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Abstract. The discrete periodic inverse scattering trans-
form (DPIST) has been shown to provide the salient
features of nonlinear Fourier analysis for surface shal-
low water waves whose dynamics are governed by the
Korteweg-de Vries (KdV) equation — (1) linear super-
position of components with power spectra that are in-
variants of the motion of nonlinear dispersive waves and
{2) nonlinear filtering. As it is well known that internal
gravity waves also approximately satisfy the KdV equa-
tion in shallow stratified layers, this paper investigates
the degree to which DPIST provides a useful nonlin-
ear spectral analysis of internal waves by application
to simulations and wave tank experiments of infernal
wave propagation from localized dense disturbances. It
is found that DPIST analysis is sensitive to the quantity
A= éfg, where the first factor depends parametrically
on the Richardson number and the background shear
and density profiles and the second factor is the Ursell
number—the ratio of the dimensionless wave amplitude
to the dimensionless squared wavenumber. Each sepa-
rate wave component of the decomposition of the ini-
tial disturbance can have a different )\ value, and thus
there is usually just one component which is an invari-
ant of the motion found by DPIST analysis. However,
as the physical applications, e.g. accidental toxic gas
releases, are usually concerned with the propagation of
the longest wavenumber disturbance, this is still useful
information. In cases where only long, monochromatic
solitary waves are triggered or selected by the waveg-
uide, the entire DPIST spectral analysis is useful.

1 Motivation

An attractive idea for the data analysis of spatiotem-
poral waves in a one dimensional wave-guide has been
championed over many vears by A.R. Osborne and co-
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workers: Osborne and Petti (1994), Osborne and Segre
(1993), Osborne and Petti (1993), Osborne {1991),
Osborne et al. (1991), Osborne and Segre (1990), Os-
borne and Bergamasco (1986), Osborne and Bergam-
asco (1985). The workhorse technique of data analysis
of wave propagation is the discrete, fast Fourier trans-
form. Perhaps the single most important feature of the
Fourier transform for application to wave motion is the
linear superposition principle for components that are
invariant during the propagation of linear, dispersive
waves. The crux of the new data analysis technique is
the analogous treatment of nonlinear dispersive waves.
The discrete, periodic inverse scattering transform has
a linear superposition principle for components that ate
invariant during the propagation of nonlinear, dispersive
waves governed by integrable dynamics.

The focus of the work by Osborne and co-workers has
been the dynamics of shallow water surface waves, which
approximately satisfy the Korkweg-de Vries (KdV) equa-
tion [Korteweg and de Vries (1894)]. The KdV equation
is well known to be integrable (see e.g. Lamb {1980))
and thus tractahle for the solution of initial value prob-
lems by the inverse scattering transform. The focus
of Osborne and Bergamasco [Oshorne and Bergamasco
(1986), Osborne and Bergamasco (1985)] was to imple-
ment numerically the discrete, periodic inverse scatter-
ing transform. (DPIST) as a data analysis technique
completely analogous to Fourier analysis but in a non-
linear sense for weakly nonlinear shallow water surface
waves. Once the data analysis tool was vetted, applica-
tion to ocean surface waves [Osborne et al. (1991)] and
laboratory-generated shallow water waves [Osborne and
Petti (1994}} demonstrated the robustness of the tech-
nique. As these situations only approximately satisfy
the KdV equations, and then only perhaps in narrow
regimes of validity, the success of the technique lends
credibility to the speculation that it may be more gen-
erally applicable to other applications where the KdV
equation is a valid approximation: internal waves [Ben-
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ney (1966}, Benjamin (1966)], Rossby waves [Ben-
ney (1966), Long (1964), Maxworthy and Redekopp
{1976)], and bores [Peregrine (1966)].

In this paper, the challenge of applying DPIST for data
analysis of internal gravity waves is taken up. Simu-
lations and wave tank experiments of internal gravity
wave propagation from localized, dense releases are per-
formed to generate datasets which, based on the theories
of [Benney (1966)] and [Benjamin (1966)] and sub-
sequent developments [Maslowe and Redekopp (1980),

Gear and Grimshaw {1983), Weidman and Velarde (1992),

Kocp and Butler (1981)], would be expected to de-
velop inte nonlinear dispersive waves governed approx-
imately by the KdV equation. The simulations are of
a two-dimensional atmospheric inversion with initial re-
leases of cold disturbances that later develop into soli-
tary waves. The wave tank experiments, also modelling
this situation, are undertaken to produce less idealized
data sets of internal wave propagation. Some modelling
choices for the parameters of the DPIST method are
made which make the analysis plausible. Discussion of
the applicability of DPIST to internal wave data follows.
In the next subsection, the paradigm of the inverse scat-
tering transform is reviewed and the organization of the
paper explained.

1.1 The Paradigm of the Inverse Scattering Transform

A transform frequently encountered in the theoretical
treatment of nonlinear dispersive waves is the Inverse
Scattering Transform (IST). This 1s a spectral analysis
technique for wave motion governed by specific nonlin-
car evolution equations. In this paper, the focus is on
the KdV equation.

