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Abstract. The evolution of tracer “injected” into an
equivalent barotropic eddy on the beta-plane is exam-
ined numerically. The eddy is governed by the stan-
dard quasigecstrophic equation, and the concentration
of tracer is governed by the advection equation with dif-
fusion. At the initial moment of time, the streamfunc-
tion and distribution of tracer are both radially or ellip-
tically symmetric. After the first 10-30 days, a spiral-
like strip, where the gradient of concentration is large,
develops in the tracer field, whereas the eddy remains
smooth for a relatively long time. To put this conclusion
in quantitative terms, a “tracer variability indicator” is
introduced and shown to grow much faster than a similar
characteristic of the potential vorticity ficld (notwith-
standing the fact that the tracer concentration and PV
satisfy the same governing equation). A simple expla-
nation as to why che tracer is more affected by filamen-
tation than PV is provided for eddies with small Burger
number. It is demonstrated that the high-gradient strip
develops, unless stopped by turbulent diffusion, into an
inversion (non-monoetonicity) of the tracer concentration
field. Finally, the results of simulations are compared to
the spiral patterns in the real-life eddies observed in the
East Australian Current.

1 Introduction

The characteristics of oceanic eddies arc inherited, to
a certain extent, from the frontal current which they
have been shed by. Roughly speaking, the profile of an
eddy can be obtained by “bending” the frontal current
into a circular or elliptic ring. Thus, after breaking free,
the velocity, temperature, salinity and other fields of the
eddy are close to being radially or elliptically symmetric.
Even if there were, initially, asymmetric inhomogeneities
of. say, temperature or salinity, they would be rapidly

Correspondence to: E. S Benilov

averaged out along all closed streamlines {Rhines and
Young, 1983). In the course of further evolution, how-
ever, the cddy is affected by sheared currents, S-effect
and bottom topography, which distort its shape and
cause filamentation. Although it would be natural to
assume that all characteristics of the eddy lose smooth-
ncss at the same rate, no quantitative studies have been
performed to clarify this point!.

The preéent paper examines the evolution of quasi-
geostrophic eddies on the J-plane. The attention is fo-
cussed on the equivalent barotropic motion, which is
governed by a single dynamic characteristic (the effec-
tive depth of the active Jaycr). All other fields {e.g.
salinity and temperature at a fixed depth) can be treated
as tracers and described, with a reasonable degree of
accuracy, by the advection/diffusion equation. Surpris-
ingly, the tracer field develops filamentation much faster
than the streamfunction and potential vorticity — de-
spite the fact that the latter is governed by the same
equation as the tracer concentration. Physically, the
weaker stretching of the active characteristics of the flow
occurs because they act back on the velocity field that
advects them.

In section 2 of this paper, we shall present the re-
sults of simulation of the advection of tracer by circular
eddies. It should be emphasised that we are not inter-
ested in the effect of “spiralisation” of an initial tracer
“spot” by a vortex with differential rotation - that one
has been examined many times before (see Rhines and
Young, 1983; Fiohr and Vassilicos, 1997 and references
therein). We shall assume that the initial conditions for
the vortex and tracer are radially symmetric and con-
centric, for which the usual 2D dynamics would cause
no “spiraling”. In other words, the phenomenon that
we are looking at is due primarily to the beta-effect.

In section 3, the results will be extended to (initially)

There have been published, however, several papers on the
evolution of tracers in turbulent Hows, of which the closest to the
present work is {Bartello & Holloway 1991},
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Fig. 1. The evolution of eddy {4): tracer concentration.
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elliptic eddies and (initially) elliptic tracer distributions.
[ seetion 4, we shall consider the offect of (urbulent
diffusion and. in section 3, present the conclusians,

2 Circular eddies, non-diffusive model
2.1  Governing equations

The equation describing equivalent barotropic eddies on
the d-plane is

a 5 1 . av

= VY — @+ J(0, VT +3-— =0, 1
c')t( Rg> ( )G =0 )
where {x,y,t) are the spatial coordinates and time, ¥
is the streamfunction, Ry is the (internal) deformation
radius, 3 is the meridional gradient of the Coriolis pa-
rameter, and J is the Jacobian operator. The concentra-
tion C'(x,y.t) of the tracer is deseribed by the advection
equation:

aC
ot
Observe that (2) does not include a diffusive term (the

effect of diffusion will be considered in section 4). In all
simulations, we used the following values of parameters:

+ J(8,C) = 0. (2)

Ry =30km, =210 em 157!

