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Abstract. In this study we have used dynamical characteris- '

tics such as Lyapunov exponents, nonlinear dynamic models
and mutual information for the nenlinear analysis of the mag-
netospheric AE index time series. Similarly with the geomet-
rical characteristic studied in Pavlos et al. (1999b), we have
found significant differences between the original time series
and its surrogate data. These results also suggest the rejection
ol the null hypothesis thal the AE index belongs to (he fam-
ily of stochastic linear signals undergoing a static nonlinear
disiortion. Finally, we belicve that these results support the
hypothesis of nonlinearity and chaos for the magnetospheric
dynamics.

1 Introduction

In recent years many nonlinear models of magnetospheric
dynamics were developed, which could bear low-dimensional
chaotic solutions (Baker et al., 1990; Klimas et al., 1991;
Pavlos et al., 1994). These results were in agreement with
chaotic analysis of magnetospheric experimental time series
{Vassiliadis et al., 1990, 1992; Robert et al., 1991; Shan et al.,
1991; Pavlos et al,, 1992a,b, 1994). A series of significant
studies (Price and Prichard, 1993; Price et al., 1994; Prichard,
1994) showed the weakness of the nonlinear analysis of the
magnetospheric time series especially in relation with the
strong null hypothesis for stochasticity of Theiler (Theiler
et al., 1992a,b). For a review of studies of the nonlinear dy-
namics of the magnetosphere refer to Klimas et al. (1996).
In a study by Pavios et al. (1999b), which is described as
Part 1 we have used correlation dimension and other geo-
metrical quantities estimated for the AE index time series,
observed in the last six months of the year 1978, as dis-
criminating statistics between nonlinear dynamics and linear
stochastic signals. The AE index describes the Auroral-zone
magnetic activity which is related with the global magneto-
spheric dynamics through a complex systent of currents. The
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null hypothesis which tested concems the observed time se-
ries that arises by a static non linear distortion of a Gaus-
sian signal () = h(s(t)). where h is a monotonic nonlin-
ear function. (Theiler et al., 1992b,a; Schreiber and Schmitz,
1996; Schreiber, 1998). The discriminating statistics of the
geometrical characteristics showed strong inconsistency of
the AE index time series to the null hypothesis of Gaussian
linear stochastic signal which share the same power spec-
trum and amplitude distribution with the observed time se-
ries. We muslt point out here that the geometric characteris-
tics are measures of the spatial distribution of the sample of
points along a system orbit in the reconstructed phase space
of the system. In this case there is no information about the
dynamic evolution of the system in the phase space. Dy-
namiec characteristics that connect current and future staies
of the system are the Lyapunov exponents, the average mu-
tual information and predictors (local or global). In this work
we use dynamical characteristics as discriminating statistics
on the AE index time series. Prediction methods have al-
ready been used for the nonlinear analysis of the response to
the solar wind of the magnetosphere as given by the AE in-
dex observed during short periods (Price and Prichard, 1993;
Price et al., 1994). The input/output prediction methods vsed
by the authors ol these papers showed in some cases evi-
dence for non-linear response of the earth’s magnetosphere
while in other cases little or no evidence for nonlinear cou-
pling was found. Before these studies, it has been suggested
that the solar wind-magnetosphere interaction is a dynamic
non linear phenomenon, by using linear prediclion filter tech-
niques. These techniques have shown two distincl physical
mechanisms for the magnetospheric response to solar wind.
The first mechanism corresponds Lo & directly driven pro-
cess and the second to a storage-release mechanism (Bar-
gatze et al., 1985; McPerron et al., 1988; Klimas et al., 1996,
1997). The second mechanism could be thought as related
lo a chaotic process in accordance with the above referred
nonlinear magnetospheric modeling. In order to test this
hypothesis we study here dynamical characteristics as dis-
criminating statistics between the magnetospheric AE index
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and stochastic signals (surrogate data). Our statistical analy-
sis uses the dynamical characierislics: Lyapunov exponents,
mutual information and models for prediction showed sig-
nificant inconsistency belween the AE index process and the
null hypothesis of an underilying Gaussian linear stochastic
process. QOur results strengthen the hypothesis of magneto-
spheric chaos especially in relation to the second storage-
release mechanism.

In Sect. 2, we present the theoretical framework of our
study which is related (o the dynamical characleristics of
the AE index time series. Section 3 includes the results of
the comparison between the AE index and its surrogates on
the dynamical characteristics, i.e. spectrum of Lyapunov ex-
ponents, local linear prediction, global linear and nonlinear
polynomial fitting, and mutnal information. Section 4 in-
cludes the summary and the discussion about these results.

2 Theoretical framework

In order to emphasize the significance and the physical mean-
ing of the nonlinear analysis of an experimental time series,
we must look for the type of the dynamical system that is
likely to generate the observed lime series (e.g. determin-
istic or stochastic, linear or nonlinear, externally driven or
not). When a significant external stochastic input (white or
colored) is supposed, then the underlying system is regarded
as stochastic. Of course a stochastic component can also
be caused by internal microscopic processes of the system,
which is possible for the magnetospheric data we study here.