Osborne and Bergamasco {1985) showed that the scat-
tering transform reduces to a Fourier series in the van-
ishing amplitude limit. The shape functions used in
scattering, however, take a different form than the Fourier
series. The analogues of sines and cosines for the linear
Fourier theory are the hyperelliptic functions (p;) for
the scattering transform. In absence of nonlinear inter-
actions these p;’s are cnoidal waves and in the simple
one soliton case they can be a sech? {Osborne and Berga-
masco (1986)). When more than one mode is present
there will be a nonlinear interaction between the modes.
The oscillation modes are no longer pure cnoidal waves
since the interaction term must be accommodated.
DPIST is not limited to situations that are approxi-
mated by KdV dynamics. For instance, it has been
used to analyze disturbances propagating in the Toda
lattice. The Toda lattice, or Toda chain in one dimen-
sion, models vibrations in solids. Fermi et al. (1955)
performed seminal numerical simulations in which they
introduced disturbances in the Toda chain. IST for
solitary waves propagating through the Toda chain is
row a much studied topic Flashka (1974), Flashka and
MeLaughlin {1976) and Ferguson et al. (1982)].

The essence of DPIST is to compute discrete approxima-
tions to the spectra of the Schrodinger equation, where
the potential w(z) is given by the initial profile of the
wave: u{x) = An{z,t = (1), where A is a parameter ex-
pressing the degree of nonlinearity of the waveform, and
n (z,t) is the waveform. n {z,t = 0) is termed the signal.
The information produced by DPIST analysis consists
of a main spectrum, an auxiliary spectrum {with osciila-
tion modes) and the amplitudes of the oscillation modes.
A linear affine combination of the oscillation modes re-
quiring all of the information obtained by DPIST re-
constructs the ariginal signal. When the wave motion
is governed by the KdV equation, the amplitudes of the
oscillation modes are invariants of the motion. Thus the
waveform at all subsequent times may be constructed by
information extracted by DPIST from the initial signal
only.

In section 2 the scattering algorithm used in this study
15 explained. Further, the inverse problem and time evo-
lution of waves are explored. Examples and tests of the
scattering transform are given in section 3. The appli-
cation of the scattering transform to the wave data of
the simulations in this paper is discussed in section 4.
Some experiments are analysed in section 5. Concluding
remarks are made in section 6.

2 Application of the scattering transform to wave:
in fluids

2.1 Korteweg de Vries equation and Scalings

The Korteweg and de Vries equation for weakly nonlin-
ear, shallow water surface waves is:

M+ Cofge + @™ g + B 00 ey =0 (1)

The asterisk refers to cimensional variables. In this

equation the various constants are specific for the medium
in which the wave propagates. In the case of shallow

water surface waves: n*(z,t) is the wave amplitude as a

function of space and time, o® = 3cg/2h, 8* = coh®/6,

o is the linear, long wave phase speed ¢p = /gh and

h the height of the water surface. It is convenient to

restate (1) in dimensionless variables with scalings

t* x*
alyre T @

_n
7? - AO !
These scalings are explained bhelow. The KdV equation
takes the form:

e + Mo + atiiy + Ongge =0 (3)

with @ = 2z and 8 = $u®. The KdV equation is rewrit-
ten in order for it to be solvable by a scattering method.
The amplitude 7 is substituted by {Whitham {1974)).

o
R — = 4
Gﬁn(m’t =0) = —Aanlz,t =0) {4)

wlz) =
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Here A is a parameter indicating the degree of nonlin-
earity of the wave, a modified Ursell number. The KdV
equation is rewritten in a more convenient form in a
moving coordinate system x + 1 — t:

Us — BUUy + Uy, = 0 (5)

Benney (1966) showed for shear and stable stratification
of weakly nonlinear, long waves in a shallow layer:

1w ani 3d .
a = r:;fol’?(g ?)2 @; z :57_ (6)
(‘.fo p(c—u) praz €
1. -2
) 5 1 f ple—a) ¢dz s
§ = W =i’ (7)
©fy Ble—10)" ¢idz c

where p(z) and 4(z) are the dimensionless background
density and velocity profiles. The vertical scaling is h,
the height of the fluid layer, and the horizontal, L the
wavelength of the long wave; for velocities vk, where «
is the characteristic shear rate; for time v~!; for density,
po, the density at the bottom bounding surface, where
£ is the ratio of the amplitude of the wave Ap to the
height of the waveguide and p is the ratio of the same
height to the wavelength L.

The eigenfunction ¢ (z) and cigenvalue ¢ is found from
the linearized equations of motion, which in the invis-
cid, long wave approximation gives the Taylor-Goldstein

boundary value problem [Taylor (1931); Goldstein (1931)}:

L{e}
qblz:ﬂ =

[6ti-ci*e.] +sNRis=0 ®)
‘;ID#::J. = 0 (9)

The above boundary value problem also yields the eigen-
value ¢ = ¢p for n = 1,42, +3,. .. and corresponding
modes ¢, (z). ¢ depends only on the waveguide shear
profile @ = 1,52, the stratification g, and the Richardson
number Ri = szfyzn. N is the characteristic Brunt-
Viisilad frequency. N {z) is the dimensionless Brunt-
Vaisalad frequency.

Such detail in the Korteweg-de Vries approximation to
surface shallow water waves and to internal gravity waves
modified by shear is to demonstrate the fundamental
differences in the coefficients @ and 2 in the two cases.

— For surface shallow water waves:

3¢
A==
L TE

— For internal gravity waves modified by shear:

The fundamental parameter for the scattering trans-
form, A, in both cases depends on the characteristics
of the nonlinear dispersive waves that are generated —
the nonlinearity £ and the wave-number (through u?).

In the case of surface waves, it depends only on this. For
internal gravity waves modified by shear, it depends on
the ratio s/r which is a functional of §{z) andi(z) and
parametricaily dependent on Ri. Zimmmerman and Ve-
larde (1999) discuss the role of s/r in Couette How with
linear stratification in constraining solitary wave propa-
gation as a function of Ri.