{the latter corresponds to the latitude 30°). In this sec-
tion. we shall consider cireular Gaussian eddies:

¥z, y,0) = Aexp (*Lj%%ﬁ) . 3)
2 P 2 -

Clzy,0) = exp (- 544}

where 4 and R are the amplitude and radius of the eddy

(the radius of maximum swirl velocity).

2.2 Numerical method

The initial-value problem (1)-(3) was solved using the
pseudospectral method with Fourier series and high
wavenumber filter for spatial derivatives, and Runge-
Kutta fourth-order scheme for time derivatives. The
computation domain was a square, with double-periodic
boundary conditions. In order to make those “safe”, it
was made sure that the fastest Rossby wave would prop-
agate. over the simulation time. across no more than 1/3
ol the domain sjze.

A number of conserved quantities were monitored to
control the accuracy of simulation: net energy, net mass
of the fluid, net mass of the tracer, the extreme potential
vorticity and extreme tracer concentration. It turned
out that the net characteristics are not indicative of the
accuracy: they were conserved with an error of 0.0014%
even in those cases where the error in the extreme pa-
rameters was greater than 1% (see also subscction 2.4).
The experiments showed that a proper resolution of the
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110 DAYS

Fig. 2. The final ({ = 110 days) snapshat of eddy (4): tracer
concentration.

structure of the tracer field requires an error of less than
0.01% in conservational of the “cxtreme” parameters —
which was achieved by using the resolution of 512 x 512
gridpaints.  Given that in most runs the domain was
5300 &k x 500 ke, this amounts to approximately one
gridpoeint per kilometre.

2.3 Results

We considered various eddies in the range of 5-30cm/s
for the maximum swirl velocity and 30-100km for the
radius of the vortex — and in all cases observed the same
pattern. One case will be described in detail:
A=-11x10"m*/s, R=>50km. (4)
which corresponds to a moderate to weak warm-corc?
eddy of maximum velocity of 14cm/s at a radius of
50km. The simulation period was 110 days. Scon after
the beginning of the evolution, a spiral strip, where the
gradient of concentration was large, developed in the
tracer field (see Figs. 1. and 2).

Remarkably, nothing similar occurred in the potential
vorticity field

PV:V'Z‘I'—i.,lI’JrBy
R

and streamfunction (see Figs. 3, 4 and 3, 6, respectively)
- in fact, both dynamic fields remained close to radially
symmetric for a very long time.

The mechanism, giving rise to the spiral pattern, is
as follows: some of the particles in the periphery of the
eddy spiral slowly towards the centre (this can be seen
if the reader superimpose Fig. 1 on Fig. 3). It should be
emphasised that the “rotating” component of the par-
ticles’ trajectories is due to the rotation of the vortex,
whereas the motion toward the vortex centre occurs due

2Observe that the QG symmetry ¥ — —w.,y — -y means that
the results herc equally apply to both warm- and cols-core eddies
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Fig. 3. The evolution of eddy {4): potential vorticity.
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L1D DAYS

Fig. 4. The final (t = 110 days} snapshot of eddy (4): potential
vorticity.

10 DAYS

Fig. 6. The final (z = 110 days) snapshot of eddy (4): the stream-
function.

to the beta-effect {which is the only radially asymmoectric
effeet).

As a result, particles with high and low values of C
end up next to each other, causing high gradients of the
concentration field. At later stages of the evolution (¢ >
60 days}, this leads to inversions (non-monaotonicity) of
the tracer concentration field. Eventually, a tail of parti-
cles with high concentration of tracer is “peeled off” the
eddy {(by the influx of low-(” peripheral particles), which
agrees with simulations of Dewar and Flier] (1985}, In-
terestingly. the tail is invisible in terms of potential vor-
ticity or streamfunction — compare Figs. 1b,c with la
{an imaginative reader can still work out how the pat-
terns of C' and PV can be reconciled). The inversions
and tail can be observed in the zonal cross-section of
the concentration field (Fig. 7a). The corresponding
PV cross-section, given for comparison in Fig. 7b, is
evidently smoother.

In order to put the ahove abservations in quantita-
tive form, the following “variability indicator” was in-

7

1.8

n4 | -
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P

ib)

PV (day!)
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Fig. 7. The cross-section of the final {¢+ = 110 days) snapshot of
eddy (4).

{a) tracer concentration;

(b} potential vorticity.

troduced for the tracer concentration field
_ JIVCay ) dedy |
[ [VC(z,y,0))° dzx dy

and compared with a similar quantity, V1., calculated
for relative vorticity®. The results are shown in Fig. 8.

Clearly, the variability of the tracer grows increas-
ingly faster than that of the potential vorticity, despite
the fact that the two fields satisfy the same advection
equation!