Non linear analysis of experimental time series concerning
geometrical and dynamical characteristics can give signifi-
cant information about the deterministic component of the
underlying process. Assuming the slochastic componenl is
small, the deterministic part of the underlying dynamics of
a real time series is most probably assigned to a nonlinear
dissipative system. A nonlinear dissipalive system can re-
veal rich dynamics and its solution in phase space can be
a periodic orbit (Iimit cycle), a quasi-periodic orbit (torus)
or a non-periodic orbit forming a strange attractor in phase
space. A strange attractor of a fractal non-integer dimen-
sion corresponds to a contracting flow £*(sg) (for an initial
d-dimensional state veclor sp) with sensitive dependence Lo
the inilial conditions (e.g. see Eckmann and Ruelle (1985),
Tsonis (1992), Isham (1993)). As stochastic sysiems can
also give non-periodic solutions, it is crucial to investigate
whether an observed time series comresponds (o a stochastic
system or to a nonlinear deterministic system with chaolic
(strange) aliractor solulion.

According to the embedding theory reviewed in Part | (Pav-
los et al., 1999a), the dynamics of the underlying process of
an experimental time series x (i) = x(¢;) can be equivalently
represented in the reconstructed phase space B™, simply as
x(2) = [#(),z(i—7), -, z(i={m~-1)7)]? form > 2d+1
and 7 a delay parameter (Takens, 1981). ‘The mirrored dy-
namics in the reconstructed phase space is

x{i + 1) = F(x{7)) (D
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or assuming only the first component of x(i + 1)
2{t + 1) = Flz(i),2(i - 7),2(¢ — (m — 1)7}) (2)

where F' is the scalar function being the first component of
the vector function F. For systems involving a signilicant
stochastic component, Egs. (1) and (2) have to be modilied
to accounl for the observational or dynamical noise. Gen-
erally, when an infinite dimensional stochastic signal acts as
an input to a low dimensional dynamics then it is possible
to extract with sufficient confidence conclusions about the
underlying dynamics (Argyris et al., 1998a,b; Pavlos et al,,
1999h).

In this study we estimate the dynamical characterislics ol
the reconstructed dynamics (F' or F) and reflect the resulis
back to the original magnetospheric dynamics underlying 1o
the observed AE index time series. Particularly, we aim at
understanding the nature of F that corresponds to the mag-
netospheric dynamics.

A linear stochastic system can mimic low dimensional chac
To exclude this possibility we test the general null hypothesis
that the observed signal arises from a linear stochastic pro-
cess undergoing static distortion {ollowing the surrogate data
test (Theiler et al., 1992a,b). In part I, we did this for the
geometrical characleristics. Here, we focus on dynamical
characteristics and use prediction, Lyapunov spectrum and
mutual information as the discriminating statistics belween
the surrogate data and the original time series.

2.1 The spectrum of the Lyapunov exponents

The spectrum of Lyapunov exponents measures the rate of
convergence or divergence of close trajectories in all d di-
rections of the phase space. A posilive Lyapunov exponent
regards divergence of trajectories in one. direction, or alter-
natively expansion of an initial volume in this direction, and
a negalive Lyapunov exponent regards convergence of tra-
jectories or coniraction of volume along another direction.
For flows, there is always a zero Lyapunov exponent [or the
direction of the (low. The Lyapunov exponents are thus or-
dered as Ay > - -+ > Az and a positive X; indicates chaos (or
a dissipative deterministic syslem.

The spectrum of the Lyapunov exponents can be estimated
from a time series by following the evolution of small per-
turbations of the reconstructed orbit making use of the lin-
earized reconstructed dynamics. The evolution of the dis-
placement vector between the neighboring points x(7} and
¥ (i) + w(1) in the reconstructed phase space is given by the
equation

w(i+ 1) = DF{x())w(i) (3)

where DT is the derivative maltrix of F (see Eq. 1). A local
approximation of the matrix DF can be found by solving the
minimization problem

k
. .1 . .
11}41{115 = rr}lll‘.n % E 1 [[wj(t+1) — Ayw;(d)] 4)
i=
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where k is the number of the-neighbors to x(4) regarding k
different perturbations wj, 5 = 1,-- -, k, which are used to
estimate A; = DF at the point x(4).

The Lyapunov spectrum is found by repeating this process
for all NV reconstrucied points x(¢),i — 1,---, V¥, as

N
A=y log(llAsel]) (3)
i=1
where a new set ol orthogonal vectors {e;-} is produced by
reorthonormalization of the vectors al time 4 {A,-_lej-_l}
in order to retain the local orthogonal spanning of the stale
space (Sano and Sawada, 1985; Eckman el al., 1986; Holz-
(uss and Lauterborn, 1989; Karadonis and Pagitsas, 1995).
For the estimation of the maximum Lyapunov exponent
{Lmaz) we use the equation

.1 rd(t)
L:rna:u = iim ~In}—= (6)
Pt t {d(())}
where d(t) = |x2(t) — x,(¢)| measures Lhe separation be-

tween neighboring points in the reconstructed phase space
(Wolf et al., 1985). Certainly, for linite data the initial 4(0) is
limited by the distance of the closest neighbors and the time
t is limited to the time period of the observation.

