-handed
polarized waves in the model proved to be very im-
portant (Landau damping was already considered by
Barnes and Hung, 1973). Not only because these waves
are emitted from the solar corona as well as their left-
handed counterparts (Behannon, 1976; Goldstein et al.,
1994), but also because they provide a limiting mech-
anism for the differential velocity U; — U,. They be-
come increasingly more important when the tails of the
minor ion distributions move into resonance with these
waves. The prominent role of the fast mode in regulat-
ing the ion differential speed has long been recognized
(Montgomery et al., 1976; Gary et al., 1976; see also
the review by Schwartz, 1980). In our model, the nearly
non-dispersive magnetosonic waves actually lead to a
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‘trapping’ of the bulk velocity at about the wave phase
speed, an effect which explains naturally the observed
close correlation of U, — U, with V4 and the radial
decrease in the He?* differential speed as observed by
Helios (Marsch et al., 1982b,c) between 0.3 and 1 AU.
This trapping readily follows from the equations (47-49)
in the paper by Marsch (1998), which indicate that ac-
celeration and heating ceases when the particles surf the
waves.

Self-consistency of the model calculations appears to
be of major importance. Namely, if one speaks about
ion-cyclotron wave heating and acceleration of minor
ions, one has simultaneously to consider the drastic per-
pendicular heating or parallel cooling caused by these
waves in the proton distribution. This heating leads
to an erosion of the original wave power spectrum in
the frequency range corresponding to proton resonant
speeds of a few thermal speeds. The eroded power then
is not available anymore for affecting the heavy ions.
Therefore, the evolution of the power spectrum is inex-
tricably linked with the evolution of all the parameters,
that characterize the energy and momentum state of so-
lar wind and coronal ions (see also the recent paper by
Tu and Marsch, 1999).

Finally, it is necessary to emphasize the importance
of the inhomogeneity of the expanding solar wind. An
Alfvén wave originating in the corona with a frequency
w much less than the local gyrofrequency there, con-
serves its frequency propagating in the inertial frame
away from the Sun and thus becomes gradually an ion-
cyclotron wave, which will at larger heliocentric dis-
tances where w = (), be damped and deliver its energy
and momentum to the ions. The frequency sweeping
mechanism is modelled by the second term of equation
(4). In the context of recent solar-wind modelling this
effect has been used to heat the protons (Tu and Marsch,
1997; Marsch and Tu, 1997).

7.2 Illustrative numerical results and discussion

This section presents some numerical results for a spher-
ical geometry of the outer corona and solar wind, which
have been obtained by integrating the model equations
(34,35,36,37) (Marsch et al., 1982a) for 608+ and

%Fe®* ions under various boundary conditions at 20 R
and for different initial moments Ty, T;., AU; = U; -
V, characterizing the drifting bi-Maxwellian distribu-
tion functions in the solar wind reference frame. We
have not tried to integrate through the region of the
critical sonic point but start in the near-Sun solar wind.
Hu et al. (1999) have recently integrated multi-fluid
model equations (but without temperature anisotropy
and without inclusion of right-hand waves) through the
critical point. In the present model the broad-band
waves are "injected” at 20 Rg and are assumed to prop-
agate away from the Sun parallel to the interplanetary
magnetic field. For the abundances we have taken no / np
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= 0.001 and npe/n, = 0.0001 (see Bame et al., 1975). In
the calculations the assumption of initial thermal equi-
librium was made, i.e., U; =0, T_'j” =1 = Tp” at
z = 20, where z = R/Rg denotes the normalized helio-
centric distance. Ry was used as a typical scale length
for the fluid equations, where the Alfvén length (A4 =
Va/$p) defines a lower limit for the typical scale length
of the wave-particle interaction terms. The ratio Re /A4
has been put equal to 10* at z = 20. The injected wave
spectrum BE obeys a power law in frequency for both
degrees of polarization with B¥ = ng(w/ﬂp)“" and
a = 1.5, in accord with the observations (Behannon,
1976; Denskat and Neubauer, 1982; Tu and Marsch,
1995). The wave intensity at {2, was initially fixed at
one percent of the ambient field energy density, with
Q,,ng = 0.01B%/8w. As far as the initial values are
concerned and the problems involved in the choice of
appropriate numbers for the wave energy density, see
the discussion in the paper by Marsch et al. (1982a).