VI.(t)

3Qbserve that, in this instance, we compare C with relative
vorticity, not potential vorticity. The reason for that is that the
gradient of the latter has a non-zero background value (because
of the Sy term), which makes VI, dependent on the computa-
tion domain. The variability indicator of relative vorticity is free
from this shaortcoming and, at the same time, still provides a good
cslirmnate of filamentation.
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Fig. 5. The evolution of eddy (4): the streamfunction.
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Fig. 8, The “variability indicator” vs. time for eddy (4).
(1) tracer concentration;
{2) potential vorlicity.

Finally, we note that the main features of the tracer
evolution are nof sensitive to the initial profile of the
vortex or tracer distribution (as long as those remain
radially symmetric, of course). Apart from the Gaus-
sian profile, two other profiles were tested, and the be-
haviours observed were visually indistinguishable from
the Gaussian case.

2.4 Discussion

1) Given that " and PV are governed by the same equa-
tion. the main issue to be addressed now is what makes
their evolution so different.

In order to put this question in a simpler {ramework,
we shall first consider large-scale eddies:

3

R\Z
Bu = (;) < 1. (3)

In this case, the first term in equation (1) is small com-
pared to the second term and thus can be omitted:

1 0w \ o
Fﬁ"?JTt_JFJ(‘I”v lI!)+,35£~0. (6)

For a radially symmetric initial condition,
T(r,y.0) = Yo(2* +¢7),

equation {6} can be readily solved:

Wir g, 0) = Uy |(x— Vi t)” + y°

/-\
-

where

L-'lf = —jf{j
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is the speed of long Rossby waves. Thus, until the error
introduced by the omission of the small term agiw Hac-
cumulates” and equation (6) fails, the strcamfunction
distribution of the eddy steadily translates westwards
and preserves its shape.

Given condition (5), the expression for potential vor-
ticity can also be simplified:

1
RE- T
If rewritten in the form

PV Elg(\ll+‘i/}g y), (8)
d

this equality demonstrates that the contours of equal
potential vorticity coincide with the streamlines, which
makes the distribution of PV in the vortex alse steady.
It should be emphasized that (8) follows from the defi-
nition of PV and assumption (5}, and thus holds for all
initial conditions [as long as thoy satisty (5)].

In order to find out if the concentration of tracer is
steady, we rewriie equation (2) in the co-moving refer-
ence frame
=t

J’."Z.’L‘AVRt, y':y,

and omit the time derivative {and primes):

e o
~Vego + J(%0,C) = 0.

This equality can be rewritten in the form
C=F(¥-Vgy), (9)

where the function F is determined by the initial condi-
tion for . Similar to equation (&), this equation seems
to suggest that the contours of C coincide with the
streamlines. However, if the initial condition for O is
radially symmetric

Cla,y,0) =Cy (-E“) +'§’2) ,
(9) does not hold for any function F:
Co(a* +y*) # F [To (z* +4°) — Vry].

Thus, the difference in the initial conditions accounts for
the difference in the behaviour of PV and ' - after all,
if the governing equations coincide, the inivial conditions
can be the only source of distinction.

Observe that, although the Burger number was not
all that small in our simulations (Bu = 0.36), solution
(7) agrees well with what we see in Figs. 1c, 2¢. Indeed,
the evolution of the eddy is relatively slow it steadily
translates westwards®, but the initial shape of its core
remains virtually unperturbed. In order to determine

4The reference frame in all figures is linked to the r-coordinate
of the centre of the eddy, which makes the westward Lranslation
invisible. It is alse worth noting that the meridional drift of the
vortex in all case considered was fairly weak.
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Table 1. The ratio of variability indicators vs. radius of the eddy
after 110 days.

Rikm) DBu VI VI,
(4) 50 0.36 23.7
{10) 10 0.56 9.6
{11) 30 1.00 4.6
(12) 20 2.25 1.8

for which values of Bu we should expect qualitatively
different behaviours of € and PV, we considered warm-
core eddies with the following parameters:

A=-088x 10"m?/s, R =40 km, (10)
A=-066 x 10" m?/s, R = 30 km, (11)
A= 044 x 10*m? /s, R=20km (12)

and compared them to eddy (4) (observe that ail four
eddies have the same maximum velocity, 14 cm/s). The
results are presented in Table 1

- they suggest that the qualitative difference between
the behaviours of C' and PV disappears for R < 30 km.
Given thal most, if not all, oceanic rings are larger than
40km (Olson, 1991}, we conclude that the above argu-
ment is fully applicable to the real oeean.