2.2 Modeling and prediction

The observable information x{¢;) = x(7) on the temporal
evolution of the orbit in the reconstructed phase space can be
used for prediction or modeling purposes building the map
F(x(i)) or F(x(i)) (sec Eqgs. 1 and 2, respectively, here we
proceed with F). Experimental estimation of the map F,
and for T" time steps ahead FT, reduces to determining a
group of parameters a given a class of functional forms for
FT(x(i),a). For a given functional form of 7 we choose
the parameters o by using some form of cost function which
measures the equality of matching the observed future sam-
ple z{i+ T') with the predicted (i + T') = FT(x(i), a) (see
Abarbanel et al. (1993)).

In this study we construct both linear and nonlinear maps
as well as local or global looking for the best approximation
to F¥. Modeling and prediction makes use of phase space
reconstruction, implicitly (like the antoregressive (AR) mod-
els) or explicitly (like the Iocal linear maps) (Weigend and
Gershenfeld, 1993). Also the map F7 (x(i),a) may be ap-
proximated with different functional forms of global, local
or semi-local type (Lillekjendlie et al., 1994). For any func-
tional form, the parameters involved are estimated directly
from the data. For modeling we make use of the whole set
of the available data to fit the model, while for prediction we
use a subset to fit the model (training set) and the rest to test
the predictability of the estimated model (test set).

To verify the performance of the model, two measures of
the modeling or prediction error are often computed. The
first, is the normalized root mean square error (NRMSE),
which is the root of the mean square differences of the mod-
eled (or predicted) values from the actual values, normalized

g1

with the standard deviation of the data. If NRMSE 22 0 per-
fect model performance is achieved and if NRMSE > 1 the
modeling or prediction is worse than this obtained using the
mean value as model. The other measure is the correlation
ceoefficient (CC), which estimates the correlation between the
modeled (or predicted) data and the actual data and is ob-
tained from the ratio of their covariance over the root of
product of their variance alone. Note that CC takes values
in [-1,1]. When CC 22 1 best correlations are obtained, i.e.
the performance of the model is excellent, while for small
CC-values close 1o zero or negative the performance is very
poor.

In this work, F'7 is approximated with global polynomials
(linear and nonlinear) and local linear models.

2.2.1 Global polynomials

A simple approximation of T is with a single polynomial,
which may involve only linear terms (this is actually the au-
toregressive (AR) model) or nonlinear terms as well of a de-
gree ¢. Certainly, a pelynomial of a small degree ¢ in m de-
lay variables, call it pT , cannot model complicated dynamics
and for pure chaotic systems is more likely to be insufficient.
However, dealing with real data, this may turn out to be more
an advantage, modeling only the evident dynamics (linear or
nonlinear) and leaving the profound deterministic elements
unmeodeled, which as well may be masked by noise.

The general form of p7” where, £, r = pj (x;),%; € R™
is given by the Volterra Wiener series of degree g and mem-
ory m

Fi+T) = ap+aiz(E)+az(i—71)
+ortagzii—(m—-1)71)+- -
+ap 122 (1) + am + 22{()x(i — 7)

+- o Fapzi(i — (M- 1)7)? (7

where M = % In our work we use ¢ = 2 because we
are interested only to investigate the existence of nonlinear-
ity in the data. Moreover, we construct all M polynomials
starting with the constant term and adding one lerm of the

Volterra series al a time.
2.2.2 Local Models

The idea with local models is that for deterministic systems,
nearby trajectories evolve similarly, at least for a short time
if the system is chaotic. Thus on the reconstrucied attractor,
for any point x(¢) we can locally approximate F¥ to esti-
mate z(¢ + T) taking inlo account the k nearest neighbors of
x{2), {x(é(1)},- - -, x(i(k}))}. Note that for each target point
x(t) and time step T a different model is computed. In our
work, we use three different local approximations of F7.

a) Local weighted averaging

This is a geometrical nonparametric method implementing
the idea that spatially close poinis have close I-slep ahead
mappings. So, we lake the weighted average of the T-step
ahead mappings of the & neighbors. The weighting is with
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respect to the distance of each neighbor point from the target
point x(z). Actually, through an iterative process, we find
the estimated (¢ + T') to have distance {rom the mappings
{z(i(1) + T),---,z(i(k) + T)} relative to the distance of
x{i) from the k neighbors (Abarbanel et al., 1993; Sugihara
and May, 1990).

b) Local Linear Map with Ordinary Least Squares

The local approximation of #7 may be done with a lin-
car map, i.e. #(i + T) = ag + a”x(i). Assuming that this
model is good enough for the neighborhood of x(4), i.e. the
above equation yields also for the mapping of the k neigh-
bors, where & > m, we can solve a system of k equations
with m + 1 unknown variables, the m + 1 parameters {ap, a}
using the ordinary least squares (OLS). The derived parame-
ler values are then used to find the mapping #(¢+7). (Farmer
and Sidorowich, 1987; Casdagli et al., 1992).

¢) Local Linear Map with Regularization of Ordinary Least
Squares

The system of equations described above in (b) can be
solved dilferently by introducing certain regularizations on
the OLS solution, e.g. requiring reduction of the dimension-
ality of the parameter space. In this way, more robust solu-
tions can be obtained, especially for large embedding dimen-
sion m and for noisy data (Kugiumtzis et al., 1998). Here,
we use a simple regularization of (OL.S using Principal Com-
ponent Regression (PCR). Using PCR, the dimension reduc-
tion is done by considering only the firsi q of the m principal
components, and we denote the method with PCR(g).