Experimentally, in a shallow water wave tank, the wave-
maker can be programmed to produce the desired am-
plitude and wavenumber and thus X is fixed. The exper-
iments of Osborne and Petti (1994) were so controlled.
In their experiments, care was taken so that A is placed
in the regime of validity of the KdV approximation. In a
stratified, sheared wind tunnel, for instance, generating
backgrounds with fixed s/r is in principle possible, but
controlling the waves generated is more problematic. In
stratified wave tanks, introducing shear is difficult, as is
generating large amplitude solitary waves with tightly
controlled characteristics. In the simulations of internal
wave propagation and in the wave tank experiments per-
formed here, no attempt is made to set the Ursell num-
ber Ur = % for monochromatic waves, but rather initial
localized disturbances are permitted to evolve in known
background conditions. The resulting waves from the
decomposition of the initial disturbance may have A sub-
stantially different from the initial disturbance. Thus,
for DPIST to provide a practical spectral analysis of the
internal wave data from the simulations and experme-
nts performed here, it must be a robust technique in the
face of uncertainty in A.

2.2 Scattering equations
The Schrodinger equation is (Lamb (1980)):
Yoz + [F —u{z)]w =0 (10)

The KdV equation {5) was linked to the Schrédinger
equation by Gardner et al. (1967). They solved the
Schridinger equation with a potential well u(z) (signal)
constrained to satisfy the KdV equation and showed
that the oscillation modes found are a solution to the
KdV equation. This method allows the prediction of
the number of solitons that emerge from an initial con-
dition u(z). When the time evolution of the signal is
governed by the KdV equation, the amplitude of the
various components remains constant in time. This is
provided that the correct coefficients (and thus A) of the
KdV equation are known. _

E is loosely termed the eigenvalue, which according to
the condition imposed on the basis functions of (10}, will
be deemed to be in the main spectrum or the auxillary
spectrum. Additionally, the auxiliary spectrum trans-
lated over the entire interval [0, L] gives the u;-function
oscillation modes. The amplitudes of these modes are
readily computed from the spectral energies. To com-
pute the nonlinear power spectrum of a signal n(z,t),
(10) is integrated to find the eigenvalues and basis func-
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tions. A simple approach can be taken in solving (10)
using a Runge-Kutta shooting method to find the eigen-
values E. However, numerical integration of the hyper-
elliptic functions u; is difficult as they are strongly cou-
pled (Osborne and Segre (1990)) so the inverse prob-
lem is ill-conditioned. To overcome this problem and to
speed up the computation, a new algorithm was devel-
oped by Osborne and co-workers. The DPIST algorithm
used here to compute the scattering transform is taken
from Osborne and Segre {1993) and summarized below
for completeness.

2.3 Numerical algorithm

It is assumed that the signal and its subsequent evo-
lution are periodic, with period L, so that 7{z,t) =
n{z + L,t}. o is taken as an arbitrary base point on
the interval [0,L]. A basis of normalised independent
functions is introduced:

¢ o 1 ik
@(m;m,E):( . s ):( . ) 11
oB) =\ 4 o ik ),

The initial condition above ensures independence of the
four basis functions. It is possible to express the basis
functions at an arbitrary point z + L with z on the
interval [0, L] in terms of the basis functions at point z.
Basis functions at spatial point 7 + L can be expressed
in terms of the basis functions at «:

Pz + Lyxg, E) = S(zg, F)P(2; 20, E) (12)

The matrix S{xq, E) is the monodromy matrix. See also
Flashka and McLaughlin {1976) for a more detailed
outline of the theory. This matrix constrains E to de-
fine the main and the auxiliary spectra of the scattering
transform. The main spectrum determines the set of
eigenvalues E; {with 1 <i < 2N 41 with N the number
of spectral components). It determines the amplitudes
of the oscillation modes y;. For computational reasons
the complex matrix is avoided by rewriting the initial
values of the basis, normalised at zq:

—sinzg
COS Ip

ro=0

CO8 g
${zy,z0,E) = .
( 0 1 ) sin zg

- (6 )

The new basis permits calculations with only real num-
bers, a significant feature for efficient coding and com-
putation speed. On this new basis the Floguet discrim-
inant can be found in the trace of the new monodromy
matrix @ that describes the integration from point x on
[0,L] to  + L. The main spectrum is found where the
trace of this matrix equals %1.

Main spectrum (F = E;):

Tr([O(E)] = § (01.(E) + 02:(E)} = +1

Auxiliary spectrum (E = p; {z = 0,t = 0)):

@21 = 0

The auxiliary spectrum contains the value of the u; at
the boundary # = 0. The oscillation modes must van-
ish at both ends of the interval zo € [0,L]. Osborne
and Segre (1993) describe an efficient method of inte-
grating the Schradinger equation to find the elements of
the monodrony matrix ©. Variation of E permits the
graphical inspection of the Floquet discriminants for the
main and auxiliary spectrum (see for instance Figure
5.1). The algorithm alse stores the intermediate values
@4; (2p) during the integration. For E = p; satisfying
the criterion @3 {x = L) = 0, the stored value contains
the oscillation mode value, y; (xp) = ©2; (o)

The oscillation modes are bounded between the eigen-
values of the main spectrum {Eo; and Egiy ). The aux-
iliary spectrum condition is satisfied for a value of E ly-
ing between Ej; and Ey41, the eigenvalues of the main
spectrum.