Figure 1 shows ion thermal speeds and relative speed
of 0%* ions AUp = Up — U, in units of V, versus nor-
malized heliocentric distance from the Sun. The proton
relative speed, AU, is not shown here because it is neg-
ligibly small due to the very low heavy ion abundance,
which means that the protons determine the center of
mass speed, V. Note that the initial phase is charac-
terized by strong cooling of protons parallel and heat-
ing of oxygen ions perpendicular to the magnetic field
accompanied by a marked preferential acceleration of
O%*. After a few hundred A4 the proton wave interac-
tion saturates at an anisotropy of about Ty /Tp“ ~ 14,
in qualitative accord with proton observations in fast
wind at 0.3 AU (Marsch et al., 1982b). Also, the oxygen
ions show the typical signature of cyclotron heating with
To./To| = 2.0. From about z = 21 on, the wave parti-
cle interaction becomes weaker than it was initially, but
05+ ig still considerably accelerated because at negative
resonant velocities in the sunward tails of their distribu-
tions the interaction still continues, leading to a slight
increase in AUp.

Inspection of Figure 1 shows that between z = 23
and z = 24 a different situation appears. The O%* ions
move now increasingly into resonance with the so far
undamped right-hand polarized waves. This resonant
interaction leads to strong acceleration, marked perpen-
dicular cooling and pronounced parallel heating. Fi-
nally, the anisotropy is even reversed with To /Toy =
0.9, and the O%* ions are ’trapped’ at about the Alfvén
speed, which represents a limiting value for AUp. In
contrast the protons are not significantly affected by the
fast waves but still maintain the signature of the initial
perpendicular heating. Qualitatively, these results re-
semble our previous (Marsch et al., 1982a) calculations
for He?*, the main difference being that presently, due
to the low abundance of O%, the center of mass frame
is virtually identical with the proton frame. The evo-
lution of the wave power spectra for Figure 1 is not
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Fig. 1. Hydrogen and oxygen ion thermal speeds squared and
oxygen relative speed AUg normalized to the local Alfvén speed
(virtually equal to Mo — Mp) are shown versus heliocentric dis-
tance in units of solar radii. The initial values, AUg = AU, = 0
and To = T, correspond to thermal equilibrium. Note the strong
proton cooling parallel to the magnetic field (lower broken curve
delineates (V,)/Va)?). Oxygen ions are accelerated by magne-
tosonic waves up to about AUg ~ V4 (dotted line). They finally
(2 = 24—25) show the signature typical of fast-mode wave heating
Toy > To. (continuous lines).

shown here. The radial variation of the spectra resem-
bles qualitatively the one found for the proton - He?t
plasma (Marsch et al., 1982a).

It can clearly be seen in Figure 1 that O%* is preferen-
tially heated with respect to the protons. The initial val-
ues of Vj = V2, =04V} and V3, = V3, = 0.025 V3
correspond to equal temperatures at 2 = 20. After the
wave-particle interaction has saturated the parallel ther-
mal speeds are about equal at z = 23.5 in good agree-
ment with the observations at 1 AU (Ogilvie et al., 1980;
Schmidt et al., 1980; von Steiger et al., 1995; Hefti et
al., 1999). It should be noted that evidence for fast
mode heating (T, > To1) has been found in the He?*
distributions in high-speed solar wind (Marsch et al.,
1982c) and also the frequent occurrence of a high en-
ergy tail or heat flux in a-particle distributions (Marsch
et al., 1982¢; Ogilvie et al., 1980). Unfortunately, there
are still no detailed observations available concerning
the temperature anisotropy of heavy ions. If future
measurements could also provide the ratio Toy/To.L we
would expect this anisotropy to be larger than one.

According to equation (33) the number of resonant
particles depends exponentially upon Q;/Q,, which im-
plies a very sensitive discrimination between the various
heavy ion species due to the kinematics of the resonance
(Hollweg, 1981; McKenzie and Marsch, 1982; Marsch et
al., 1982a). The damping or growth rates (11) for the
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Fig. 2. In a similar format as in Figure 1, the iron (continuous
lines) and hydrogen ion (dashed lines) plasma betas, i.e. their
speeds squared in units of Vy, are displayed versus radial solar
distance. Initial values at z = 20 correspond to local thermal
equilibrium.

wave spectrum comprises a sum over contributions from
all species, which are proportional to their abundance
n;/np. respectively. Thus, only protons and He?* (with
na/Np = 0.05) have a significant influence on the radial
evolution of the wave spectra. Concerning the ratio of
the gyrofrequencies, Fe®t represents an extreme case,
because Qr, /€, = 1/7 is comparatively small.