2) In order to check the accuracy of our numerical
method, we performed three runs with weaker resolu-
tion: 64 x 64, 128 x 128 and 256 x 256 gridpoints, and
compared the results with the 512x 512 run (see Fig. 9).

Evidently, only the two high-resolution runs can be
trusted. In fact, the 64 x 64 run shows no traces of
the spiral structure whatsoever, and the 128 x 128 run
resolves only the two strongest inversions of the tracer
concentration in Fig. 7a. Interestingly enough, the two
low-resolution runs showed excellent conservation of the
net quantities {energy, mass, etc.) — all errors were less
than 0.01%. Even the errors in conservation of the ex-
treme quantities look reasonable (1.2% for the 128 x 128
run). It seems that, in this kind of problem, trustwor-
thy results are guaranteed only if all errors of conserved
quantities are less than 0.01%.

3) Finally, we note that spiral patterns similar to those
simnulated here have been observed in the real occan and,
in particular, in the East Australian Current (George
Cresswell, private communication - see Fig. 10).

It cannot be claimed with the hundred percent cer-
tainty, of course, that the mechanism of formation of
these patterns is as described in this paper. In order to
deduce a convincing conclusion in this issue, onc needs
to analyse the velocity field associated with the sea-
surface temperature observed. The crucial point here
would be the existence of a weak inflow of peripheral
watet spiraling towards the centre of the eddy, which
was always present in our simulations.

Benilov: Advection of tracer by eddies on the beta-plane

T —r i e e AL

ZUHJ)HNUHIH”E{]“‘HK{) = ‘lﬂ[]
t (days)

Fig. 9. The “variability indicator” of € vs. time, for eddy {4).
{1y 512 = 512 gridpoints;
(2) 256 x 256 gridpoints;
(3) 128 % 128 gridpoints;
(4) 64 x 64 gridpoints.

Fig. 10. A satellite image of an eddy in the East Australian
Current {the sea surface temperature).
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4

Vi,

t {days)

Fig. 11. The “variability indicator” of C vs. time, lor
(1) eddy {14) (aspect ratio 1);
(2) eddy {15} (aspect ratio 1.1);
(3) eddy (16) (aspect ratio 1.2).

3  Elliptic eddies

As a first step towards a more realistic approximation
of oceanic eddics, we considered elliptic eddies described
by

a2 2
Vir,y,0) = Acxp (—2—%{ - :%5) .
2 2

Cla,y.0) = exp (— 5 — oz )

]

(13)

where A is the amplitude of the eddy, and R, and R,
are, basically, the major axes of the ellipse. We per-
formed three simulations of eddies of the same ampli-
tude and “average” radius (R, + R,)/2, but different
aspect ratios:

A=-1.1x10"m?/s,

R, =50km, R, =50km; } (14)
A=-1.1x104m?/s, 13
R, =47.5km, R, =52.5km; (15)
A= -11x10"m?/s, 16
R, = 45 km, R, =35 km (16)

(the maximum velocity in all three cases is close to
15cm/s). The results are shown in Fig. 11 - clearly,
more eccentric eddies are more affected by filamenta-
tion than less eccentric eddics.

It should also be noted that spiral patterns and in-
versions develop in elliptic eddies noticeably faster than
those in circular eddies (compare Fig. 12 with Fig. 7a).
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The greater susceptibility to filamentation of tracer in
elliptic vortices (as opposed to that in circular vortices)
appears to be natural at an intuitive level, However, it is
not clear how it can he explained in quantitative terms.

4 The effect of turbulent diffusion

Looking at the cross-section of the tracer concentration
shown in Fig. 7a, one cannat escape the feeling that
turbulent diffusion, if taken into account, would affect
strongly the fine structure of the tracer field. It is ob-
vious, in fact, that — sooner or later — the effect of dif-
fusion will smooth ali filaments out, and the question
is not “whether this occurs”, but “when” — before the
spiral pattern has developed or after that. But, in either
case, the tracer will eventually be homogenized within
the eddy’s closed streamlines (Rhines and Young, 1983).

In order to clarify, at which stage of the evolution the
effect of diffusion becomes important, we estimate the
characteristic time of the diffusion

LZ

Th 7
where L is the width of the high-gradient area, and 7 is
the turbulent diffusivity. The latter is one of the most
uncertain oceanic parameters: it is believed to vary in
the range of 10° — 10% em?/s for meso- to large-scale
motions (e.g. Pedlosky, 1987). In our case, L is 20-5km
(for the spiral pattern and inversions of C, respectively).
Assuming that the diffusivity grows with spatial scale of
the tracer distribution®, we conclude that, in our case,
1 should be of the order of the lower boundary of the
above-mentioned range, 5 = 10° em? /s (which agrees, in
fact, with the measurements of Ozmidov, 1968; Okubo
and Ozmidov, 1970). Estimating r, for L = 20km, we
obtain 7, = 462 days; and for L = 5&m, we obtain
7, = 29 days. Thus, for the above value of 7,

- turbulent diffusion has no influence on the spiral
pattern,

— hut should affect the inversions of the tracer con-
centration field.
In other words, the effect of diffusion may prevent high-
gradient areas from developing into inversions.