2.3 Dynamics and mutnal information

Chaotic or stochastic dynamical systems can be described by
using the concept of information. For this scope we suppose
that the random behavior of the system is a realization of
Shannon’s concept of an ergodic information source (Shaw,
1981, 1984; Abarbanel et al., 1993). If S is some property of
the dynamical system and {s;,7 = 1,2, - -} possible values
of S5 then the average amount of information gained from a
measurement that specifies § is given by the entropy H(5)

ZP

where P(s;) is the probability that § equals to s; and it is
estimated by ~: ﬂ"“—‘l with n(s;) the number of times that the
value g; is observed and ny the (otal number of measure-
ments. The same concept can be used to identi{y how much
information we obtain about a measurement of an observ-
abie S from measurement of another observable (. This
concept is the base of the definition of mutual information.
For time series, we consider a general coupled system (S, ()
with (@ = {z(i)} and § = {z(i + 1)}, where z(2), (i + 1)
correspond to the scalar samples from a dynamical system
al discrete times ¢; and ¢;,,. The amount by which a mea-
surement of €) reduces the uncertainty of S (average mutual
infarmation) is given by the relation

H(S/Q)

) log P(s;) (8)

Lsg = H(S) ~ =H(S)+ H(Q)- H(Q,5) @
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Fig. 1. (a) The spectrum of the first ten Lyapunov exponents estimated for
the AE index as a function of the embedding dimension m.
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and applied to time series leads to

- % P((i)) log, P(x(i))

- (Z | P(z(i - 1)) log, P(z(i — 7))

-2 2 (Plel),ali-1)

X f;:;g(_;()z), z(i — 7)) (10

itry =

The mutal information between the two samples {2 (i)}, {x(i+

7)} takes values in the range (0, I,;,4; ), where I, = I(0)
13 equal Lo the information entropy H(z). If the samples
{Q = (i)} and {S = z(i+ 1)} are statistically independent
then the mutual information will vanish for this 7. That is no
knowledge can be gained for the second sample by knowing
the first. On the other hand, if the first sample uniquely deter-
mines the second sample then I(r) = I,,,.. which is most
likely to be trne when 7 = 0.

In this work, we follow Fraser and Swinney (1986) in
order to estimate the mutnal information (according to Eq.
(10)} of an experimental time series, which is used as dis-
criminating statistic parameter between the surrogate data
and the original time series.

3 Data analysis and results

The AE index describes the Auroral-zone magnetic activity
which is related with the global magnetospheric dynamics
through a compiex system of currents. The magnetospheric
dynamics during substorms is manifested as strong variabil-
ity of the magnetospheric and ionospheric electric currents
especially the auroral electrojets. (McPherton, 1995). Dis-
turbances in the Earth’s magnetic field produced by currents
in the magnetosphere and ionosphere are commonly described
by a number of magnetic activity indices, which are derived
from certain physical parameters connected to the dominant
phenomena causing the disturbance. The indices AU, AL,
and AE give a measure of the strength of the auroral elec-
trojets and are defined with the use of traces of the hori-
zontal component (H) of the geomagnetic field measured by
a world-wide chain of auroral-zone magnetic observatories
(Davis and Sugiura, 1966). AU is the maximum positive
disturbance (upper envelope) recorded by any station in the
chain. AL is the minimum disturbance defined by the lower
envelope of the traces of the chain. AE is defined by the sep-
aration of the envelopes (AE = AU-AL) in order to obtain a
better measure of the strength of the auroral electrojets. The
sampling rate of the original signal was one minute while
the time series used in this paper contains Ny = 32768 data
poinis that are the eight minule averages of the enlire time
series, rounded 1o the nearest power of two. That is the origi-
nal Lime series contains NV 2 250,000 data points. This time
series has much longer length than the time series used in our
previous work (Pavlos et al., 1992b, 1994) as well as in the
work of other scientists.
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In the following we present the results about the dynami-
cal characteristics of the AE index time series and the corre-
sponding discriminating statistics for its surrogate data.

3.1 Spectrum of Lyapunov expenent

The spectrum of Lyapunov exponents was estimated with the
algorithm presented in Sect. 2.1. Figure 1 shows the first ten
Lyapunov exponents (L-exponents) estimated for the AE in-
dex time scries for different embedding dimensions m. The
L-exponents saturate as m increases as shown at the enlarge-
ment in Fig. . 1. The first four exponents (L, — L) take
positive final values, Ly is close to zero, and the remaining
ones lake negative values. Lor a purely deterministic system
the existence of positive L-exponents implies chactic dynam-
ics, but for a stgnal contaminated by noise il is possible some
L-exponenis can be positive due to the stochastic perturba-
tion. It is known that stochastic data give ofien positive L-
exponents without the underlying dynamics necessarily be-
ing chaotic (Osborne et al., 1986; Provenzale et al.. 1991:
Argyris et al., 1998a).