The Floquet diagram is constructed by varying E. The
trace of the monodromy matrix equals 1 or -1 for an
eigenvalue. The eigenvalues Ey; and Ey;4 are the eigen-
values corresponding to {soliton) mode i. The width of
the band between these values determines the amplitude
n; of the oscillation mode:

_ Epin — By

j 7 (13)

Analogous to the Nyquist cutoff for Fourier series, there
is a cutoff wavenumber for DPIST. This is the maximum
wavenumber that can be found in a discrete signal and
is determined by the number of discrete data points,
keutor = A, where k is the wavenumber defined by
k=F.

2.4 Inverse scattering problem: reconstruction

Once the p;’s are integrated from a set of coupled ordi-
nary differential equations, a summation of the rescaled
p;'s reconstructs the original signal completely. If de-
sired, nonlinear filtering can be accomplished by omit-
ting or altering some oscillation modes of the spectrum.

~E; + (14)
N
> (=17 2u(x. 1) — Ezj ~ Enjei]

=1

An(z,t) =

The p;’s lie on a two sheeted Riemann surface with
branch points at Eo; and Egj4+1- As a band edge is ap-
proached, the derivative with respect to the horizontal
coordinate of the oscillation modes changes sign. The
factor {—1)7*! guarantees that the functions start off
with the correct sign.

By omitting modes it is possible to filter the signal or
find the soliton components in a certain signal. [Os-
borne et al.: Osborne et al.  (1991)] have applied this
technique on shallow water ocean surface waves. They
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were able to extract the underlying soliton spectrum
from a seemingly random signal.

The p;’s interact during their evolution in time. How-
ever, when solitons are absent from the signal the inter-
actions are weak. One can then assume that the func-
tions evolve independently in time. Candela (1995)
computed a set of eigenfunctions and a vector that gov-
erns the time evolution. Under the independence as-
sumption, the signal could be reconstructed for all times.
In general, however, reconstruction is complicated due
to strong coupling of the p;’s during their evolution.

3 Implementation of the numerical algorithm

The DPIST algorithm has been implemented in C*+.
Validation studies have been performed on the com-
puter program. The first test is to find the scattering
transform of a single sech? soliton, an analytical solu-
tion of the KdV equation. The second test is of the
time-invariance of the scattering power spectrum of a
waveform propagating according to the KdV equation.
A sine wave is evolved according to the KdV equation.
It breaks up into solitons. The scattering power spectra
are given at various times to verify the time-invariance
property.

3.1 Simple soliton

A pure sech? shape oscillation mode can only be found
when the potential is a single KdV soliton. This is not,
in general, the case so the auxiliary spectrum of os-
cillation modes should contain both solitons (not quite
sech? single humps due to the discrete and periodic ap-
proximations) and periodic cnoidal waves. The Floquet
spectrum can be split in two parts. Imaginary and real
wavenumbers &, each indicate an oscillation mode with
a different form.

When there is no baseline shift in the potential, the
soliton spectrum can be found for negative eigenvalues,
lL.e. imaginary wavenumbers. The shape of the Floquet
spectrum reveals whether an eigenfunction is a soliton
or a periodic cnoidal wave. The property I is computed
by:

I Eip1 — Ey;

= 15
Eyivh — Eoyy (15)

When the Floquet spectrum is very steep the property I
will be between 0.99 and 1.0. This indicates the presence
of a soliton. In general the soliton part of the spectrum is
found for negative eigenvalues. Periodic solutions have
values I < 1 and are found in positive eigenvalues. The
soliton part of the spectrum is called the discrete spec-
trum. Periodic solutions are found in the continuous
spectrum.

The shift in baseline of the signal can easily be found in
the Floquet spectrum by replacing Au + k2 in (10) by
Au + A + k2, where 7 is the increase in amplitude due

1/§ (M_11+M_22) Floguet spectrum
5F

4
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Fig. 1. Direct and inverse scattering transform of a solitary wave.
Top: the Floquet spectrum, Next: the auxiliary spectrum, Next:
the hyperelliptic oscillation modes, Bottom: the original potential
(unbroken line) and the reconstructed potential (dashed line).
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to the reference level. A baseline shift in the the signal
(@) will merely produce a shift AZ in the eigenvalues.
In Fig. 1 a pure soliton taken as the potential. The
soliton u = %sech2 (%(m —5.0)) is a solution to (5).
The parameter ¢ is chosen to be 2. The parameter A is
exactly unity in this case.

In the Floquet spectrum, Fig. 1A, the band width of the
open gap between the values Fy and E3 determines the
amplitude of the first mode. Theoretically there should
be only one (soliton) solution present in this spectrum.
In Fig. 1A and C it is clear that the solutions for mode
2 and 3 have negligibly small amplitude. The Floquet
spectrum oscillates between +1 and -1 for all further
values of E.

In Fig. 1A the zero crossings correspond to-eigenvalues
of the main spectrum. There is an auxiliary spectrum
(Fig. 1B) between each successive pair of main spectrum
eigenvalues Ey; and Es;41, and the oscillation modes os-
cillate between this pair. The corresponding auxiliary
spectrum eigenvalue for mode 1 is situated between E;
and Ej3, for instance. This eigenvalue is used to com-
pute the hyperelliptic oscillation modes of Fig. 1C. The
original signal can now be reconstructed by linear super-
position in Fig. 1D and is found to be superimposable
with the original using only the seven modes of Fig. 1A,
with all but the first negligible.

Up to the approximations made, the sech? waveform is
recognised by DPIST as a solution of the KdV equation.
In the following sections the scattering transform is ap-
plied to the simulations and experiments. Periodicity of
the signal will prove to be an important constraint on
the applications.