In Figure 2 the ion plasma betas (thermal speeds
squared in units of the local Alfvén speed) and in Fig-
ure 3 the Machnumber (flow speed normalized to the
local Alfvén speed) are shown versus normalized helio-
centric distance for the heavy Fe®t ions and the pro-
tons. Note the similar general course of the curves in
Figure 2 compared with those for 0%t in Figure 1. But
the abscissa only covers 1.0'Rg in the present case. Ob-
viously, as shown in Figure 3, the initial acceleration of
iron by ion-cyclotron waves is much more effective than
for O%* shown in Figure 1. The Fe®* ion distribution is
drastically heated up perpendicular and somewhat more
weakly parallel to the field. After about 0.1 Rg one ob-
tains Vpey =~ Vp1, although the initial values (Tre = Tp)
corresponded to thermal equilibrium. As scon as AUy,
exceeds about 0.5 V4 (corresponding to Mg, > 2.5) the
tail of the iron distribution moves into resonance with
right-handed polarized waves, which leads to additional
acceleration now in connection with strong heating par-
allel to field. Finally, the typical signature of fast mode
heating (Tre|| > Trer) appears, and the relative speed
AUfpe reaches about the Alfvén speed for Mg, > 3.1
beyond z = 20.8.

To demonstrate how a variation of the injected wave
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Fig. 3. Mach number of the Fe®t ions displayed versus nor-
malized heliocentric distance. The continuous line pertains to
Figure 2 with a normalized wave energy density at the proton
gyrofrequency of 0.005, the broken top (bottom) curves to a rela-
tive wave energy increased (reduced) to a fluctuation level of 0.01
(0.001).

intensity changes the initial heavy ion acceleration, two
additional curves (broken) in Flgure 3 are shown. The
continuous trace corresponds to Bﬂp = 0.005(B3/8)
(pertaining to Figure 2), the top broken curve to 0.01
and the lower one to 0.001. One can see that a change
by an order of magnitude in wave intensity drastically
reduces the initially achievable acceleration and leads to
a larger scale length, which has to be traveled through
by a heavy ion, in order to accomplish a significant dif-
ferential speed with respect to the protons. It should
also be noted that the iron Mach number, Mp,, is ini-
tially 2.0 and then increases strongly between z = 20
and 21. For the lower curve, Mg, reaches a value of
about 3.2 (corresponding to AUpe =~ 1.1V,4) not before
z = 28, but then also stays at about this value.

8 Rates for a drifting bi-Maxwellian in relaxa-
tion-rate form

In the previous section we have presented numerical so-
lutions of a simple anisotropic fluid model for heavy
ions expanding in a monopole-field geometry. We have
included wave-ion interactions, whereby the VDF was
fixed and the kinetic degrees of freedom restricted to
V> V1,Uj, but the wave spectrum was calculated self-
consistently such as in Marsch et al. (1982a). In con-
trast to this model, we consider now a homogeneous
system and describe the evolution of the moments with-
out requiring the detailed knowledge of the wave spec-
trum. Rather general evolutionary trends of the mo-
ments V”,VL,UJ,- can .still be derived that way. The
rates (29, 30,31) can be rewritten in a relaxation-rate
form and be analytically integrated under certain sim-
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plifying assumptions in order to obtain more insight into
the wave-particle intercation processes. For this pur-

pose let us define a normalized spectral average (with
<« 1>»=1) of any function Q(k) as follows:

O [m [ Q)
LQ>t=L,/= | dkBEZTexp
vEV2 ), TR R

v =93[7 [ st gD )

where the average relaxation rate V;h has been defined.
Then the acceleration and heating rates attain the form

(~5&)) (38)

Ov; = - ut («u; -2 %) (Yli)2
at ! = J J k V”

J

+ < % >* <1 - (%)2)} (40)
Zu {:f: < (U; ‘i'ki)%»* (%)2

+ < (%—1)2 > (1— (%)2)} (41)
{<< (vs - “%)2 >E (%)2

J

QJ|Q,
<
|

> ovf

+,-
+ < (Uj - %) Qki >+ (1 -2 (%)2)
- < (%)2 >* (1 - (%)j} (42)