When the embedding dimension is larger than the degrees
of freedom of the underlying system spurious exponents oc-
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cur as an artifact of the embedding, but the existence of more
than one positive L-exponents for the AE index time series,
conslitutes significant evidence that at least cne of them could
correspond Lo the underlying deterministic dynamics. In or-
der to verify the validity of this statemenl we estimate the
Lyapunov spectrum also for the surrogate data according to
the null hypothesis that the AE time series belongs to a family
of linear stochastic signals transformed by a nonlinear static
distortion. As in Part 1 (Pavlos et al., 1999a) in the following
we make use of two kinds of surrogate data, the T-surrogale
as presented in (Theiler et al., 1992a) and the $- surrogate, as
presented in (Schreiber and Schmitz, 1996) which mimic the
AL index time series in relation to the amplitude distribution
and the aulocorrelation function. Figures 2a-b show the spec-
irum of L-exponenis for two “nonlinear” T and S-surrogate
data. The number of positive L-exponents is clearly lower
than those of the original AE index time series as we have 2
positive L-exponents in the case of T and S-surrogate dala.
In order 1o obtain more convincing resulis we created a rich
statistic of both T and § surrogate signals including 40 sur-
rogate data in each case as shown in Figs. 3 and 4, respec-
tively. In both cases of surrogate data each L-exponent of
the AE index time series obtains larger values than those of
the surrogate data when m is large except for L, which is
marginally larger than the corresponding exponent for the
surrogates. The significance of the discriminating statistics
of L-exponents is presented in Figs. 5a-b. It is obvious that
for large m the significance of the slatistics becomes higher
than two sigmas for all the exponents except the first (L;).
For L, the significance is marginally lower than 2 sigmas
for T-surrogate and marginally greater than 2 sigmas for S-
surrogate. In general, the significance of the statistics for the
S-surrogate data for all L-exponents are sensibly higher than
for the T-surrogate data.

The largest Lyapunov expenent L., has been estimated
independently according to the Eq. (6). The results of this
estimation for the AE index and its surrogate data are shown
in Fig. 6. For L,,,, the discrimination between the origi-
nal time series and its T- surrogate data is impossible, as the
significance of the statistics remains lower than 2 sigmas for
m in the range 2-10 (see Figs. 6a-c). On the other hand,
for the S-surrogate data the discrimination is possible as the
significance of the slatistic remains higher than two sigmas,
lluctnating at the range of 3-5 sigmas (see Figs. 6d-f). The
above results for the L- exponents spectrum as a discriminat-
ing statistics clearly permit the rejection of the null hypothe-
sis with confidence greater than 95%.

3.2 Modeling and prediction

In the following we present the results of the hypothesis test
using the prediction and modeling methods described in Sect.
2.2. In particular, we use three local linear prediction mod-
els as well as global linear and nonlinear polynomial fitting.
The performance of the models on linear stochastic signals
depends solely upon the autocorrelation [unction of the sig-
nals. Figure 7 shows the autocorrelalion coefficient of the
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AFE index time series and its surrogates, estimated for the
first 50 lags. The autocorrelations for the T-surrogates and
the S-surrogates are shown in Fig. 7a and in Fig. 7b, re-
spectively. Figure 7c reveals the difference between the au-
tocotrelation of the AE index and the mean values of the au-
tocorrelations of the surrogates. In this figure il is appar-
ent that the autocorrelations of the S-surrogates mimic the
AE index autocorrelation much better than the T-surrogates.
However, a weak deviation of the S-surrogate autocorrela-
tions from the AE index autocorrelation is also observed, es-
pecially for lags larger than 10 time units. It is obvious that
statistically the autocorrelation values for T- surrogales are
larger (han the AE index autocorrelation values. Moreover,
the observed deviation of the autocorrelation mean value of
the S-surrogates from the corresponding mean values of the
AE index is much smaller and of opposite sign than that for
T- surrogates. These discrepancies in autocorrelation turn out
Lo have major impact on the results we present below.

3.2.1 Non parameltric local linear prediction

Figure 8 displays the results of the prediction with local weig-
hted averaging on the AE index and its surrogate data, as pre-
sented in Sect. 2.2.2. For the estimation of the prediction we
used for the embedding space m = 7 and delay time + = 1,
k = m + 1 neighbors, as training set the first 24000 values
and as test set the rest 8000 values of the time series. The
correlation coefficient (CC) for T = 1 — 20 step ahead pre-
dictions for the AE index and its 40 T-surrogates are shown in
Fig. 8a. Figure 8b shows the mean value and standard devi-
ation of CC for the T-surrogates together with the CC for the
AE index. The significance of the above statistics is shown
in Fig. 8c. The small values of the significance (0.0 — 0.75)
shows that there is no significant discrimination between the
original time series and its surrogates. Figures 8d-f are simi-
lar to Figs. 8a-c corresponding to the S-surrogales. In these
figures we observe the same result as that obtained for the T-
surrogates.

The above results reveal that it is not possible to reject the
null hypothesis by using this nonparametric linear prediction
scheme. We suspect that the predictability of AE and its sur-
rogates is strictly determined by the autocorrelation function,
in such a way that coincidence of the autocorrelations leads
lo the same predictability. While the above results suggest
that it is not possible to discriminate between the AE index
and iis surrogates but they do not also prove also the linear-
ity of the AE index. While strongly nonlinear and noise-free
signals are successfully discriminated from the surrogates (as
the predictability is less dependent upon the autocorrelation),
for nonlinear signals with weak nonlinearity or strong noisy
component this may not be possible.