3.2 Evolution of a sine wave

The evolution of an arbitrary periodic signal according
to the KdV equation should produce a constant scatter-
ing power spectrum. When a linear sine wave (sin(z))
is evolved in the spatial interval [0, 27} with coefficients
a =60 and 8 = 1 (therefore A = 10) it is expected that
the signal will breakup into a train of solitons. The evo-
lution of the sine wave is given in Fig. 2a. The Floquet
spectrum of the sine wave is given in Fig. 2b.

The Floquet spectrum identifies four solitons and a large
amplitude dispersive wave (number 5). In the evolved
data in Fig. 2a, four clear solitons can be distinguished
together with a small fifth wave. The Floquet spectrum
in Fig. 2b identifies five nonlinear modes. There is a
reasonably good agreement between the DPIST anal-
ysis, identifying solitary waves, and those seen in the
data.

More detailed information on the time evolution of the
sine wave is given in Fig 3. On the bottom plane a pro-
jection of the contour levels is made. The wave breaks
up into a seemingly random profile of interacting waves,
though completely deterministic. The individual soli-

hbhbbio=me
5 s
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Fig. 3. Amplitude evolution of an initial sine wave according to
the KdV equation.

tons interact with other solitons and dispersive waves.
From the contours projected at the lower surface it is
clear that the waves continuously vary in amplitude and
experience phase shifts. Despite these interactions the
solitons retain their form.

The scattering power spectra at three different times in
the simulation are given in Fig. 4. The power spec-
trum remains fairly constant in time. The variation
may be accounted for by inaccuracies in the integra-
tion of the KdV equation and the discretization of the
scattering transform. The power spectra is sufficiently
time-invariant of the motion, a validation of the coding
of DPIST used here.

4 Application of DPIST to simulations

The DPIST algorithm is applied to recent simulations
of the dynamics of dense disturbances in stable stratifi-
cations which decompose into large amplitude internal
gravity waves. The aim of this section is to test whether
the wave evolution found is governed by the KdV equa-
tion and whether DPIST provides utility for the spectral
analysis of the datasets.

4.1 Simulations

The computational fluid dynamics simulation

scheme is described in detail in Haarlemmer (1997),
Haarlemmer and Zimmerman (1996) and in the Ap-
pendix of Haarlemmer and Zimmerman (1999). Due
to brevity concerns neither the finite volume implicit
differencing technique nor the model system of partial
differential equations appropriate to the simulation of a
laminar atmosphere is reproduced here.

We have been developing atmospheric simulations of a 2-
D domain under idealized conditions as a first approach
to many open questions of localized releases of dense
fluids in stable stratifications. Some of these releases
develop into solitary wave disturbances. The physical
applications include toxic gas accidental releases, chem-
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(a) Evolution
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Fig. 2. (a): Sine wave evolved according to the KdV equation. (b): Floquet spectrum with five nonlinear modes identified. The numbers
1-4 identify the soliton spectrum, due to the threshold of I &~ 0.99 and number 5 is clearly less steep but still a large amplitude dispersive

wave. Subsequent oscillation modes have negligible energy.

ical and biological warfare defense, and pollutant dis-
persal in atmospheric inversions or oceanographic ther-
moclines and pcynoclines. The first case studies have
been reported in the fluid mixing literature in absence of
wind shear [Haarlemmer and Zimmerman (1996)] with
an initiation scheme that tweaks the velocity vector of
an isolated neighbourhood of grid points. This artificial
procedure is especially useful for generating ”clean” soli-
tary waves, whose wave dynamics and advecting ability
can be closely monitored [Haarlemmer and Zimmerman
(1999)] .

In [Zimmerman and Haarlemmer (1999)], we were con-
cerned with relieving the ideal initiation by creating an
initial disturbance which is both a mass (temperature)
and momentum source at the inlet of the domain. These
dynamic inlet conditions, performed with a variety of
waveguides, permit the study of the effects of generation
mechanisms, different wave sizes, stratifications, and the
background wind profiles on the wave evolution.
Simulations were performed with either a uniform back-
ground velocity or a sheared background. Tempera-
ture profiles are only stratified near the bottom surface
and left unstratified above 300m. Several types of wave
events were simulated. The stratification and the initial
disturbances were varied throughout [Zimmerman and
Haarlemmer (1999)].

Waves were created by blowing a transient cold gust
into the waveguide. The scenario is similar to that de-
scribed in Doviak and Christie (1991). They explain
how a thunderstorm downdraft can create a train of
solitary waves. Other situations where this mechanism
may trigger a solitary wave is an explosive release of a

cold gas (e.g. rupture of a tank containing liquid gas)
or a sea breeze flowing into a nocturnal inversion layer
(gravity current). The origination of waves is influenced
by the wind which interacts with the gust. Once the
wave develops, the effect of the uniform wind should be
negligible.

The simulations describe the creation of solitary distur-
bances and their evolution in time. A packet of cold
air is released creating a perturbation in the tempera-
ture profile and streamlines. No attempt was made to
resolve the fine scales of the jet flowing into the strat-
ification. After the initial burst settled down the ac-
curacy increased. The size of the mesh is 40km (200
grid points) by 1000m (50 grid points) and the size of
the time steps is 20s. The background wind is set to
be either uniformly at 5m/s [Haarlemmer and Zimmer-
man (1996); Haarlemmer and Zimmerman (1999)] or
sheared [Haarlemmer (1997)].