We have just formally rewritten the equations (29 — 31)
here. The strongest variability is expected for the rate
u]i, since it contains the spectrum, whereas the other av-
erages, due to normalization, are presumably much less
variable than uji, and may be considered to be about
constant. In the following we only consider the sim-
ple case of an isotropic electron-proton plasma includ-
ing dispersion. Under these assumptions equations (8, 9)
yield the dispersive phase speed:

Wi, Wi,
—+= = -V= 1+ F% 43
A Vo =V = Vay Q, (43)

The frequency in the ion center of mass frame is denoted
by w; = w — kV. More refined estimates of V, can be
obtained from the full dispersion equation (8). We shall
make the approximation wy, 2 ;, and evaluate the wave
phase velocity at that frequency. With wi =~ Q; one

J”

N =
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finds the typical wave vector n;-t 7119=/Q With

this vector the specific phase speed

Vi= Vay/1£9,/9, (44)

can be defined, and the normalized relaxation rate be
cast in the form

vE sB* -(VEQ£1) - AU;)? VE
i |7 Aj 7/ \TAj

ll

which only involves the integrated spectrum or average
wave amplitude in the dissipation domain. We recall
that [> dkBy = (B*/Bo)*.

9 Solution of simplified model equations

With the approximations made in the previous section
we have obtained a closed set of rate equations. In
this way one can obtain valuable insights in the evo-
lution of the coupled moments as a function of time
in a homogeneous system. The three moments equa-
tions can compactly be written by introduction of the
plasma betas and Mach number for each species j. The

2
plasma beta is defined by 8, = (‘?,'—L*) and the

Mach number in the solar wind (ion center of mass)
frame by M; * = —% We further define the variable

6J 1+13x M , Wthh also appears in the expo-
nential function of equation (45). It is convenient to
measure time in units of the relaxation time defined
through ti = —;77:’” , where the temperature ratio has

been included for mathematical simplicity of the subse-
quent equations. We abbreviate the dimensionless time
derivative of any variable z as t;t (z:z: = 2. For the sake
of simplicity, let us consider now either LHP or RHP
waves only. Then there is no & sum and the three cou-

pled equations (40,41, 42) read

6;t = _(53# ,”/ _L) (46)
%ﬂ;t” = 5;'1: (5;t ,||/ _L) (47)
.Bjij_ = _(5J'i - j”/ j_L) (48)

This set of equations looks formally alike for the two
wave types. Yet, note that §7 = 2— M7 and &; = M;,

which is the Machnumber 1tse1f For the sake of luc1d1ty
we omit in what follows all the indices and consider only
LHP waves. Then the above set reduces to the coupled
three nonlinear equations:

M = —(M-p/BL) (49)
SO = MM - 5y/8) (50)
B = —(M-By/B) (51)

final differential speed, AU =
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The dots denote derivates in terms of the dimensionless
time variable, s(t), given by s = fot %dt’ , which is
the history in relaxation times and sirililar to the opti-
cal depth in radiation transfer. We take the initial con-
ditions Mo = 0,8 = ﬂ”o, B1 = Bio and omit the sub-
scripts below to ease the notation. It can immediately be
seen from the above nonlinear equations that there exist
two integrals, 8 +M? = const and . — M = const. Ex-
ploiting these relations, one obtains finally for the Mach-
number a single nonlinear differential equation, which
reads

(M - My)(M — Mp)
M - 2(M, + Ms)

M=-2 (52)

The solution M (s) starts with a positive slope, given

by the initial temperature ratio at time zero. This slope
reads M |,—o= [%L > 0. From equation (52) it is clear
that M (s) has two stationary solutions: M = M; and
M = M,. For a positive initial slope, M(s) will ap-
proach M; asymptotically. The equation (52) has the
characteristic zeroes

BL BL

Mg == Gy

(53)
and a singularity at 2(M; + Mz) = —8,, and is readily

integrated. The formal solution is given by the implicit
equation

exp(2(M1 - MQ)S) = (54)
M— M1 (M142M3) M- M2 —(2M1+M3)
e |

The most transparent case is the one with 8, = /B,
which implies that 2M; + M, = 0. Then one finds the
simple exponential asymptotic solution

M(s) = %(1 —e™29) (55)

The final state at the dimensionless time s being infinity
has the parameters

SB1; Bi(o0) = 3y moo)):gm (56)