3.2.2  Parameitric local linear prediction
In this case we have followed two methods of local linear

prediction (LLP). That is we estimate the local linear maps
using ordinary least square fitting ((OLS) and the regulariza-
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tion ol OL.S with principal components regression (PCR), as
presented in Sect. 2.2.2. Figure 9 presents the results of
LLP with OLS fitting for (T) and (8} surrogate data and Fig.
10 does the same for LLP with PCR regularization. For the
estimations we used embedding dimension m: = 10, delay
time v = 1, k = 60 neighbors, and for regularization pa-
rameler ¢ = 3. For the T-surrogales, the slalistics lend Lo
be significant for small T (T" < 4) (see Fig. 9c and Fig.
10c), especially in the [irst case of LLP with OLS. This re-
sult is apparently caused by the deficiency of T-surrogates Lo
mimic faithfully the autocorrelation of the AE index. This
is supported by the small significance of the same stalistics
estimated for the S-surrogale dala (in the range (-1 sigma as
shown in Fig. 9f and Fig. 10f). The above result for the S-
surrogale data was somehow expected as the aulocorrelations
of the S-surrogates mimic the aulocorrelation ol AE index
more faithfully than the T-surrogates. Therelore, we con-
clude that in both cases of parametric focal linear prediction
it is also impossible to discriminate the original time series
from its surrogate data. We note also that the dependence of
the local parametric prediction models on the autocorrelation
seems to be larger than for the local nonparametric models.

3.2.3 Global linear and nonlinear polynomial {itling

The modeling with global polynomials gave good discrim-
ination between the original and surrogate data, especially
when we defined the discrimination statistic to be the change
of the modeling error as we go from linear to non linear poly-
nomial terms. Here, we use the NRMSE to quantily the mod-
eling error and we consider 5 steps ahead mappings from all
the polynomials of the Volterra Wiener series, as presented
in Sect. 2.2.1.

In Fig. 11a the NRMSE for 40 T-surrogate data and the
AE index 1s shown as a function of the polynomial terms of
the Volterra Wiener series, using m = 10 and ¢ = 2 (sce
Eq. 7). The first 11 polynomial terms are linear (the first
term is the constant) and the rest are nonlinear interactions of
the 10 delays. Figure 11b shows the mean value of NRMSE
and its standard deviation for the I-surrogates together with
NRMSE of the AE index. Obviously, NRMSE for the AE
index is statistically larger than for the T- surrogates. This is
observed even for maps with only linear terms, for which the
coincidence of the errors is expected because the predictabil-
ity is determined entirely by the autocorrelation of the sig-
nal. The observed discrepancy in NRMSE is due to the dil-
ference between the autocorrelations of the T-surrogates and
the AE index according to Fig. 7a and Fig. 7c. For linear
signals, the autocorrelation determines the predictabilily in
such a way that signals with larger autocorrelation values re-
veal larger prediclabilily and smaller prediction error. Since
the above result is also observed also for the nonlinear poly-
nomial terms, the supposed nonlinearity of the AE index is
either weak or covered by a strong noise component. How-
ever, the existence of noticeable nonlinearity for the AE in-
dex is proved by the abrupt reduction of the AE index error
as we pass [rom the lincar to the nonlinear litling, as shown
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in Figs. 1la-b by the difference of NRMSE from 11 to 12
terms. This feature is almost absent for the T-surrogates.

Figure 11c shows the signilicance of NRMSE statistic for
the linear and nonlinear terms of the polynomial fitting. For
linear terms the significance of the statistic reveals values
larger than 2 sigmas, while for nonlinear terms the signifi-
cance varies at smaller values in the range 1.5 — 2.0 sigmas.
The large values of the significance at the linear region is
an artifact cansed by the difference between the autocorre-
lations of the surrogates and the AE index. To the contrary,
the abrupt decay of the NRMSE by introducing the nonlinear
terms in the polynomial fitting leads to a reliable discrimina-
tion between the AE index and its T-surrogates, giving signif-
icance at about 5 sigmas, and constitutes strong evidence for
the nonlinearity of the AE index time series (see Fig. 11d).

In the case of S-surrogate data the discrimination power of
the global polynomial fitiing is more intensive. Figure 12 is
similar to Fig. 11 and corresponds to S-surrogate data. The
NRMSE takes larger values for the S-surrogates than for the
AE index, both for linear and non-linear fitting. This is again
due to the difference of the autocorrelations, i.e. for the S-
surrogates the autocorrelations are slightly smaller than for
the AE index (Fig. 7c). The significance of the NRMSH
statistic, shown in Fig. 12¢, is ~ 12 sigmas for the linear
terms and increases to ~ 20 sigmas when the first nonlinear
term is entered, and remains at large values for the next non-
linear terms. The abrupt increase of the significance of the
statistics at the first nonlinear term and its large values for
all the nonlinear terms strongly supports the non-linearity of
the AE index, permitting the rejection of the null hypothe-
sis. This conclusion is supported also by the error reduction
adding the first nonlinear term estimated for the AE index
and its surrogates. This discriminating statistic, shown in
Fig. 12d, gives significance ~ 15 sigmas while for the T-
surrogates it was found ~ 5 sigmas,