All of the kinetic energy added is initially localized and
then spreads out and evolves into a solitary wave. Po-
tential temperature profile A is linearly stratified from
10 to 11 °C in the lower 300m, the upper unstratified
layer is set to 11°C (Brunt-Viisild frequency 1.0-1072
s™!). Potential temperature profile B is linearly strati-
fied from 10 to 14°C (Brunt-Vaisild frequency 2.2-1072
s~!) and left unstratified above. The various simulations
presented here are listed in Table 1.

4.2 Simulation 1: Falling Dense Disturbance

The simulations in Chapter 5 of Haarlemmer (1997) ini-
tiate from a turbulent region from which solitary waves
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Table 1. Numerical simulations performed in this paper, with the amplitude amp [m] of the initial disturbance and the particularities
of the simulations. () is the time at which the amplitude is measured. v [m/s], time [s], and T[*C] refer to the velocity, duration, and

temperature of the initial cold air gust.

No type v time T amp £ reference
1 B -50 40 16 111 (400}  0.39  Haarlemmer (19%7) Sim. 5.2
2 B 20 40 10 129 (800} 0.43 Haarlemmer and Zimmerman {1999) Sim. 3

emanate. These waves are initially highly nonlinear. As
thetr amplitude decreases they slowly evolve into weakly
nonlinear waves.

In this simulation the fluid was linearly stratified in the
first 300m with temperature increasing from 10°C to
14°C. The top layer was left unstratified at 14°C. A
wave was created close to the left boundary by setting a
region with a local vertical velocity to 50 m/s, directed
downwards. A part of the fluid near the origin of the
wave was labelled with a tracer with concentration unity.
The mesh is 10km in the x-direction (100 grid points)
and lkm in the y-direction (50 grid points).

The wave that is analysed is the perturbed location of
the 13.8°C isotherm and is therefore near the top of
the stratification. This isotherm is given in Fig. 5a for
different times. It is clear from this graph that the signal
is not periodic. The data was edited in Fig. 5b to isolate
the wave of interest and insure periodicity of the data.
The scattering algorithimn was applied to the data in
Fig. 5b. The coefficients of the nonlinear and disper-
sive terms are given by Benney (1966). In dimensionless
form these take the values & = £x5.5 and § = u?*0.032.
This gives a value for the nonlinecarity parameter as de-
fined by {4) as a function of the wave parameters:

A= 529

17
The horizontal characteristic length scale is chosen to
be identical to the vertical scale, thus g = 1. First the
scattering transform is applied to the data at t=800s.
At this time £ = 0.1, resulting in A = 2.9. The wave
at each time is normalised to unity to assure that the
non-dimensional form of the KdV equation as derived
by Benney is used. The results of the scattering trans-
form are presented in Fig. 7. The reconstruction of the
wave signal is imperfect. However, given how few modes
arc ecmployed (7 modes) the reconstruction can be con-
sidered reasonable. From the Floquet spectrum and the
first four oscillation modes it is clear that there is one
dominant soliton present. in the data. This is what could
be expected from Fig. 5b.
The scattering transform is applied to the data at t=1200s
(A =2.5) and t=1600 (X = 2.2). The three power spec-
tra are compared in Fig. 8. The overall power spectrum
remains fairly constant in time. It is however not an
invariant of the motion. The leading mode steadily de-
creases in amplitude. Apparently there is a4 mechanism
that transforms the leading wave, decreasing its ampli-

tude and increasing its support. Dispersion is the most
likely mechanism for this behavior. The simulations,
however, contain bulk viscous dissipation appropriate
to the atmosphere, which is expected to have minimal
effect. More realistic turbulent eddy viscosity was omit-
ted for simplicity. The Fourier power spectrum needs
many more modes to describe the signal. This is due
to the non-localised character of the transform. The
Fourier power spectrum is clearly more variable in time
than the scattering power spectrum.

The scattering transform can also be applied to the full
dataset as presented in Fig.5a. It is expected that the
modes present in the modified data are also found in
the full data. The scattering power spectra for the full
data are given in Fig. 9. Initially the spectrum changes
in time, however after some time in the simulation the
spectrum remains fairly constant. The leading mode
decreases in amplitude similarly as in Fig. 8.

From this study we can conclude that the scattering
transform is a suitable analysis tool for this - wave data.
It can identify modes that remain constant throughout
the motion, if there are any. It is necessary, however,
to use the proper scales of the waves in the scattering
equations.

4.3 Simulation 2: Rising Dense Disturbance

The simulations in [Haarlemmer {1997); Haarlemmer
and Zimmerman {1996); Haarlemmer and Zimmerman
(1999); Zimmerman and Haarlemmer (1999)] have been
shown to produce waves that are very efficient in the
transport and convection of fluids. This was due to
the fact that the waves are relatively large and display
non-similar disturbance streamlines at different heights.
The weakly nonlinear assumption is strictly speaking
not valid in these simulations.

Simulation 2 differs from 1 by introducing the dense
disturbance in the inlet of the domain with positive ver-
tical velocity, rising rather than falling, for a given pe-
riod, thus introducing more disturbance energy. A dis-
turbance was released with a velocity of 20m/s for 40s
(temperature 10°C, concentration tracer unity). This
creates a wave with an amplitude of 129m {after 400s).
The scattering transform was applied on the wave data
derived from the location of the 13.8°C isotherm. The
wave data is graphed in Fig. 6a. The temperature strat-
ification in this simulation is the same as in section 4.2.
The wave amplitude decreases after an initial increase.
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Fig. 4. Scattering power spectra of the wave evolution in Fig. 4
at three different times.

The value of A varies from A=3.8 at t=400s, A=4.1 at
t=1200s to A=3.5 at t=2000s. This is reflected in the
scattering power spectra in Fig. 6b. The power spectra
are represented in one graph for easy comparison.