M(o) =3
which yields an asymptotic anisotropy of I = 5, if the
initial state was isotropic and had a beta oJf umty. The
V”, is half of the ini-
tial thermal speed. That means the wave acceleration
is weak in a low-beta plasma. If one starts with a high-
beta cigar-type distribution, with 81 = 2 and g = 4,
then M(oo) = 1 and Tj(00) = Ty(00), which means
that the particles ride the waves with an isotropic ve-
locity distribution. Note that these trends and numbers
are consistent with the numerical results of the model
in section 7 for the phase, where LHP waves dominate
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the wave-particle interactions. The general asymptotic
anisotropy is

Ty(oo) _ 481~ F1+B14/B1 +85) -
T1(c0) 68 + 2, /ﬂi + 8,3”

which depends on both intial plasma betas. What comes
out quite clearly from these calculations is that it is im-
possible, when starting from near isotropy, to reach a
large anisotropy with 7, > Tj. That is prevented by
the structure of the equations (40, 41,42), which results
in turn from the structure of the original rate equa-
tions (29,30,31) and anisotropy-dependent resonance
function (32,33). This function depends explicitly on
the pitch-angle gradient, and thus the limitation of the
anisotropy reflects the effective pitch-angle scattering of
the particles by the waves, as it is decribed by the dif-
fusion equation (see, e.g., Marsch, 1998) from which the
rates were derived.

10 Conclusions

The detailed rate equations derived here in the sections
4 and 6 and the related general ones decribed previously
in sections 6 and 7 of Marsch (1998) can be incorporated
in multi-fluid models of the solar corona and wind, thus
complementing and expanding the models put forward
recently for the corona by Hu et al. (1999), Li et al.
(1997), and Czechowski et al. (1998), or years ago for
the solar wind by Isenberg and Hollweg (1983). In mod-
elling the behaviour of minor ions in the solar wind,
there has in the past been a debate (see e.g. Marsch et
al., 1982a; Isenberg and Hollweg, 1983) about whether
dispersive waves are able to produce sizable differential
speeds and what the influence of dispersion is in this
process. A detailed study should be carried out in the
future to evaluate quantitatively the effects of wave dis-
persion and damping on the differential ion speed and
temperature a given species might attain in the solar
corona and wind.

The influence of resonant wave-particle interactions
on the dynamics of minor heavy ions in the solar wind
has been investigated. The model decribed here has
previously been proved successful in describing basic
characteristics of observed proton and a-particle distri-
butions (Marsch et al., 1982a,b,c). It has been shown
that ion-cyclotron waves propagating away from the Sun
along By are capable of accelerating heavy ions through
the proton bulk speed. These waves also preferentially
heat the minor ions perpendicular to the field and raise
in this way their average temperature, until T; amounts
finally to a considerable multiple, more than A; times,
of the proton temperature.

The inhomogeneity of the expanding wind (note that
Va and Q, decrease with increasing solar distance) has
the effect that the fastest heavy ions in the tails of the
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distributions move into increasingly stronger resonance
with right-handed polarized magnetosonic waves. These
waves now further accelerate the heavy ions until their
differential speed is about V4. Also, they can prefer-
entially heat the particles parallel to the field to the
effect that finally their temperature anisotropy shows
the signature of fast wave heating T, > T;, and that
Vi = V) is accomplished. This near equalization of
thermal speeds is one of the most striking observed char-
acteristics of heavy solar wind ions at 1 AU (Schmidt et
al., 1980; Ogilvie et al., 1980; von Steiger et al., 1995).

Self-consistency has been shown to be crucial in order
to describe the radial evolution of wave spectra, because
proton damping or wave excitation can lead to a dra-
matic reshaping of the originally injected wave spectrum
or even a complete erosion of the wave power (Tu and
Marsch, 1999). Therefore, typical relaxation times for
the dynamic equilibrium between heavy ions and waves
can certainly be orders of magnitudes larger than esti-
mated on the base of rigid wave spectra. On the other
hand, evaluation of the wave spectra requires an inte-
gration on the kinetic scales of the ions, which is not
what one wants for a fluid decription of the expanding
wind in the corona. As a compromise, one may rely
on fixed wave spectra, such as Cranmer et al. (1999)
and Hu et al. (1999) did again recently in their coronal
hole models, yet one must be aware of the limitations of
such an approach. Certainly, further improvements in
the models must be made.
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