These conclusions have been verified numerically by
replacing the advection equation (2) with

3]

a—f + J(8,C) = qVEC (17)
and simulating the initial-value problem (1), (17), (13)
with n = 10° em?/s. For all eddies, both circular and
elliptic, the first stage of evolution (when the spiral

51t is implied that turbulent diffusion is created by turbulent
maotions of scales that are smaller than the spatial scale of the
tracer. Thus, smooth (large-scale) distributions of tracer are af-
fected by a wider spectrum of turbulence and therefore have larger
diffusivity.
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0 DAYS S5 DAYS

10 DAYS 15 DAYS

20 DAYS 25 DAYS

Fig. 12, The evolution of tracer in {elliptic) eddy (16).

pattern develops) was hardly distinguishable from the
non-diffusive case. Ewven for a larger diffusivity, n =
10%em?/s, the spiral pattern was clearly visible in all
numerical experiments. However, only elliptic eddies
developed inversions of €, and even those did not de-
" velop all of the fine structure of the non-diffusive case -
see the cross-scction of the eddy with

A= -11x10*m?/s, }

Ry = 35km, Ry, = 70 km; (18)

shown in Fig. 13 {the maximum velocity in this eddy is
about 20cm/s).

The profile of C in circular eddies in all numerical
cxperiments remained monotonic (apart from the non-
monotonicity caused by the tail).

It should be noted, however, that these results are
not very rcliable due Lo uncertainty in the value of ».
Moreover, the whole “differential” approximation of the
diffusion term is not a very good madel far our case.
Generally speaking, turbulent diffusion at meso-scales
oceurs due to inertial/internal waves 1-15 km long. In
our case, the wavelengths of those are comparable to the
spatial scale of the tracer field. which ¢learly makes the
differential approximation inapplicable.

In order to model the effect of turbulent diffusion
in a tracer field with a spatial scale of 5-20km. one
should use the primitive equations. The diffusivity
should be chosen as determined by medium- to short-
scale wave turbulence., Longer waves (with wavelengths,

30 DAYS 39 DAYS

Bk

on

U o

02

il LKL 21 ki1 400 SLH)
x (km)

Fig. 13. The cross-section of the concentration field for eddy (18}
after 35 days. The solid/dotted Yines show the profiles computed
using the diffusive/non-diffusive models, respectively.

say, greater than 5km) should be included in the initial
condition, so the turbulent diffusion will oceur “natu-
rally”. Observe that this model requires the same kind
of resolution {1 gridpoint per kilometre) as the QG-
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bhased madel used above.

5 Conclusions

Thus, it has been demonstrated that the concentration
of tracer advected by an eddy on the S-planc is al-
fected by filamencation much stronger than the dynamic
characteristics of the eddy (streamfunction and PV). A
spiral-like strip, where the gradient of concentration is
high, develops in the tracer field. Later on, the strip
develops - unless stopped by turbulent diffusion - into
an inversion (non-monotonicity) of the tracer concen-
tration filed. Elliptic eddies manifest this pattern faster
and stronger than circular eddies.

The observed behaviour has been explained thco-
retically for large-scale eddies, ie. such that Bu =
(.RJ/R)Q <. 1 (where Ry is the deformation radius
and R 1s the radius of the eddy). Numerical experi-
ments suggest that the qualitative difforence between
the behaviours of ¢ and PV disappears for eddics with
It < 30 km. Given that most | if nor all, oceanic rings are
larger than 30km (e.g. Olson, 1991), we conclude thar
our results are fully applicable to the real ocean. In fact,
spiral patterns similar to those computed in this paper
huve been observed in the real ocean (George Cresswell,
private communication — see Fig, 10), although one can-
not claim with certainty that they are a resuls of the
mechanism discussed in this paper.

Finally. we note that all the conclusions ohtained in
this paper are applicable to an early stage of vortex
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evolution, when the Rossby-wave radiation has not yet
significantly weakened the vortex. In order to examine
the laver stage, one needs to improve the resolution of
the numericai method used by the order of magnitude.
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