The signal is clearly not governed by the KdV equation
because the power spectrum varies considerably. Var-
ious reasons can be given for this failure. Dissipative
effects can play an important role in the wave evolution.
Alternatively the weakly nonlinear assumption that the
wave separates fails, i.e. the disturbance does not take
the same form on every streamline.

4.4 Discussion

The results presented here assume that the KdV co-
efficients change with the wave under study. Benney
(1966) assumed a long wave form and derived the KdV
equation for this wave. The assumptions implied that as
the wave evolves, so does the governing equation. If the
wave data from the simulations is analysed using the in-
verse scattering transform it is suggested that the wave
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motion sometimes is governed by KdV equation with
selected A. It is found that the wave must be separable
and relatively clean of dispersive waves for the power
spectrum of the scattering transform to be an invariant
of the motion.

In section 4.2 it was shown that the power spectrum
of one isolated wave is not necessarily present in the
power spectrum of the full wave data. Due to nonlinear
interactions between the modes, power spectra cannot
be superimposed.

Unfortunately this implies that little predictive value
can be attached to the scattering transform for inter-
nal waves. One needs more information about the wave
to analyse it. This information is specific to a chosen
wave, typically the leading largest amplitude wave. The
scattering parameter A is then incorrect for other smaller
waves. This may account for the observations that there
is at maximum only one constant mode in the simula-
tions.

Furthermore the scattering transform does not identify
a specific soliton that evolves from an arbitrary signal.
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Due to nonlinear interactions between the hypereiliptic
oscillation modes, the modes evolve strongly coupled in
time.

5 Application of DPIST to experiments

The scattering transform can be applied to experimen-
tal wave data. Wave experiments were performed as
described in Haarlemmer (1997) Chapter 7. The wave
tank in which the experiments arc done was purpose
built. The tank is a rectangular channel made of trans-
parent U-PVC. The dimensions are 200x25x 10cm. Data
is collected using conductivity probes and a video cam-
era. The results are presented in the form of conductiv-
ity probe readings and video stills.

A stratification is set up by introducing fluids of different
densities in the tank. First fresh water is put in place af-
ter which batches of brine with increasing densities and
different colours are introduced near the bottom of the
tank. The different fluids organise themselves vertically
with the lightest fluid on the top. The interfaces are
miscible and so a near linear stratification can be set up
with a known density distribution.

The wave data was collected using conductivity probes
and a data acquisition system. The conductivity probes
are fed with an AC-current and the voltage drop ref-
crenced {0 a system of known resistance is logged by a
computer. Data was taken every 50ms.

The datasets collected using conductivity probes were
conditioned as follows. The probe signal was calibrated
using the wave amplitude of observed from the video
stills. Electronic noise was reduced by using a low pass
filter.

It is possible to gencrate solitary waves in a great many

ways [Amen and Maxworthy (1980), Maxworthy (1979)].

Almost any disturbance in stably stratified fluids pro-
duces waves of some sort. Gravity currents are created
by an area of fluid with a high density separated from
the stratification. When the scparation is removed the
dense fluid flows into the stratification creating a train of
solitary waves (see also Maxworthy (1980) and Rottman
and Simpson {1989)). In most experiments conducted
in our studies a localised solitary wave is created by in-
troducing a small but finite volume of dense fluid in the
stratification. This results in a solitary wave without
generating a gravity current.,

Various experiments have been performed with differ-
ent density stratifications. Both shallow and deep wa-
ter situations are considered. The experiments for this
section are presented in the form of video stills. A finite
amount of dense fluid (typically 100ml) was introduced
in the stratification. This causes a negligible increase in
the fluid ievel (0.5mm).

3.1 Deep fluids

In the first experiment in this section a wave was cre-
ated on a stratification embedded in a relasively deep
fluid. The wave was created using the method described
above. A solitary wave was generated that propagated
though the stratification. Due to the fact that the wave
travels very slowly, viscous forces damp the wave. The
waveforms generated in this study were damped and
usually disappeared after two passes in the tank.

The video stills of experiment 1 are shown in Fig. 10.
The figure clearly shows a solitary wave propagating
with very little change of form during eight seconds. The
coefficient A in the scattering equations is computed in
the same way as described in section 4.2. On the ba-
sis of the dimensionless coordinate system, where the
amplitude is scaled by the maximum amplitude of the
wave Ap and the horizontal position is scaled by the
fliid height, A is given by:

3
A=¢g-——=¢-77.
£ 67 €779

The wave form found in this experiment is given in di-
mensionless form in Fig. 11. The wave data was found
from processing the video images. It is clear that the
same mechanisms are at work as in the simulations.
The wave decreases in amplitude and increases in wave
length. The value for A varics from A = 20 initially to
A =17 after 8s.

The results in Fig. 11 clearly show that the wave is not
completely governed by the KdV theory. Although the
power spectra show that there is one mode that remains
fairly constant, it appears that all other modes slowly
disperse and dissipate and that only one nonlinear mode
survives. The initial signal is reconstructed with the
four oscillation modes as shown in Fig. 11. The results
shows that the scattering transform provides an efficient
method of describing the signal.

5.2 Shallow fluids

The second experiment which is analysed with the scat-
tering transform deals with a more shallow fluid. The
wave data was taken from the video stills as presented
for experiment 1 in Chapter 7 of Haarlemmer (1997).
The value of the parameter is A = £-13.4. Length scales
are scaled by the height of the waveguide. The results
of the scattering transform are given in Fig. 12.