Now, we show that the discrepancy in NRMSE for the lin-
ear terms is solely due to discrepancy in autocorrelation. To
achieve an exact malching in autocorrelation we let the al-
gorithm of Schreiber and Schmitz converge completely, i.e.
until the reordered stochastic signal does not change for the
consequent iterations (in the cost of large computation time).
The new results are shown in Fig. 13. The devialion in
NRMSE for the linear terms has been now removed and the
significance of the NRMSE statistic for the linear terms has
fallen to zero. On the other band, the significance rises to
over 10 sigmas as the [irst nonlinear term is introduced and
stays at the 10 sigmas level for all nonlinear terms. 'The sig-
nificance of the NRMSE after adding the first nonlinear term
has been estimated to ~ 13 sigmas (see also Fig. 13d).

The above results about the polynomial fitting especially
for the S-surrogates strongly reject the null hypothesis and
support faithfully the nonlinearity of the AE index time se-
ries, with confidence > 95%.
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3.3  Mutual Information

Mutual information for the AE index and its surrogate data
has been estimated implementing algorithmically the defini-
tion (10) in Sect. 2.3. Figure 14a shows the mutual informa-
tion estimated for the AE index and its T-surrogates as a func-
tion of the lag time 7. Figure 14b shows the mean value and
the standard deviation of the statistics together with the mu-
tual information of the AE index. The mutual information for
the AE index is slightly larger than that for the T-surrogales.
This difference is significant enough for the discrimination
between the AE index and its surrogale data (Fig. 14c). Es-
pecially for smaller 7, e.g. the first 20 lags, the significance
obtains values in the range of ~ 2 — 12 sigmas. For the larger
lags the significance fluctuates in the region ~ 0 — 4 sigmas.
The above results permit us Lo reject the null hypothesis and
support the nonlinearily of the AE index. Actually, the differ-
ence in mutval information is larger if we take inlo account
that T-surrogates have larger linear correlations than the AE
index (see also Fig. 7a and Fig. Tc).

Figures 14d-f are similar to Figs. 14a-c and correspond to
the S-surrogate data. Now, the values of mutual information
of AE index are clearly larger than the corresponding values
of the S-surrogates (see Figs. 14d-e). The signilicance of the
statistics for the first 20 lags was estimated to be in the region
~ 5 — 12 sigmas and clearly larger than 2 sigmas {or higher
lags, apart from [ew distinct lags. Comparing the mutval in-
formation of the S and T surrogates (see Fig. 14b and Fig.
14e) we see that the mutual information for the 8- surrogates
is smaller in average than {or the T-surrogates. This result
is expected, because for linear signals the mutual informa-
tion is analogous to the autocorrelation and the autocorrela-
tion for the S-surrogates is smaller in average than for the
T-surrogates (see Fig. 7c). On the other hand, the deviation
of the mutval information for the S-surrogates from the orig-
inal, shown in Fig. 14e, is much larger than the correspond-
ing deviation for the T-surrogates, shown in Fig. 14b. This
also suggesls the nonlinearity of the AE index. Finally, the
above comparison of the AE index and its surrogates using
as discriminating statistic the mutval information permits us
also 1o reject the null hypothesis with sufficient confidence,
larger than 95%.

4 Summary and discussion

In this second part of our study we have tested the null hy-
pothesis that the dynamical characteristics of the AE index
time series are similar with those of linear stochastic signals.
We considered stochastic signals that are supposed to mimic
the amplitude distribution and the power spectrum (or equiv-
alently the aulocorrelation function) of the AE index after a
nonlinear static distortion. For this testing we vsed two dif-
ferent schemes for Lthe generation of surrogate data accord-
ing to Theiler et al. (1992b,a) (T- surrogates) and Schreiber
and Schmitz (1996) (S-surrogates). It turned out that the S-
surrogate data can mimic the autocorrelation function of the
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Table 1. This table summarizes the L-exponents spectrum of the AE index at rn = 20 (column 2) and the mean values of L-exponents for the surrogate data
{columns 3 and 4), as well as the significance of the comesponding discriminating statistics (columns 5 and 6). The last row is for the maximum Lyapunov

exponent estimated independently for m = 10.

Spectrum of Lyapunov exponents “Nonlinear” surrogate data

LE. AFE “index | T-surrogate data (mean values) | S-surrogate data (mean values) | T - surrogate data (sigmas} | $-surrogate data (sigmas)
I, 0.346 0.243 0.240 1.73 2.06

La 0.277 0.083 (1.035 2.81 4.05

L3 0.199 -0.014 -0.073 297 4.80

Ly 0.093 -0.102 -0.162 299 4.37

Ls 0.022 -0.189 -(.250 333 481

Lg -0.051 -0.279 -0.339 3.57 5.08

L+ -0.118 -0.365 -0.426 4,08 545

Ls -0.196 -0.456 -(1.516 448 577

Ly -0.306 -0.553 -0.608 4.09 499

Lo -0.360 -0.652 -0.704 498 5.51

Limaz 0.155 0.160 0.175 .45 4.00 i

Table 2. This table includes the significance of the discriminating statistics of polynomial fitting (linear and nonlinear) given by NRMSE for the T-surrogates
and for the two groups of S-surrogates. The sigrificance of the error reduction passing from linear to nonlinear terms of the polynomiat fitting is also shown.