The scattering power spectrum is roughly constant in
time. The wave data of this experiment is not of very
high quality so some discrepancy can be expected. The
times between the two waveforms is only a few seconds
so only small changes in the power spectrum can be
expected.
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Exp. Stratification Description

No Depth Layer [cm] I Density [kg/m3] P

1 10 1,000 Wave created by introducing 100m! dyed fiuid, density
2 1,008 1.04kg/m?3.
4 1,000

9 1 1,008 Wave created by introducing 100ml dyed fluid, density
1 1,015 1.05kg/m3.
1 1,023

Table 2. Experiments performed in this paper.

(a) Wave at t=tg

2cm
(cm }

(b) Wave at t=tog+8s

Fig. 10. Video stills of experiment 1, 80cm section of the wave tank, 20cm from the origin of the wave.

5.3 Discussion

The application of the scattering transform to the exper-
imental data show that the arguments found in section 4
still hold. The size of the wave varies and therefore the
coefficients vary. When variable coefficients are used the
data appears to be consistent with the KdV equation.

Waves in weakly viscous fluids can be described approx-
imately by using the inviscid equations. Most experi-
ments however deal with pseudo-steady situations with
a small but finite initial input of energy. Alternatively
for surface waves the weakly viscous approximation may
be applicable due to the short time scales involved. The
experiments performed in this study show that the time
scales for internal waves are much longer and viscous
forces act on the motion. The first modes to be damped
however are the smaller dispersive modes. The leading
soliton components of the data survive for some time.

6 Concluding Remarks

It is possible to treat internal wave data from various
sources by DPIST analysis. Other researchers as yet

have only analysed surface wave data with the scatter-
ing transform. The nature of the perturbation expan-
sions deriving weakly nonlinear evolution equations for
internal waves is different than those for surface waves.
The implementation of the scattering algorithm had to
be adapted to the use on internal waves.

It was possible to identify constant wave modes in some
of the simulations and experiments presented in this pa-
per. A prerequisite for this is, however, that the wave
is separable and weakly nonlinear. Strongly nonlinear
waves that do not separate have a scattering power spec-
trum that varies with time.

As has been shown, the KdV coefficients, and thus the
input parameter A = 3% for DPIST analysis depend on
the characteristic amplitude and wavenumber through
the Ursell number Ur = fg for both internal and surface
waves. Additionally, A depends on the profiles 4(z) and
p(z) forming the waveguide for internal waves. Thus, for
geophysical flows in a stably stratified, sheared shallow
fluid layer, measurements of the background conditions
and the wavelength and the amplitude of a solitary wave
passage must be performed for DPIST to have a predic-
tive value. Very few studies qualify. Rees and Rottman
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dicted for solitary waves with the Scorer wavenum-
ber, i.e, fixed A. Faster moving solitary waves with
amplitude linked to the phase velocity are also so-
lutions to the weakly nonlinear wave equation de-
rived, a hydrid of the KdV and BBM [Benjamin
et al. (1972)] equations. Hypothetically, DPIST
could be used as a predictive analysis tool under
these conditions.

2. Velarde and coworkers (see e.g. Nepomnyashchy
and Velarde (1994) for the derivation and Chris-
tov and Velarde (1995) for some dynamical he-
havior of the nonlinear evolution equation) have
demonstrated that surface solitary waves and thus
slaved internal gravity waves can be generated in
the Marangoni-Benard venue when heated from above
—the air side of the air-liquid interface. The solitary
waves are excited above a threshold in Marangoni
number with amplitude and wave-number depen-
dent, on the excess Marangoni number above the
threshold. The dynamics are shown to satisfy the
modified KdV equation dubbed the KdV-KSV equa-
tion, including the dissipative terms usually associ-
ated with the KS equation. Under certain restric-
tions of the coeflicients, this dissipation modified
KdV equation is integrable [Lou et al.  {1991);
Estevez and Gordoa (1993); Cerverd and Zurrén
(1996)] and thus a DPIST exists. How robust this

DPIST analysis toal is for the in general, non-integrable

KdV-KSV cquation is an open question.

3. Zimmerman and Velarde (1996} derive a variant
of the KdV-K5V for bulk dissipative effects on the
evolution of internal solitary waves by arguing that
the center manifold dynamics of slow variations of
the waveguide height and the least dissipated in-
ternal mode are dominant in the time-asymptotic
limit. External wave energy input to the distur-
bance, for instance from shear instability, is nec-
essary for solitary internal waves to propagate in-
definitely. Under conditions of strong shear, it is
likely that the shear instability scts the scale of the
solitary wave.

This study has shown that when, as in the experiments
of Osborne and Petti (1994) waves are generated with
monochromatic wavenumber and controlled amplitude,
DPIST is an exceptionally good spectral analysis tech-
nique. For internal waves, additionally, the waveguide
must be well characterized. However, in the practical
applications which generate solitary disturbances — in
oceanography and meteorology, as well as pollutant dis-
persal and accidental toxic gas releases — the initial con-
dition may be too strongly nonlinear for the KdV ap-
proximation to be valid. Nevertheless, the long time
evolution of the solitary waves generated in shallow lay-
ers may approximate KdV dynamics. Fixing the key
DPIST input parameter A in these cases could be prob-

lematic. For simulations and wave tank experiments
modelling these cases, it has been found that the DPIST
spectral analysis identifies the largest amplitude solitary
disturbance and its power spectrum under some uncet-
tainty about the proper A. Thus, the DPIST technique
is promising as a nonlinear filter for the prediction of
the propagation of single nonlinear dispersive internal
waves.
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