Significance of the statistics
NRMSE for polynomial fitting | T-surrogate data (sigmas) S-surrogate data (sigmas)
Partial convergence | Complete convergence
Linear fitting 2-2.5 11-13 <1
Nonlinear fitting ~ L.5 15-21 10-12
Error reduction 5 15 12.47

AFE index better than the [- surrogate data. This difference
between S and 1isurrogate data is manifested in the discrim-
inating statistics we used to test the null hypothesis.

For the Lyapunov spectrum and the pelynomial fitting the
significance of the statistics is larger for the S-surrogates, but
smaller in general for local linear prediction. Therefore, we
conclude that the S-surrogate data are more suitable for tesi-
ing the null hypothesis especially when we let the algorithm
which generales them converge completely.

The estimated values of the L-exponents for the AE in-
dex and the significance of the corresponding statistics are
summarized in Table 1. This table shows that for the AE in-
dex there were estimated fonr positive L-exponents while for
the T-surrogate and S-surrogate data only two. The signif-
icance of the L-exponent discriminating statistic is sysiem-
atically larger for the S-surrogates than [or the T-surrogates
and much larger than 2 sigmas, especially for S-surrogates.
These results permit us to reject the null hypothesis using the
L-exponents and to suppose that at least one of the four pos-
ilive L-exponents is not spurious or due to noise in the AE
data. If this is correct then the positive L-exponent must be
assigned to the deterministic component of the underlying
process and, thus, the hypothesis of magnetospheric chaos
can be supported from our results on Lyapunov exponerts,

We believe that nonlinearity is well documenied also by
the results from the polynomial fitting, summarized in Table
2. The S-surrogate data generated from the complete con-
vergence of the algorithm give the most proper results for
linear fitting (significance down to zero level). Adding non-

linear terms, the difference in NRMSE of the AE ndex and
these S-surrogate data increases abruptly and the significance
reads ~ 10 sigmas. These characteristics were found to be
absent for T-surrogate data. However, using as discriminat-
ing statistic the reduction error after adding the first nonlincar
term, high level of discrimination is achieved for all surrogate
types. This is due to the improvement of the predictability of
the AE index afler adding a nonlinear term, even if the de-
crease of NRMSE is only ~ 2%. Thus, the polynomial fit-
ting is a simple and efficient method for detecting dynamical
nonlinearity.

The nenlinearity of the underlying to the AE index deter-
minism was also supported by the estimation of the mutual
information, as summarized in Table 3. For surrogale data (of
S and T type) the mutual information is determined by the
autocorrelation. Comparing the mutual information of the
AE data and its surrogates we conclude that for the AE index
the muiual information does not depend upon the autocorre-
lation, which gives again evidence for nonlinearity. Indeed,
the significance for the mutual information was found to be
much larger than 2 sigmas, especially for the S-surrogates
and for small lags (see Table 3).

For signals with weak nonlinearity or with a strong com-
ponent of noise the nonlinear local prediction is inefficient
to discriminate the original signal from its surrogates. This
is concluded after applying local prediction methoeds to the
AE index. The negative results on the significance of this
discriminating statistic, summarized in Table 4, are in con-
trast with the previous results of this study which have shown
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Table 3. This table shows the significance of the discriminating statistic of the mutual information for different lags and for T and S surrogate data.

Mutual Information for different lag time Significance of the statistics
T-surrogate data (sigmas) | S-surrogate dara (sigmas)
1-5 lags 2-12 12-13
5-20 lags 2-5 5-12
20-400 lags 0-4 2-6

Table 4. This table shows the significance of the statistic of the correlation coefficient for the predicted and real values estimated by different types of local

models.

Nonlinear local prediction (Correlation coetficient) Significant of the statistics
T-surrogate (sigmas) | S-surrogate (sigmas)

Local Weighted Averaging 0.0-0.7 0.2-10

LLP with QLS 0.0-2.0 0.6-1.0

LLP with PCR 0.0-1.7 0.0-1.0

strong confidence (over 95%) for rejecting the null hypothe-
sis. This indicates either the existence of weak nonlinearity
of the AE index or the existence of a strong component of
noise which can cover partially or globally the nonlinearity
in the case of local prediction.

Finally, we believe that the results in Part I (Pavlos et al.,
1999a) as well as those in this part constitute significant ev-
idence for low dimensionality, nonlinearily and chaoticity of
the underlying physical process to the AE index time series.
However, it is known that the magnetospheric system, the dy-
namics of which is measured through the AE index, is contin-
uously coupled with the external dynamics of the solar wind
system. For this reason it remains an open problem the rela-
tion of the low dimensional, nonlinear and probably chaotic
character of the AE index, as indicated in this study, with the
magnetospheric dynamics and its external coupling. In an-
other study (Pavlos et al., 1999b) we encounter this persistent
preblem about the magnetospheric dynamics and nonlinear
analysis of the magnetospheric data.
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